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Abstract
A fragment of a connected simple graph G is a subset A of V(G) consisted
of componenis of G-S such that V(G)-A-S # @ where S is a minimum cul
of G. A minimal fragment of G is said fo be an end of G. The complement

of G is denoted by G. A simple graph G is said to be c'r'it'icdlly (k,k)-connected

if k(G-z) = x(G)-1 or x(G-z) = x(G)-1 for each z of V(G) where x(G) means
the wvertex connectivity of G. We proved the followings: _

Let G be a critically (k,k)-connected graph (k =z k = 2). We denote by 7%
and a the number of ends of G and the minimum order of lhe ends of G,
respectively. Similarly % and a denote those of G. Suppose 2a > k and
2a > k. Then |

4) If there is mo minimum cut of G contain'i'ng all the ends of G then

7 =2 3or 4 and —’?_TL—"-J > 7 = 2%
7-1L5 2(2a-1)

Furthermore, if 7 = 2, then |G| = 2k+7% if n = 3, then |G| =
JeTE-2 and if 9 = 4, then |G| s 2kryk-S.

(B) If there is a minimum cut of G containing all the ends of G then
2(0) = 2 or 3 and I-i_?_'léisl-_lf__l
k a

§1 Introduction and main results

- In this paper we consider only finite simple graphs. We denote by V(G)
the vertex set of a graph G. Let G be a connected graph. We call a set
S of V(G) a cut of G if G-S is disconnected, and S is said to be a minimum
cut of G if |S| = |S'| for any cut 8" of G. The order of a minimum cut
of G is called the wertex connectivity of G and denoted by «x(G). The

minimum degree of the vertices of G is denoted by 3(G). The complement of
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a graph G is denoted by G. As usual for a real number r we denote by
7 ahd Lr] the ihtegers such that rlg [r7] < r+l and r-1 < |r] = r.

:A non-gmpty subset A of- V(G) is called a fragmeﬁt of G if.A is consisted
of componenfs of G-S and V(G)-A-S = & for some'minimum cut S va G.’ A
‘ minimal fragment of G ‘is called an end of G. We denote by »(G) the number
of ends of G. | | |

A graph G is said to be critically k—coﬁnected if x(G) = k and x(G-x)
= k-1 for each vertex x of V(G). G. Chartrand, A. Kaugars and D. R. Lick

[2] have shown that if G is a critically k-connected graph, k‘ =z 2, then 6(Q)

3k-1
z2 73

In [1] we introduced critically (k,k)-connectedness of graphs. More

and this bound is sharp. -

generally we define here that a graph is said to be critically (k,k)-connected
if k(@) = k, (@ = k and x(G-x) = k-1 or £(G-x) = k-1 for each vertex x
of V(Q). In [1] we proved the following theorem concerning critically

(k,k)-connected graphs.

Theorem A ([1]) If G is a critically (k,k)-connected graph, K 2 2, 06(@) =

3k-1 3k-1

—— and 6@) = 5— » then |G| = 4k.

2

In fact in [1] we proved the following stronger assertion:

Theorem ([1]) Let G be a critically (k,k)-connected graph, k = 2. Let a
(resp.a) be the order of minimum end of G (resp G). If 2a > k and 2a > Kk,

then |G| = 4k and (7(@),7@)) = (2,2).

In this paper we'will study critically (k,k)-connected graphs and we will

show more general results descrived as follows:



Main Theorem. Let G be a critically (k,k)-connected graph (k = k = 2).

We denote by 7 and a the number of ends of G and the minimum order of
the ends of G, respectively. Similarly 7 and a denote those of G. Suppose
2a > k and 2a > k. Then

(1) (A) If there is no minimum cut of G containing all the ends of G then

5> X (k+1).

k —
7 =2 30r4 and L || =27 =
"'II-E-I 2(23-1)

In particular 7 = 7.
(B) If there is a minimum cut of G containing all the ends of G then

7 =2 o0r 3 and I-L;- g'r—;gl_—l;—J.

(2) In case (A) in (1) we have

If » =2 then |G| s 2k+7k.

If =3 then |G| = 11<+77E——9—.
2 4

If » =4 then |G| = 2k+7k-6.

In case (B) in (1) there is no upper bound of the order of G for each k

and k.

§2 Preliminaries

In this section we introduce some more notation and present preliminary
lemmas which we will use in the’ following two sections to prove our main
results. Let G be a connected graph. We denote by $(G) the family of

all minimum cuts of a graph G, and set C(Q)= U S. We denote by GIA]
Se€ g(Q)

the subgraph of G induced by A ¢ V({G). Let NG(x) be the set of the vertices

adjacent to x in G. For A c V(@), we put NG(A)= U NG(x)—A and
XEA

NG{A]=NG(A)UA. Recall a fragment of G is a non-empty subset A of V(Q)

such that (i) NG(A) is a minimum cut of G and (ii) G-NG[A] is non-empty, and
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that an end of G is a minimal fragment of G. We call a minimum fragment

of G an atom and we denote by ag

no danger of ambiguity, we abbreviate »(G), 7(G), aG and a_ to 7%, 7, a and
G

the order of an atom of Q. If there is

. a, respectively.
The following lemma expresses the essential relation between a graph G

and its complement G, so that we call it "Complement lemma'.

