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Abstract

This paper proposes a new algorithmic debugging method for
functionél programs, Strategic Bug Location (SBL). SBL produces
a search graph, Strategically Projected Graph (SPG), using the
dynamic execution history in conjunction with the static
structure of the program. The method generates queries to the
programmer and applies such operations as transformation and
selection to the SPG. The repetition of such query and
operations leads the programmer to the location of a bug. SBL
improves the reduction of the search graph by incorporating bug
location strategies in the transformation mechanisms of the
search space. Furthermore, SBL facilitates grasping the abstract
structure of a program during the bug 1location and also
facilitates following the sequence of the queries using the

hierarchical search graph.

1. Introduction

Functional programming languages have many excellent
features which facilitate writing short and clear programs, as
well as understanding and verifying these programs using. clean

mathematical semantics.[1-5] It has also been pointed out that
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parallelism is easier to detect in a functional program than in
an imperative one.[5] Thgse points of view have led many
researchers to study both dataflow machines{6-9] and parallel
reduction machines[10-11] in an effort to find ways to execute
functional programs more efficiently. Furthermore, the
propagation of a bug in a functional program is simple to trace,
because of the referential transparency accompanying functional
languages. This has led the authors to study methodologies for
debugging a functional program executed by a highly-parallel
computer.[12,13]

By analyzing the execution history and the programmer's
answers to the queries automatically generated by the debugging
system, the debugging system mechanically detects a bug in the
program.{12-14] Using procedures that select a query from the
search space made from the execution history as well as reduce
the search space through the query-and-answer procedure, these
systems make it mechanically and efficiently possible to locateva
bug even when a «considerable amount of execution history is
prbduced.

All bugs incorporated in the program text will appear in the
execution results. Therefore, it is desirable to search for bugs
using strategies derived from both the properties of bugs and the
analysis of the static program text as well as from the execution
history. However, most of the bug location systems proposed to
date [12,14] analyze only the execution history without looking
into the function dependéncies produced by the static analysis of
the program itself., Consequently, cases exist in which redundant
questions ‘are generated repeatedly for the same part of the
program text. This problem is especially serious when a

recursive function is called in many times. Furthermore, when an
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illegal wvalue 1is found in function's parameters, such bug'
location systems can not constrain the search space to the
relevant execution history wherein the value was computed.

This paper proposes a new bug location method, called the
Strategic Bug Location (SBL) method as a solution to this
problem. SBL produces a search graph, named the Stratégically
Projected Graph (SPG), using both the dynamic execution history
and the static structure of the program. The method iteratively
applies such operations as transformation and selection to the

SPG.

2. Background

2.1 Bug Location Method for Functional Programs

ﬁsing a functional program, many operations can be executed
in parallel independently of the sequence of such operations in a
program text. Therefore, once a bug 1is found to exist in a
program, it is difficult to debug using conventional debugging
tools like tracers, memory dumpers, and so on.[16] In addition, a
dataflow machine, which 1is one of the promising vehicles for
executing functional programs in parallel, uses tokens to carry
data as well as eliminates the concepts of stack and memory.[6-9]
Locating a bug by monitoring tokens is difficult, however,
because of the complexity of the token arrival sequence during
highly-parallel processing.

To solve this problem, we proposed a bug location method
based on the analysis of data dependency.[12] Figuré 1
illustrates a system employing the method which <consists of a
debugger and a database. The system stores dependency graphs in

the database, which are procduced by the analysis of both the
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static program text and the execution history. The debugger
updates the database by wusing the analysis results of the
programmer's answer to the query which is automatically generated
by the debugger. Through the iterationé of such a
query-and-answer procedure, the debugger successively narrows

down the search space until it eventually locates the bug.
A

2.2 Dependeﬁ@y Graphs for Debugging Functional Programs

The static dependency in a program and its execution history
are expressed by using directed graphs. The notations and data
structures of the dependency graphs are as follows.
(1) Directed Graphs

