ooooboooao
586 0 1986 U 44-64

44

Optimization of Attribute Evaluation
in ECLR-attributed Grammars

Harushi Ishizuka®*, Masataka Sassa‘t*

and Ikuo Nakata™*t

(B ter HE hH B5)

+ Doctoral Program in Engineering
++ Inst. of Inf. Sciences and Electronics

Univ. of Tsukuba

Abstract

ECLR-attributed grammars belong to a class of grammars
called LR-attributed grammars, for which attributes can be
evaluated in a single pass during LR-parsing. A feature of ECLR-
attributed grammars is that they handle several inherited
attributes as an equivalence class. This makes attribute
evaluation more efficient than that of the original LR-attributed
grammars. .

In this paper, we present a method for the optimization of
attribute evaluation in ECLR-attributed grammars. By this
opﬁimization, evaluations of the "copy rule", where the value of
an equivalence <class 1is copied to another area for that
equivalence class, will be eliminated. This can be realized at
generation time by solving a certain data flow equation based on
the relation of derivation between LR-items.

In general, there are many copy rules found in attribute
grammars. Therefore, it 1is expected that the efficiency of
attribute evaluation will be improved sufficiently by this

optimization.

1. Introduction

ECLR-attributed grammars (ECLR-AGs) [Sas] belong to a class
of grammars called LR-attributed grammars (LR-AGs) [Jon] for
which attributes can be evaluated in a single pass during LR~
parsing. A feature of ECLR-AGs 1is that several inherited
attributes which have the same value are grouped 'together and
handled as an equivalence class.. This makes attribute evaluation
more efficient (mainly in space) than that of the original LR-
AGs. } | _ o v _

We have implemented a compiler genefator, called Rie [Ish],
based on ECLR-AGs and have written some compilers using it. The
method of attribute evaluation in Rie, hdwever,yﬁas not optimal,
because it does not eliminate the evaluation of "copy rules",
where the value of an equivalence class is copied to another area
for that equivalence class, which occur rather frequently.

In this paper, we present a method of attribute evaluation
which is~bptimized'by eliminating evaluations of'the copy rules
above. |

Optimizations of this kind have been discussed for L-
attributed grammars under LL-parsing [Kos]. In the case of LR-
parsing, however, it has Dbeen considered rather difficult to
apply this optimization. The reason for this is that the LR-
state can not determiné the current syntax uniquely.
Nevertheless, the method described here can be realized at
generation time merely by solving a ceftain data flow equation
based on the relation of derivation between LR-items.

It is well known that there are many copy rules in attribute
grammars. For the PL/0 compiler we have written in ECLR-AGs on
Rie for example, 80% of the semantic rules for inherited
attributes wete copy rules. Thereforé, it is expected that the
efficiehcy of attribute evaluation will be improved suffiqientiy
by this optimization and ECLR—AGs‘will be a more practical class

of attribute grammars.

46

2. Preliminalies

Here, we give some preliminary definitions and an informal
explanation for the class of ECLR-attributed grammars.

In the following, an attribute a of symbol X is represented
by X.a. The set of inherited attributes and synthesized
attributes of symbol X are represented by AI(X) and AS(X),
respectively. '

We restrict our attention to classes of attribute grammars
for which attributes can be evaluated in a single - pass during
parsing (from left to right) without making a syntax tree. Such

classes are called L-attributed grammars and are defined below.

In the definition we assume the following.

Assumption 2.1

Semantic rules are in Bochmann normal form [Cou], that is,

for the production X5 -> X7 ... X only attributes in

nl
AI(Xp) U AS(X;) (1<i<n) can appear in the right side of semantic

rules.

Def 2.1 (L-attributed)

An attribute grammar is L-attributed iff for any production

Xg -> X4 ... X, the following conditions hold:

(1) the attribute occurrences in AI(Xk) (1<k<n) depend only on
the values of attribute occurrences in AI(Xgy) U AS(Xj)
(1<i<k-1) ‘

(2) the attribute occurrences in AS(XO) depend only on the values

of attribute occurrences in AI(Xg) U AS(X;) (1<i<n).