Lemma (Complement Lemma) Let G be a graph and let A, B be subsets of

V{G). If B is not coniained in N G[A]’ then N _[B] contains A.
G

Proof. Let x be a vertex of B not contained in NG[A]. It is immediate that

- N (X) D A, since x¢NG[A]. |
G

In the above lemma, if ANB = &, then we can replace the closed neighbourhoods

NG[A] and N [B] with the open neighbourhoods NG(A) and N (B), respectively.
G G

‘Therefore the next lemma (we also call it "Complement lemma") is an immediate
consequence of the above lemma. This lemma will play a fundamental roll

in our argument through this paper.

Lemma (Complement Lemma) Let G be a graph and let B be a subset of V(G).
If 4 is a family of subsets of V(G) such that BNA=g for each A in 4 and

N (B 3 U A, then there is a subset A in 4 such that NG(A) > .B. B
G Ac A ‘

Lemma 1 Let G be a conneclted graph and let W be a subsel of V(G) such
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that (i) |W | > x(G), (ii) for any mi'nimumvcut S of G, W-S is contained in
a‘,}component of G-S. - We denote by ’.A the family of the ma:zimdl fragments
yof G each of which has mo intersection with W. Then |

- (1) ANB =g for any two disﬁnct elemenis A, B in A,

(2) 4 # & and any minimum cut of G is'contained in U NG[A]’
Ac A

proof. To prove (1) suppose not, i.e. suppose that there are two distinct

fragments A, and A, in 4 such that A|NA, # @. Let & = V(@-NjlA] for

i=1, 2. Then  since AlmA2 + & ING(AlmAz)l z x(Q). Consequently
K\NK, + @, since |NG[K1]ONG[A2]; = |W| > x(@). Therefore ING(KIOA2H=
x(G), which implies A1UA2 is also a fragment of G, cotradicting the maximality
of A1 and A2.

To prove (2) let S be any minimum cut of G and let H, be the component of

S
G-S containing W-S. Then the fragment A =V(G)—NG[V(H)] has no intersection

with- W, so there is an element A' in 4 containing A such that S = NG(A) C NG[A’].

We remark that in the above Lemmal if Wc C({G), then Wc U NG(A‘), in
. : : Acd

particular, |W| = 7(G)x(G).
As ‘a slight extension of a result of Mader[4], we can easily show the
followings which will be the firm bases of our arguments. (ef. Theorem 1

and Lemma 1 in [1] )



" Lemma, 2 Let G be a critically (k. k)-connected graph and let {Xl, PO X _

and {Yl, Y PO Y 1} be the set of all the ends of G and thai of C, respectively.
i ' : . .

n K, _
Set X = UXi and ¥ = UY.. Suppose 2a>k and 2a>k. Then

@) XNC©® =g and YNNG = &.

(ii) Let A and B be 'any two distinct el.éme'nts of {Xl, X2, aaes

Y }. Then ANB = @. ‘ ' |
7

X”, Yl’ oo

§4 A proof of Main Theorem (1)
Throughout this section and the next section suppose G is a critically

(k,k)-connected graph such that 2a > k, 2a > k and k = k. Let { Xl’ X2,

we X t}and { Y
. Y , 7

p» Yp o+ Y_ } be the set of all the ends of G and G,

7 7
respectively, and put X = UXi and Y= U i
i=1 j=1

proof of (A) To prove the former part of (A) it suffices to show the following

two inequalities: p(k+1) 5 2%(2a-1) and 7+ LEJ 7 = n7n. If they hold, then
a

an+2(2a-)y-n = El—yyrj, which implies = 2, 3 or 4. By the assumption of
(A) NG(Xi) P Y for each i thus X ¢ N (Y) and this implies the first inequality,
G

since »k = 7(2a-1) = 2|X|-2 s 2|[N.(Y)|-» = 27k-72 s 27@a-1)-». To
G ,

show the second inequality note that NG(Xi) contains at most L%J ends of
a

G and N_(Y].) contains at most one end of G, since 2a > k =z k. Furthermore,
G

Complement lemms assures us that for any of pairs (i,j) either NG(Xi) D Yj

or Xi C N_(Yj). Thus 77+L§_l 7 2 n7n. Next we pfove the latter part of
G a ;

(A). For each end Y]. of G, N_(Yj) can contain at most one end of G. On
G
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the other' hand, the assumption of (A) implies each Xi contained in N (Yj)- for
G

some j, SO B = 7.

proof of (B). To prove (B) it suffices to show the following three inequalities:

7 = 3, a = 7k and k = 7pa. The last one is immediate consequence of

: _ 7
the assumption of (B). To show the former two inequalities put H = G[UXi].
i=1