A directed graph, G, is a tuple (Ng,Ag,Ig) where "Ng" is a
set of nodes, "Ag" is a set‘of arcs conneéting two nodes in "Ng",
and "Ig" is an initial node. Suppose the existence of graph G

and node vgNg. A predecessor graph of v is a maximal subgraphygf

G, which consists of nodes reachable to v by tracing arcs in" G,
and whose initial node 1is Ig. (In this paper, a predecessor
graph of v is assumed to include itself.) A successor graph of v
is a maximal subgraph of G, which consists of nodes reachable
from v by tracing arcs in G, and whose initial node 1is v. A

subordination graph of v is a maximal subgraph of G, which

consists of such w's as w is a node in a successor graph of v and
has no path from 1Ig to itself without going by way of v. An
initial node of a subordination-graph of v is v.
(2) Instance Dependency Graph

A tuple (f,x,y), in which £ is a function, x is an input
parameter list and y is a result value 1list, is called an

instance value. A pair of an instance value and its identifier

is called an instance. When an instance value of an instance,
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"i", is computed with én instance, "j", "j" is called a c¢hild
instance of "i", An instance dependency graph is a directed
graph which consists of all nodes, generated dufing execution,
and arcs drawn from each instance to its éhild instance. 1Its
initial node is an instance generated by executing a function at
the start of the program.
(3) Instance Value Dependency Graph

The identifier of an instance is not essential for debugging
pure functional programs. From this point of view, an instance

value dependency graph is generated by forming all nodes having

the same instance value in an instance dependency graph into one
node. When an instance value, "i", is computed with an instance

value, "j", "j" is called a child instance value of "i". We

introduce a function, Ff, which returns the function part, "£",
when it is applied to the instance value, v=(f,x,y).
(4) Function Dependency Graph

In a function dependency graph, a node corresponds to a
function 1in 'a source program. An initial node corresponds to a
function which is executed at the start of the program. The
function dependency graph has two <classes of arcs, namely
call-arcs and parameter—-arcs., . Call-arcs represent the
relationship of the reference between two functions. When some
expressions in a function, "f", use the return value of the
function, "g", a call-arc is drawn from a node, "f", to "g" with
an arrow, i.e., £-»g. For example, the function dependency graph
for Example 1 below is shown in Fig. 2(a), because "f" calls "g"
and "g" uses only primitive functions in this example.
[Example 1]:

f(x)
g(x )

g(x)+l;
X-2;

i n
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Parameter-arcs represent the relationship between the
definition of an input 'parametervand its reference. When the
input parameter for a function, "g", is computed with the value
of a function, "f", a parameter-arc is drawn from a node "f" to
"g" with a dotted arrow, i.e., £f--3q. Fig. 2(b) illustrates a
function dependency graph for the program Example 2 below in
which a parameter for g uses the result of a function, "f".

A

[Example 2]%

h(x) = g(£(x));
g(x) = x*x;
f(x) = x+1;

Predecessor graphs, successor graphs and subordination
graphs are defined for each class of arcs in a function
dependency graph. For éxample, a call-successor graph of "v" |is
a maximal subgraph of G which consists of nodes reachable to "v"
by using only the call-arcs in G. On the other hand, a successor
graph of "v" is a maximal subgraph of G which consists of nd&es
reachable to "v" by using both the call-arcs and parameter-arcs
in G. Similar subgraphs can also be defined in terms of

predecessor graph and subordination graph.

2.3 Bugs in a Functional Program

Suppose that a function "f" is defined in a program and that
"v" is an arbitrary instance value, (f,x,y). When "x" includes
an unexpected (or illegal) input parameter for "f", v is called
undefined. When x is a list of correct input parameters, v is
true if £(x)=g in the specification, while v is false if not.
When a function returns an erroneous result for correct input
‘parameters, at least one bug exists in it, since a functional
program 1is not history sensitive. Therefore, 1if a tuple of

(f,x,y) is an instance value, "b", which satisfies both of the
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following conditions, there exists a bug in the expressions in a
function "f", by which f£(x) is actually computed:

(1) An instance "b" is'false;

(2) All child instance values of "b" are true.
The above "b" is called the "source"™ of a bug. A procedure, with
which a debugger locates the source of a bug from the execution

history, is named a bug location algorithm.