Those conditions state that the attributes must be
computable in a strict left to right order. 1In an LR-parsing
which we concern, howevef, another condition arises since we can
"enter" many productions in parallel. For example, when we enter
the following LR-state, |

A, -> v 's' -El
E2 >-g3 '4' T
| T

the value of attributes in AI(ET) and AI(E3) must coincide. (For

47

simplicity, we often show only the core of the LR-items without
lookahead.) This condition for inhetited attributes is called
LR-attributed. We give an informal definition of LR-attributed
grammars and the more precise‘one can be found in [Jon][Sas'].

Now, we define a set of inherited attributes, IN(S), which
should be evaluated at the LR-state S. 4

pef 2.2 (IN)
On a given LR-state S,
IN(S) = |B.b| B.b € AI(B), B is a nonterminal
[such that [A->d °B Q] is an LR-item of S

An LR-attributed grammar (LR-AG) is defined as follows.

Def 2.3 (LR-attributed)
An attribute grammar G is LR-attributed iff
(1) G is L-attributed
(2) for any LR-state S of G, and for any inherited attribute

A.a € IN(S), the semantic expression [Sas] for A.a can be

uniquely determined.

In the definition of LR—AGs, each inherited attribute is
assumed to be handled separately. But it often happens at an LR-
state S that the values of several inherited attributes in IN(S)
are identical. We have defined a class of attribute grammars
named ECLR-attributed grammars (ECLR-AGs) by taking this into
account. In ECLR-AGs, several inherited attributes which have

the same value at any LR-state in which they appear are grouped
together and handled as an equivalence class in contrast with LR-
AGs.

Def 2.4 (equivalence class)

Let X.a € AI(X) and X'.a' € AI(X'). If the semantic
expressions of X.a and X'.a' are identical for any LR-state S
such that {X.a, X'.a'} € IN(S), we Say that X.a and X'.a' belong
to the same équivalence class. (Note that this definition also
, allows an equivalence class which has only one inherited
attribute.) ' ‘

48

We assume that all inherited attributes of a given grammar are
partitioned into a set of equivalence classes, EC; (1<i<n), such
that EC; NECy = & (i#j,1<i,3<n) and EC; # 4 (1<icn).
Def 2.5 (ECLR-attributed)
An attribute grammar G is ECLR-attributed with respect to a
set of equivalence classes, EC; (1<i<n), iff
(1) G is L-attributed
(2) for any LR-state S of G, and for any inherited attribute
A.a € IN(S)IﬁECi, the semantic expressions for A.a's can be

uniquely determined and are identical.

To handle several inherited attributes as an equivalence
class makes attribute evaluation more efficient (mainly in space)
than that of the original LR-AGs. The formal definition of ECLR-

AGs is found in [Sas].

3. Outline of the optimization

Here, we will give an outline of the optimized attribute
evaluation dividing it into three sections, namely, a naive one,

an optimized one in a simple case and one in a complicated case.
3.1 Naive attribute evaluation

Before presentihg the method of the optimized attribute
evaluation, we will briefly 1look at the method of attribute
evaluation used in the compiler generator Rie as a naive version
of attribute evaluation in ECLR-AGs [Sas].

The evaluation of inherited attributes in ECLR-AGs is done
using two kinds of stacks. In addition to the wusual parsing
stack 'PS' for LR—parsing, attribute stacks which behave
synchronously with the parsing stack are used. The stacks 'IASi'
are for storing inherited attributes, each corresponding to the
i-th equivalence class of inherited attributeé (denoted by ECi),
and the stack 'SAS', not explained here, is for synthesized

49

attributes. _

The set of inherited attributes belonging to an equivalence
class 1s evaluated at the time when the LR-parser goes to a new
1R-state. (Henceforth we may often identify an equivalence class
with the inherited attributes belonging to that egquivalence
class.) Its value is unique in ECLR-AGs and it is stored into
the appropriate attribute stack (IAS;). More precisely, at the
LR-state S 3 {A->d °B Q}, the value of inherited attributes of B
belonging to an equivalence class EC; (B.ei) is computed and
stored into IAS;. Now, let the semantic rule for B.e; be of the
form "B.e; := A.e;". Before computing the value of B.e;, the
stack configuration is as shown below.

$top

PS: . oo SO LI Y S

' IASl: e A.ei e

Here, the LR-state Sy is such that S5 3 {X-> XfA 5§, A->°aB ¢!
and the value of A.e; is stored into the location corresponding
to Sy, that is at IAS;[top-|a |]. (|d | means the length of o .)
So, ‘the wvalue of B.e; can be computed by the assignment
 "IAS;[top] := IASi[top—Idfll". After the evaluation, the stack
configuration becomes as below.

PS: - s e SO * e e S

IAS;: e A.ey °**"| B.e

Using this method, it is possible to evaluate all attributes
for any ECLR-AG. But as shown in the above example, even a copy

' is always evaluated unnecessarily.

rule such as "B.e; := A.ej'
So, it can easily be seen that there remains much possibility for

optimizing the evaluation.

90

3.2 Optimized attribute evaluation - simple case -

Now, we present a simple case of optimized attribute
evaluation.

The optimized attribute evaluation method also wuses the
parsing stack and the attribute stacks. The main difference from
the naive method lies in how to evaluate inherited attributes.
The strategies for the evaluation are the following.

(1) Push the value of an equivalence class onto the
attribute stack only when the value is defined by a
semantic rule which is not a copy rule.

(2) Pop the value of an equivalence class from the attribute
stack as soon as possible.

As a result, attribute stacks behave asynchronously with the
parsing stack.

Let us consider the following (partial) grammar G1.

Gl : A->d B Q
{
(case 1) B.ey := A.e /* copy rule */
(case 2) B.ey := f(A.eq) /* non-copy rule */

}

In G1, B.eq (A.eq) represents an inherited attribute of B (A) in
the equivalence class ECy. During the analysis of G1, the LR-
parser goes to an LR-state S; such that S4 3 {A->d °B Q}. We
will see how to compute the value of B.e; at LR-state S,
depending on whether the semantic rule for B.e; is a copy rule or
not. It is assumed that the value of A.eq, which is an inherited
attribute of the left side symbol, is stored on the top of the
attribute stack IASq as illustrated below.

¢Fop1

IAS1: es" A,e1 (1)

(case 1) copy rule (B.ey := A.eq)

In this case, we can use the value of A.eq, which has
already been stored on the top of IASq, instead of the wvalue of
B.eq. So there 1is no need for computing nor handling the
attribute stack.

91

(case 2) non-copy rule (B.ej := f(A.eq))

Unlike (case 1), we must compute the value of B.e; by

evaluating f(A.eq) and push the obtained value onto IASy (2).

Ltop1

IAS1Z e A.81 B.81 . (2)

After reading the sentential form corresponding to B, the parser
goes to the LR-state S, such that §,=GOTO(S¢,B) 3 {A->d B* Q}.
Now the value of B.e; on the top of IAS; becomes useless at LR-
state S) since B.eq will never be referenced after S, because we
assumed that the semantic rules are in Bochmann normal form. So,
we can pop B.eq from IAS, at S,. Push and pop operations in this
second case are illustrated in Fig 3.1 with the syntax tree.

In this figure, e1+ represents the push operation for IAS,
at LR-state S; 3 {A->d °B e} and feq represents the pop operation
for IAS; at LR-state Sz—GOTO(S1,B).

/e\\

31

Fig 3.1 Optimized push and pop aperation ~ simple case —

In both (case 1) and (case 2), the stack configuration of
IAS; just before reading §, 'i.e. at the LR-state S,, returns to
(1) and the inherited attribute of the left side symbol (A.e1)
appears at the top of IAS;. ‘

Now, we summarize the main idea of this optimization.
While the LR-parser reads the symbol X; (1<&i<n) which

9%

appears in a production rule X3 -> X7 ... X,, Xp.ep which is an
inherited attribute of the left side symbql, is being kept on the
top of attribute stack IAS,. This strategy makes it possible to
eliminate the evaluation of such copy rules as "Xi'ek t= Xo.ek"
(1<i<n).

3.3 Optimized attribute evaluation - complicated case -

In the previous section, we have discussed the optimized

evaluation method in a relatively simple case to help understand

it intuitively. Next, we consider two cases which are a little
complicated.
The first case involves the push operation. Consider the

LR-state and associated semantic rules below.