2.4 Probléms in Conventional Bug Location Algorithms

Bug location algorithms proposed to date create the search
space using only execution history(e.q. using an ‘instance
dependency graph for a PROLOG program[l4] or using an  instance
value dépendency graph for a functional program[l12]). When using
these algorithms, some cases exist in which redundant questions
for inspecting the same part of the program text‘are generated
repeatedly. |

This problem is especially serious when a recursive function
is called in many times. For example, consider a program which
consists of a single erroneous recursive function. Here, a bug
exists eithér in the recursive part or in the £ermination part.
However, the above algorithms iteratively check instance Qalues
derived from the recursive part before they check any instance
value derived from the termination part, since they select a node
to separate the execution history kinto two. parts. Such a
selection mechanism does not wqu well when a bug exists in the
termination part. It should be also pointed outlthat the above
algorithms can not constrain the search space to relevant
instances, when erroneous parameters are found to be applied to a
function (e.qg when an unsorted 1list is applied instead ‘of a

sorted list).
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3. Strategically Projected Graph and Its Reduction

To solve the problems described in the previous section, it
is important to débug a program using not only the execution
history but also data reflecting the static structure of the
program, The search space in the Strategic Bug Location method
(SBL) is a strategically projected graph (SPG) which is produced
by relating a function dependency graph to an instance value
dependency graph. SBL transforms and selects +the SPG and
identifies the source of a bug according to the strategies
derived from both the program structure and the properties of the
bugs themselves. Consequently, SBL should require less queries
of a programmer than the existing algorithms since SBL
distinguishes instance values in the termination part and in the
recursive part of a recursive function as well as analyzes the
direction of bug propagation in greater detail. 1In this section,

the SPG are defined as well as the operations for its reduction..

3.1 Strategically Projected Graph

Assume a function dependency graph, G=(Ng,Ag,Ig), and an
instance value dependency graph, V={(Nv,Av,Iv), for a program P.
Suppose an arc, "a" (a€ Av), exists from node vl to v2. ) Also
suppose that the function parts of vl and v2 are f£f1 and f2,
respectively. Therefore, a call-arc, "c" (c€&€Ag), exists from
node fl1 to £f2. In addition, Ff(Iv) becomes Ig. Suppose an
homomorphic graph of V named H that is created by projecting
nodes having the same function part to one node. Therefore, H is
a sub-graph of G. Hence, we define a function, Fd, as

Fd(f) = {v| ve Nv and Ff(v)=f}, where fé& Ng.
The function, Fd, accepts a function name, £, and gives a

set of instance values computed using f. We call Fd(f) a total

- 8 -
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instance value set (TiVS) for £, and the union of TIVSs for all
nodes of graph, S, is named a TIVS for S.

The SPG, S=(Ns,As,Is), generated from graphs G and V is
either the initial graph, S0, defined below, or a graph obtained
by applying an arbitrary number of operations described in
Sections 3.2 and 3.3 to the graph SO.

The initial Graph, S0=(Ns0,As0,Is0), is a subgraph of G, and

is defined as

* NsO = { £ | £€ Ng and ( Fd(f) is not null ) },
* As0 = { a | a€Ag and
( both the start/end points of "a" are in Ns0)}
* Is0 = Ig
In the next section, structured nodes are introduced. In

contrast, nonstructured nodes are named basic nodes. For the
basic nodes of an SPG, the function, Fd, is defined similarly as
in the <case of the function dependency graph. Apparently,
Fd (S0) =Nv.

To constrain the search space, we introduce a function,' Fs,
which specifies the eligible nodes in TIVS. For the basic nodes
of an SPG, the function, Fs, is then defined as

Fs(f) = { v | ve Nv and ( Fa(v)N Fd(f)={v} },
where Fa(v) stands for a node set of the predecessor graph of
"v", This definition implies that each node included in Fs(f)
has no parent instances whose function parts are "f".

Fs(f) is named an eligible instance value set (EIVS) for
"Ew, For aﬁy node "f" of an SPG; FA(£)D Fs(f). The union of
EIVSs for all nodes of graph S is called an EiVS for S. |

SBL first selects a node £ of the SPG. It then selects an
arbitrary instance value from Fs(f), and queries the programmer

whether it is true, false or undefined. According to the

-9 -
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programmer's answer, it reduces the SPG using
transformation/selection operations discussed in the following

sections.

3.2 Transformation Operations for an SPG

Assume a function dependency graph, G, and an instance value
dependency graph, V=(Nv,Av,Iv), for a program, P. Suppose that
S=(Ns,As,Is) is an SPG generated from graphs G and V.