‘t1: A->d °B Q B.e1 : e1)
S 3 to: B->°X J X.eq
X->"Y 8§ Y.e,

f(A.
B.e1
t3: g(x-

; eq)

We must push eq (B.eq, X.eq which are equal) and e; (Y.ejy)
at the LR-state S, because their values are defined by "non-copy
rules". But there is some complexity in determining the point
where we can pop e; (e;) corresponding to the push operation for
e (ejy).

Because we want to pop attributes as soon as possible, we
must identify which LR-item in an LR-state the push operation was
done for. Figb3.2 illustrates the optimal point for the puéh and
pop operations for this case.

As for eq, we may suppose that push eq is done either at t4
or t,. However, the value of e may be referenced in the whole
subtree rooted at B, because it is not only the value of X.eq but
is also the value of B.ej. So, we can not pop ey until we reach
the LR-state GOTO(S,B) 3 {A->d B* Q} (the point - specified by
der. | ,

This shows an example of an LR-state which has two or more
LR-items for which we must perform the push operation for the
same equivalence class ep (e.g. ejd, e1{). In that case,
speaking in terms of the syntax tree, it is appropriate to

consider that the push bperation for ey is made at the position

(<9]
(]

whose level is the lowest among them (e.g. e1$). '

On the other hand, push e, is done only at tj (e2+), SO we
can pop e at LR-state GOTO(S,Y) 3 {X->Y* 8} (fez). Note that tj
is the position which has the lowest level with respect to the
push operations for ej. Note also that some push operations are
considered to be done at an LR-item in a non-kernel like this LR-

item.

ti:

AN

Fig 3.2 Optimized push and pop operation — complinated case (1) —

The second case is more complicated. The complexity here is
caused by the fact that an LR-state is unable to determine the
syntax uniquely. " Consider the LR-state and an associated
semantic rule bélow.

t1: A-> *B Q

S 3 t2: B->+X ,
t3: B->-Y 6 Y.e, := h(B.eq)
ty: X->+"x' ‘

This LR-state shows a situation with two possibilities for the
syntax tree as illustrated in Fig 3.3.

Since only Y.ez must be evaluated’at this LR state, the
optimal push and pop operation in this case is as illustrated in
Fig 3.4. |

The push operation for €, is meaningful only in case (b)
(e2$). However, we are forced to push e, at the LR-state S not

only in case (b) but also in case (a), because we can not

10

Fig 3.3 Twao possible syntax trees in the LR—state

t: d .

la:

(b)

Fig 3.4 Optimized push pop operation — complicated case (2) —

11

distinguish (a) from (b) only by the LR-state. Let us consider

the pop operation under this condition. In case (b), we should
pop €, at the LR-state GOTO(S,Y) (fez) similarly to the first
case. In case (a), on the other hand, we want to pop e, as soon
as the syntax is determined to be (a). So, we pop e, at the

point just after reading 'x', i.e. GOTO(S,'x') (fez). To achieve
this, it is proper to suppose that we have pushed e,

hypothetically at the point specified by e2¢.

Considering these situations, we will formally show in the
next section how the optimized attribute evaluation method can be

determined at generation time.

4. Realization of the optimized attribute evaluation

To realize the optimized attribute evaluation discussed in
the previous section, it is sufficient to compute the following
sets of equivalence classes at generation time. For each LR-item
t of the form [A->d °B Q] in an LR-state S, we must compute:

(1) equivalence classes to be actually pushed at t

(2) equivalence classes to be hypothetically pushed at t.

If (1) and (2) are obtained, we can get
(3) equivalence classes to be popped at LR-state
GOTO(S,B) 3 {A->d B* Q}
as the union of (1) and (2).

We will explain the meaning of these sets using the previous
example.

Set (1) corresponds to marks (e, esy) of Fig 3.2. 1In this
figure, e and e, are to be pushed at tq and t,, respectively.
Recall that the push operation for an equivalence class is done
at the position which has the lowest level with respect to the
push operations for that equivalence class in the associated
syntax tree.

Set (2) corresponds to mark (e,{) of Fig 3.4. In this
figure, eé is actually pushed at tj and it is proper to suppose
that it 1is also hypothetically pushed at t,. Note that t, is

12

56

irrelative to t3 with respect to the relation of derivation
between LR-items.

As we can see from these facts, we must take account of the
structure of +the syntax tree, or the relation of derivation
between LR-items, . for computing sets (1) and (2). For this

purpose, we use a directed graph, called the State Position Graph

(abbreviated as SPG) [Pur], which represents the derivation
between LR-items for an LR-state. The definition of the SPG and

examples of how it is used are given in the following;

Def 4.1 (SPG)

An SPG 1is a directed graph of an LR-state whose nodes
represent LR-items or special nodes, and whose edges represent
direct derivation in the closure of LR-items. Two kinds of
special nodes, I and SR, represent an initial node and shift or
reduce operations (in parsing), respectively. (For details, see
[Purl.)

Ex 4.1 ,
Fig 4.1 and Fig 4.2 show the SPG for the LR-state
corresponding .-to the syntax tree illustrated in Fig 3.2 and

Fig 3.4, respectively.

Now, to formalize the computation of sets (1) and (2) at
generation time, we introduce three kinds of equivalence _class
sets, named EVAL, PUSHED and MARK, which are defined for each LR-

item.

We will illustrate later, wusing the previous examples, that

these three kinds of sets really meet our requirements.

Def 4.2 (EVAL) o ‘
On a.given SPG, EVAL(t) is defined as follows for the LR-
item t of the form [A->d °B Q]. .
EVAL(t) = |ey| semantic expression (represented only
by known attributes of the kernel) for
B.ey evaluated at t is a non-copy rule
But, for I and SR, we let EVAL(I) = EVAL(SR) = é,

13

SR

Fig 4.1 SPG of the LR—state corresponding to Fig 3.2

t: A=->g 8B 4

Fig 4.2 SPG of the LR—state corresponding to Fig 3.4

14

87

J8

Def 4.3 (PUSHED)
On a given SPG, PUSHED({(t) for the LR-item t is defined as
the solution of the following data flow eguation.

PUSHED(t) = U [PUSHED(p) U EVAL(p) 1]
p € pred(t)

Note that PUSHED(t) can be written in another form, that is,
PUSHED(t) = U , [EVAL(p)]
p € pred (t)

where '"pred*" means the non-reflexive transitive closure of
"pred". We can see that PUSHED(t) is the set of equivalence
classes which are evaluated by non-copy rules at some LR-items
which precede t.

The reason why PUSHED is defined as the solution of a data

flow equation is that an SPG may contain cycles.

Next, we define MARK as the set of equivalenc¢e classes for

computing (3).

Def 4.4 (MARK)

On a given SPG, MARK(t) is defined as follows for the LR-
item t,

MARK(t) = PUSHED(s) - PUSHED(t)

where s is an arbitrary LR-item such that s € succ(t).
We have proved that MARK(t) is unique for any s € succ(t).

Ex 4.2

EVAL, PUSHED and MARK for each LR-item on the SPG of Fig 4.1
are shown in Fig 4.3. In this figure, semantic rules are also
given as comments. 7 :

We have noticed that the actual push operation for e4 must
be done not at t; but at tq. namely, at the position which has
the 1lowest level'with respect to the push operations for e; in
the syntax tree. MARK yields this actual push operation:

MARK(tq) PUSHED(t,) - PUSHED(tq)
PUSHED(t3) - PUSHED(t,)

{61}
b

MARK(t5)

15

£

EVAL(l) = @

EVAL(t1) = {e1} /* B.et := {(A.et1) */

PUSHED(t1) = @
(: A=>a *B B) MARK(t1) = {e1}

y EVAL(t2) = {e1} /= X.e1 := B.er = f(A.e1) ~/
(t2: B=>*X r) PUSHED(t2) = {e1}
. MARK(t2) = @

(B: X=>sY @) EVAL(t3) = {e2} /* Y.e2 := g(X.e1) = g(f(A.e1)) */
PUSHED(t3) = {e1)
MARK(t3) = {e2}

SR PUSHED(SR) = {e1.e2}

Fig 43 EVAL, PUSHED and MARK an the SPG of Fig 4.1

EVAL(l) =

EVAL(t) = @

ti: A=~>a *B #

(h: B=>X r] /" Y.er = h(X.e1) = h{A.e1) =/

EVAL(t2) = @ (b: X=>Y 4) EVAL(t3) = {ez}
PUSHED(t3) = 9
| MARK(t3) = [e2}

(t:x=>ex)

EVAL(t2) = @
PUSHED(t)) = @ -
MARK(te) = {e2}

. PUSHED(SR) == {ez}

Fig 44 EVAL PUSHED and MARK on the SPG of Fig 4.2

16

60

"ek € MARK(t)" means "the push operation for ey is actually done
at t".