(1) Instantiation operation

The operation which takes the instance value, "j", and
appends it to the node, Ff£(j), in S, is called the instantiation
operation. Suppose gg Ns and j€ Fs(g). The instantiation of "g"
is then defined as

Fd(g{j}) = Fd(g) - {j} and Fs(g{j}) = Fs(g) - {3} .
The node g{j} is called an instantiated node. If i Fs(g{j}) and
"i" is appended to node "g{j}", it is notated as "g{i,j}". Other
values can be appended in the same way.

As examples, consider the SPG on the left in Figs 3(a) and
assume (g,3,1)€ Fs(g). The graph obtained by appending "(g,3,1)"
to node "g" is then shown on the right.

If Fs(f) is not null, node "f" is said to be instantiable.
(2) Expansion operation

Assume the function "f" is recursively defined in Program P.
Then, multiple nodes, appear which have "f" as a function part,
can be appeared in a path of graph V from node "Iv" to any leaf.
The set Fs(f) includes only the node nearest to the "Iv" in the
path. To make other nodes selectable, the concept of the
recursive node is defined as followé.

We first define an auxiliary function, Fm, as

Fm(j,f) = max (Fe(p,f)),

Pe PjJ

- 10 -
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where je¢ Nv and Pj is a sét of paths from node "j" to leaves of
V, and Fe(p,f) 1is the number of instances on path "p" whose
function parts are "f". Note that function "Fe" is defined
independently of graph S.
For recursive nodes, Fd and Fs are defined as
Fd(f.1*) = FA(f) and Fs(f.1l*) = Fs(f).

For any non-negative natural number, m,

Fd(f.m) ={3j !l jerd(f.m*) and Fm(j,£)=m },
Fd(f.m+l*) = { j | jeFd(f.m*) and Fm(j,£)>m },
Fs(f.m) = Fd(f.m),

and.

FPs(f.m+1%*)

{ 31 jers{f.m*) and Fm(j,£)>m }.

Hereafter, a basic node "f" is treated as f.l*., Apparently,
FAd(f.m*) = PA(f.m)U FA(f.m+1*) (m>l).

A node f.m* is said to be expansible if Fd(f.m+l*) (m>1) is
not null, and S is said to be expansible if S includes an
expansible node. Suppose graph S contains an expansible node
f.m*, Then an SPG, T=(Nt,At,It), obtained by expanding the node
f.m* is a graph that is computed in the following way:

* Split the node f.m* to £.m and f.m+l*. Draw arcs the same as
in graph S except for the case they come to or go from f.m¥,

* If an arc comes to/goes out from node f.m* in graph S, then
make the arc come to/go from both nodes f.m and f.mtl¥*,
Subsequently, remove an arc in T if it goes from f.m and comes to
itself.

* If f.m* = Is then "It" is f.m+l* else "It" is the same as "Is".

The expansion of node f.m* is shown as an example in
Fig. 3(b). |
(3) Folding/Unfolding operation

The folding operation corresponds to  configuring a

--11 -
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hypothesis wherein a function is defined correctly and to
removing a set of instances -of the function from the search
space. The unfolding operation corresponds to the retraction of
the hypothesis and to the return of the instances, which are
removed by the preceding folding operation, to the search space.
Assuming that ge Ns and g#Is. The following operations can
then be performed when the folding operation is applied to "g".
* For each node "f" that has a call-arc to node "g", change the
node name to "f[(g]".
* Remove all call-arcs that go out from node "g".
* Suppose X and Y to be node sets that have parameter-arcs
from/to node g, respectively. Then connect a parameter-arc from
all nodes in X to all nodes in Y.
* Remove node "g" and the related call/parameter-arcs.
A node like "f[g]" is <called a folded node, for which
functions "Fd" and "Fs" are defined as

Fd( flg] ) = Fd(£f)U Fd(qg),

and

Fs( f[g] )

Fs(f) .

Folded node "f[g]" is conversely changed into two identical
nodes "f" and "g" when the unfolding operation is appliedato it.
An example of the folding/unfolding operation is shown 1in

Fig. 3(c).

3.3 Selection Operétions for an SPG

Assume a function dependency graph, G, and an instance value
dependency graph, V=(Nv,Av,Iv), for a program, P. Suppose that
S=(Ns,As,Is) is an SPG generated from graphs G and V. The
following three operations are defined to obtain a subgraph of S

(in other words, to remove some nodes of S). For each node £ in

- 12 -~
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the resultant subgraph, the wvalues, Fd(f) and Fs(f), remain
unchanged.
(1) Inner-removal operation

Let p&Ns and p#1s. Then, the graph, obtained by applying
inner-removal operation tobnode "p®", is a maximal subgraph which
is obtained by removing call-subordination graph of "p" from S
and whose initial node is "Is". |
(2) Outer-removal operation

Let p& Ns, and PfIs. Then, the graph, obtained by applying
outer—removél operation to node "p", is a call-successor graph of
"p" whose initial node is "p". |
(3) Non-input removal-operation

Let peNs, L be a set of nodes in a call;predecessor graph
of "p", M be a set of nodes in a parameter-predecessor graph of
each node in thé node set L, and N be a set of all nodes in
call-successor graph of each node in M. Union of L and N is

named an input decision node set of "p". The graph, obtained by

abplying non-input-removal operation to node "p", is then a
maximal subgraph, whose node set is an input decision node set of
"p", and whose initial node is "Is".

Figure 4 shows examples of each of these selection
operations. The shaded areas represent the graphs removed by

each selection operation.

4, Strategic Bug Location Method

4.1 Overview
The strategic bug location method (SBL) consists of two
parts, 1i.e., -a program analyzer and a bug locator. The program

analyzer statically traces a source program in terms of function

- 13 -
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dependencies, and transforms the execution history into a
Strategically Projected Graph (SPG), which reflects the structure
of the source program. Furthermore, it reduces the SPG to ehable
the bug locator to more easily manipulate the global structure of
the program. The program analyzer replaces a subgraph, which
consists of nodes for strongly related functions, with one node,
that 1is, 2all instances of functions strongly related to each
other are projected into a single node in the SPG. The program
analyzer iteratively reduces SPG as shown in Fig. 5. As a
result, the SPG becomes a single node which represents a
hierarchical function structure of the source program.

The bug locator also iteratively "reduces" the SPG through
the analysis of the query-and-answer sequence to the programmer.
This SPG reduction 1is achieved from two points of views
unfolding/expanding/detailing the SPG to decrease the number of
instances projected into the same node in the SPG, and
folding/selecting the SPG to decrease the number of noges in the
SPG. The bug locator selectively applies | the
transformation/selection operations to the SPG according to the
strategies derived from the properties of bug propagation in the
functional programs. The iterations of the
transformation/selection of the SPG result in the SPG becoming a

node which contains the source of a bug as was shown in Fig. 5.

4.2 Program Structure Analysis Using Intervals

When the number of functions in a program is large, it |is
important to examine the SPG hierarchically. On the other hand,
the function dependency graph, which determines the construct of
an initial SPG, does not reflect the program's hierarchical

structure. In this paper, we propose a procedure that transforms

- 14 -
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the SPG into a single node reflecting a hierarchical program
structure before reducing it through bug location strategies.
This procedure is based upon the use of intervals [15] defined as
follows,

Let GO = (Ng0,Ag0,Ig0) be a directed graph. Given a node,
h Ng0, called the header node, an interval, I(h), is the maximal,
single entry subgraph in which h is the only entry node and in
which ali closed paths in I(h) contain the node h. An interval
can be expressed in terms of the nodes in it:
I{h)=(nl,n2,n3,...,nm), where heI (h). For this interval,
FA(I(h)) and Ps(I(h)) are defined as Fd(I(h))=§}Fd(ni) and
Fs(I(h))=Fs(h5. -

By selecting the proper set of header nodes, {hl,h2,...}, in
SPG and finding intervéls with the algorithm in the literature
[15], we can partition the SPG into a unique set of ‘disjointed
intervals, and can obtain a new SPG, Sl=(Nsl,Asl,Isl), where
Isl=I(Is0) and Nsl={I(hl),I(h2),...}. ‘

The program analyzer successively applies the following
précedure to SPG Si wuntil it becomes a single node. Here,
Si=(Nsi,Asi,Isi) is the SPG which is derived from the i-th
application of the procedure and S0 is the SéG constructed using
the function dependency graph.
(1) Find intervals in Si-~1 and make each of them into oné node in
Si.
(2) Make each interval exit arc into one arc in Si.
(3) Make Isi=I(Isi-1).
This operation is called abstraction, and detail operation gives
the interval from the node.