The reason why MARK meets our requirement is as follows.

The LR-item t which is the actual position with respect to
the push operations for ep must satisfy the followiné conditions
on a given SPG.

(a) ey € EVAL(t)

(b) ey ¢ EVAL(p), for each LR-item p € pred™(t)

Considering that PUSHED(t) = U + [EVAL(p)], we can get
p € pred (t)
(a') and (b') from (a) and (b) above:

(a') e, € PUSHED(s), for each LR-item s € succ’(t)

(b') e, ¢ PUSHED(t) |
By the definition of MARK, that is MARK(t) = PUSHED(s)-PUSHED(t),
we can easily prove:

e, € MARK(t), and .

ey ¢ MARK(u), for each LR-item u € {pred*(t) U succ*(t)}

Ex 4.3

EVAL, PUSHED and MARK for each LR-item on the SPG of Fig 4.2
are shown in Fig 4.4.

In this case, we have noticed that it is proper to suppose
that the push operation for ey is also hypothetically done at t4
so that we can pop e, as soon as the syntax is determined to be
as in Fig 3.4(a). In Fig 4.4, MARK(t,) shows us this fact, that
is,

92>€ MARK(t,) = PUSHED(SR) - PUSHED(t,)

The reason why MARK meets also our requirement in this case
is as follows.

In general, 1if an LR-state shows a situation with two or
more possibilities for the syntax tree, there exist two or more
paths on the SPG corresponding to those possibilities. Now, let
two of such paths be pq and p,. (Here, the word "path" includes
the set of LR-items on it.) Since all paths on a given SPG have
I as the initial node and SR as the final node, theré exists at

least one node m such that m € p1r\p2; (Informally speaking, two

17

61

paths (pq and pj) merge at m.) Suppose that the actual push
operation for(ek occurs only on path p1- Then, we can say that:
(a) ey € EVAL(t), for an LR-item t € pred™(m)n pq
(b) ek ¢ EVAL(t'), for each LR-item t' € pred™(m) np,

This situation is as illustrated below.

ex ¢ EVAL(t')
ey € EVAL(t)

path pj
path Py

So, it is clear that
(a') ey € PUSHED(m)
(b') e, ¢ PUSHED(t"), for an LR-item t" € pred(m) np,
are true. Hence, we can prove:
ex € MARK(t") = PUSHED(m) - PUSHED(t")
This shows that MARK also gives the right position of the
hypothetical push operation.

Now, we can conclude that MARK represents set (3) presented
at the beginning of this section, namely, for an LR-item t of the
form [A->d °B Q] in the LR-state S, if e, € MARK(t) then<ek is to
be popped at the LR-state GOTO(S,B) 3 {A->d B* Q}.

So, for determining the optimized push and pop operations at
each LR-state S, we must transfer at generation time the MARK's

obtained for LR-items in S to other LR-states succeeding it.

Finally; ~we present an algorithm performed . at generation

time by which we can obtain the optimized attribute evaluation.