Figure 6 illustrates an SPG sequence produced through the

successive applications of the abstraction operation. A node in

- 15 -
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SPG Si represents all nodes in an interval in SPG Si-l1, and a
node in SPG Si-1 represents all nodes in an interval in SPG Si-2,
and so on., Eventually, the node produced by the program analyzer
reflects the hierarchical structure of the source program.
Although not all graphs can be reduced to a single node by
successive transformation, methods for "splitting"™ (copying)
certain nodes in such an irreducible graph produce an equivalent

graph reducible to a single node.[15]

4.3 Strategic Bug Location Method

An SPG, S, has the three particular properties relative to
bugs. '
[Property Pl] When node "f" is not instantiable, an erroneous
function exists outside the call-subordination graph of "f" under
the condition that all instantiated values of "f" are true.
[Property P2] When node "f" has a false instance value, an
erroneous function exists in the call-predecessor graph for "f".
[Property P3] When node "f" has an undefined instance ~value, an
erroneous function exists in the input-decision node set 6f "E".

We hypothesize the relationship between bugs and program
structures as follows. -
[Hypothesis Hl1] If a function "f" has at least one true instance
value, there is a high probability that "f" is correct.
[Hypothesis H2] Suppose that both "p" and "g" are instance values
produced by executing a function "f" (i.e., FE(p)=Ff(qg)=£f) and
that "p" is true. 1If the same set of expressions in "f" are
_executed to produce "gq" as those executed to produce "p", there
is a high probability that "q" is also true.
[Hypothesis H3] The more functions exist in a program, the more

bugs tend to be in it.

_16_
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[Hypothesis H4] If a function,A which 1is one of the mutual
recursive functions, has a bug, there is a high probability that
an erroneous result is propagated to all instance values for such
functions.

Thé following strategies are derived from the above
hypotheses. |
[Strategy S1] When an instance value of a function "f" is found
to be true, all instance values of "f" are assumed to be true
according to the hypothesis H1, and all instance values, that are
in call-subordination graph for "f", are temporally removed from
EIVS by folding "f". However, a contradictory assertion, which
tells all functions are true, is‘induced if all functions are
folded during the bug location, Therefore, the hypothesis is
retracted and the folded graph is recovered by unfolding "f".
[Strategy S2] If the SPG is reduced to cne expansible node "f",
it 1is expanded so that the instance values nearest to the leaf
can be included in the EIVS. This strategy specifies that the
termination part of "f", followed by the recursive part of "f",
is checked initially.
[Strategy S3] A node "f" in SPG for instantiation is selected as
follows. Suppose that T(f), F(f) and U(f) are the numbers of
nodes derived by applying S1, P2 and P3 to SPG in cases that the
instance value of "f" is true, false and undefined, respectively.
Select node "f" such that the maximum values of T(f), F(f) and
U(f) are the smallest in those "f's" which minimize.
(T(£)+F(£)+U(£f)) . Assuming that all probabilities, where the
instance value of "f" is true, false and undefined, are equal
(i.e. 1/3). Then, the expectedbnumber of nodes in S, which |is
obtained by applying the selection operations to "f", is minimal.

[Strategy S4] The SPG is checked by using the unit of interval.

- 17 -
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An interval is not to be detailed while other nodes exist in the
SPG. When an interval I(h) is to be checked, the instance value
j is checked where j Fs(I(h))=Fs(h). In checking I(h), I(h) is
true if the header h is true.

Based on the above strategies and their properties, the bug
locator iteratively applies operations to the SPG until
termination A9 as shown in Fig. 7. In this figqure, |S|" is the
number of nodes in SPG S, and labels Al to A9 are identifiers for
the operations to be applied. The names of the properties and
strategies in the parentheses tagged to the operators give the
reasons for applying the operation. The source of bug is
detected as follows.

When [S| > 2, the strategy S3 selects a node "f" from S and
tries to instantiate it. Here, if "f" is not instantiable, the
inner-removal operation is applied to "f" according to the
property Pl. On the other hand, if "f" is instantiable, any nQdé
"v=(£f,x,y)" in EIVS of "f", i.e. Fs(f), is appendgd to "f"
through the instantiation of "f", and the question concerﬁing A
(i.e. whether f£(x) is true, false or undefined.) is generated to
the programmer. The answer to the question, which tells whether
"v" is true, false or undefined, activates the operation for "f",
i.e. r either the folding, outer-removal or non-input-removal
operation is applied according to the answer obtained. When
|Isl=1, S 1is expanded if ©possible. When |[S|=1 and S is not
expansible, S is unfolded if it consists of a folded node. If S
is abstracted, S is then detailed. Otherwise, S consists of a

single node which contains the source of the bug.