18

Algorithm (Determining the optimized push and pop operation)'
Input An LR state S augmented by semantic rules and RestPoP's
(defined below) of S.
Output Optimized push and pop operations at S and RestPOP's of
the LR-states succeeding S.
Variables
PUSHatS: Set of equivalence classes to be pushed at S.
POPatS: Set of equivalence classes to be popped at S.
RestPOP[S,t]: Defined for LR-state S and LR-item t in S. It
is used for transferring the candidate set of
equivalence classes to be popped from an LR-
state to cther LR-states succeeding it.
Method
(1) Compute POPatS using RestPOP's of kernel(S).
(a) If kernel(S) contains only one LR-item k4 then
POPatS := RestPOP([S,k,1],
RestPOP[S,kq] := &. ‘
(b) If kernel(S) contains two or more LR-items {k1,"',km} then
POPatS := ¢. (cf. Note)
But if k; is of the form [A->d -] then
"The set of equivalence classes to be popped with that
reduction" := RestPOP[S,k; 1.
(2) Make SPG of S and compute EVAL, PUSHED and MARK according to
Def 4.1-4.4.
(3) PUSHatS := PUSHED(SR). ,
(4) Transfer to each LR-state which directly succeeds S the
' candidate set of equivalence classes for which pop operations
may occur at those LR-states. Let t and t' be LR-items of
the form t:[A->d °B Q] € S and t':[A->d B Q] € S'=GOoTOo(S,B),
respectively.
(a) If t € kernel(S) then
RestPOP[S',t'] := RestPOP[S,t] U MARK(t).
(b) If t ¢ kernel(S) then
RestPOP[S',t'] := MARK(t).

19

Note .
This means a delay of the pop operation. Let the LR-state

be

s 3 {k1: A->d B* Q]
ky: B->B- J
and suppose RestPOP[S,kqi]={eq}, RestPOP[S,k,l=¢. If the syntax
(of the input string) corresponds to k¢, it is proper'to pop €4
at S according to RestPOP[S,kq]. But if the syntax is k,, it is
proper to pop nothing according to RestPOP[S,k;].

We can not resolve this conflict, because it is impossible
to distinguish k4 from k, only by this LR-state. Therefore, we
are forced to delay the pop operation at k1 to the LR-state whose
kernel contains only one LR-item (case 1-a), that is, where we

can identify the syntax uniquely.

5. Concluding remarks

An optimization of attribute evaluation in ECLR-attributed
grammars was given. By this optimization, we can eliminate the
evaluation of "copy rules" for an equivalence class. This can be
realized at generation time by solving a certain data flow
equation based on the relation of derivation between LR-items.

We have not yet measured the effect of this optimization in
practice. However, in the case of a PL/0 compiler written using
ECLR-attributed grammars, we have obtained the statistical data
shown in Table 5.1. Here, 80% of the attribute evaluations for
equivalence classes were that of copy rules. This leads us to
believe that this optimization will greatly improve the
efficiency of attribute evaluation.

As a future problem, it is necessary to implement this
optimization on our compiler generator Rie, and to evaluate its

efficiency in practice.

20

sgurce program 41 lines 4 procs
transitions of LR—states (A) 794 times (89 states)
with evaluations for equivalence classes (B) 146 times (22 states)

(B/A=18.4%)

evaluations for equivalence classes (C) 159 times
copy rules (D) 120 times (D/C=80.0%)
non—copy rules (E) 30 times (E/C=20.0%)

Table 5.1 statistics for a compilation of the PL/0 compiler
written in ecLR—AGs

Acknowledgements We would like to thank David Duncan for

polishing up the English of this paper.

References

[Cou]»

[Ish]

[Jon]

[Kos]

{Pur]

[Sas]

[Sas']

Courcelle,B., Attribute Grammars: Definitions, Analysis of
Dependencies, Proof Methods, in (Lorho, ed.) Methods and
Tools for Compiler Construction - An Advanced Course,
(Cambridge Univ. Press, 1984). |
Ishizuka,H. and Sassa,M., A Compiler Generator based on an
Attribute Grammar, Proc. 26th Programming Symposium of IPS
Japan, pp.69-80 (1985) (in Japanese).

Jones,N.D. and Madsen,M., Attribute-influenced LR Parsing,
LNCS 94, pp.393-407 (Springer, 1980).

Koskimies,K. and Raiha,K.J., Modelling of Space-efficient
One-Pass Translation wusing Attribute Grammars, Softw.
Pract. Exper., 13, 2, pp.119-129 (1983).

Purdom,P and Brown,C.A., Semantic Routines .and LR(k)
Parsers, Acta Inf., 14, pp.299-315 (1980).

Sassa,M., Ishizuka,H. and Nakata,I., ECLR-attributed
Grammars: A practical Class of LR-attributed Grammars,
submitted for publication (1985).

Sassa,M., Ishizuka,H. and Nakata,I., A Contribution to LR-
attributed Grammars, J. Inf. Process., 8, 3 (1985).

21