4.4 Examples

We will focus here on how to locate a bug using SBL.
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(1) Calculating Fibonacci Numbers

The following function "f* is for calculating Fibonacci

numbers.
[Example 3]:
£(n)={if n<2 then 1 else f(n-1)+£(n-2)}.

We consider a buggy function "fr" of "f", which has a bug in

its recursive part, as follows.
[Example 4]: |
fr(n)={if n<2 then 1 else fr(n-1l)*fr(n-2)}.

Suppose that we want the tenth Fibonacci number. We find
that "fr" is incorrect, since fr(10) returns to 1. The initial
SPG is a single node which consists of V“fr". SBL iteratively
applies the transformation/seleqtion operations to the SPG and
eventually points out that the instance value f£fr(3)=1 is the
source of the bug as showﬁ in Fig. 8. As a result, we find that
there is a bug in the recursive part of "fr", i.e., 1in the
expressions which consist of n<2 and fr(n-1l)*fr(n-2).

Notice that the sequence of the operations is independent of
n, 1i.e., the three queries lead to the location of the bug even
if a considerable execution history 1is generated by large n.
Furthermore, it can be said that SBL is suitable for debugging a
functional program using a parallel computer 1like a data flow
machine, since a programmer is only required to answer the query
which is independent of the complex behavior in parallel
execution,

(2) Sorting a List using Mergesort Algorithm‘

A> simple sorting program using a mergesort. algorithm

consists of three functions: "split", "merge" and "mergesort" as

foilows.
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[Example 5]
split(x)={if null(x) then (nil,nil)
elsif null(cdr(x)) then (x,nil)
else {(u,v)=split(cddr(x)):;
return(cons(car (x),u) ,cons(cadr (x),u))}},
merge (x,y)={if null(x) then y
elsif null(y) then x
elsif car(x)<car(y)
then cons(car(x),merge(cdr(x),vy))}.,
mergesort (x)={if null(cdr(x)) then x
else {(u,v)=split(x);
return (merge (mergesort (u) ,mergesort(v)))}.
These functions are for spliting a list into two lists, for
merging two sorted 1lists into a sorted list and for sorting a
list by calling both "split" and "mergesort", and by calling
itself. The following function is a buggy version of the above
"mergesort” function.,
[Example 6]
mergesort (x)={if null(cdr(x)) then nil
else {(u,v)=split(x);
return (merge (mergesort (u) ,mergesort(v)))}
The function dependency graph of the above program (i.e.,
the initial SPG) 1is a single interval which consists of three
nodes as shown in Fig. 9. The program analyzer creates a. node
"f" through the abstraction of the interval. The bug locator
iteratively transforms/selects "f" as shown in the figure, when
the instance value dependency graph 1is provided by executing
mergesort((8 2 1 6 4 7 5 3)). As a result, we find that a bug

exists in the termination part of "mergesort", i.e., in the

expressions of null(cdr(x)) and nil.

5. Conclusion

This paper has presented a new bug location method for

functional programs called Strategic Bug Location (SBL). SBL
_20_
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produces a search graph, named the Strategically Projected Graph
(SPG), using both the dynamic  execution history and static
structure of the program. The method iteratively épplies such
operations as transformation and selection to the SPG. Thefe are
three principal features of SBL. First, SBL is suitable for
debugging a functional progrém using a parallel computer like a
data flow machine,’since a programmer is only required to answer
the query which is independent of the complex behavior present in
parallel execution. Second, bug location st;ategies are
incorporated into the transformation‘mechanisms to accelerate the
reduction of the search graph by discarding redundant questions,
Third, SBL uses a hierarchical search graph to facilitate
grasping the abstract structure of a program during bug location
and to facilitate following the query sequence.

Considerable work remain to <clarify the effectiveness of
SBL. The present experimental debugging system for data flow
programs [12] will be exténded to enable practical functional
program debugging through SBL. Furthermore, efforts will be made
to compare SBL with other bug location methods in terms of the
number of queries, CPU time and the amount of memory required to

debug such practical functional programs.
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