Then as a consequence of Lemma 2 H has the complete »-partite graph with

vertex clases Xl’ XZ’ ooy X” as its spanning subgraph. Therefore if 3 =

3 then x(H) = 2a > k =z Kk, so by the remark after Lemmal a = |H| s

F;ﬁ. In particular, if = 3 then aay = azk =< kk so 7 = kk < 4, thus

aa
“the first inequality holds. In the case that = 2, we may suppose a > Kk,
since otherwise 7a = 2a =< 2k = 7k. If a > k then x(#H) = a > k and

again by the same remark na = 7k. ]

§4 A proof of Main Theorem (2)

At first we introduce two new fémilies of subsets of V(G), 4 and %,
which will hold the key of our‘ proof. Recall X is the union of all the
ends of G and Y is that of G. Let 4 be the family of the maximal fragments
of G each of which has no intersection with Y. Simil‘arly # stands for the
family of the maximal fragments of G each of which has no intersection with
X. To ‘pxn'ove Main Theorem (2) we need  the following two lemmas which
express ferﬁarkable properties of 4 énd 2. Throughout this section assume
that there is no minimum cut of G containing Y. We remark that there is

no minimum cut of G containing X, since a = 2a > k = k.
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Lemma 3 Suppose |G| > 2(k+k). Then

(1) Each of 4 and B is a family of mutually disjoint subsels of V(G). -

(2) C(G) ¢ U NjlAl and €@ c U N (Bl
Acd Be® C

(3) |A] = k for each Ac4, and |B| s k for each Be3.
proof. We give a proof for (We can prove the result for & similarly).

Let S be any minimum cut of G and let A1 and ’A2 € 4 such that AlﬂAZ;&

& For i = 1 and 2, let Ki stand for V(G)_NG[Ai]' Then according to the

proof of Lemma 1 to prove (1) and (2) it suffices to show (i) Y-S is contained

in a component of G-S and (ii) Kln?(z + &

(i) By the assumption that S p Y , there is an _yend Y. of G not contained

S
in 8. Also there is an end of G, say Xl’ not contained in N_(YS). By
G
Complement lemma NG(XI) ») YS, so k = IYS| and k+k = ING[YSH. Let ’YS

= V(@-N_[Yc].  Then |’\I‘S| > k, since |G| > 2(k+k). Hence 5 ?S.
G : '

Consequently the subgraph G YSU?S—S] of G is connected, for QG YSU?S]

includes the complete bipartite graph with vertex classes Y, and 'YS Let

S
. HS be the component of G-S containing YSU'YS—S. Note that any other end

of G which is disjoint from Y_ is contained in YS' Then Y-S C V(HS).

S
(ii) Assume 'Klm'Kz = @. Then [AUA,| > 2k.  Thus, without loss of

generality, we may assume |A > k. On the other hand, by the assumption

11
that Ng(A;) D Y there is an end of G, say Y,, not contained in N, (A)), i.e.

Yl ¢ NG[AI].’ However, since YlmA1 = ﬁ, as an immediate consequence of

Complement lemma N_(Yl) o) A1 contradicting the assumption |A

> k.
G .

1|
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To prove (3), for each A in 4 put S8 = NG(A). Then, by the choice of kthe

component HS’ HSﬁY # & so AﬂV(HS) = Z. Thus A C N_(YS)US, this implies

|A] = Kk, so (3) holds. ‘ ‘ | - n

Lemma 4 Suppose |G| =z 2(k+k). Then

(1) For any A€d and any Be SR ANB = g.

2 UAc UN® and U B cC UNG(A)Q
Aed Be® G C Be® - Ae d

proof. (1) Suppose not, i.e. there are A € 4 and B € # such that ANB
# @. Let K = V(G)-Nj[A] then NG['K] b B, since ANB # @. As a

consequence of Complement lemma A C N [B] thus V(&) cC NG[A]UN_[B].
: G G

According to the previous lemma |A| = k and |B| s k, so | V(@] < 2(k+k)
contradicting the assumption.

(2) We show only U A ¢ U N (B). Recall Y is the union of all the ends
Ac d Be® G

of G. For each Acd N_(A) can not contain whole Y and also N,(A) » U B.
a a BE %

According to (1) of this lemms it is an immediate consequence of Complement

lemma that U A ¢ U N (B). , |
Aed Be® G

By now we are all set to prove Main Theorem (2).
proof of Main Theorem (2) From the definition of critically (k,k)-connected

graph V(@) = C({GQ)UC(Q). ’ Therfore as a consequence of Lemma 3 (2) V(G) =
Acd @ BE® G Aca © Be® G

, so that |G| s | U Ng&)|+| U N (B)]. To complete the proof it
Aecd Be® G ‘

U N,IAJU U N [Bl. Finally, by Lemma 4 (2) V@ = U N (A U U N (B)
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remains to check the upper bound of | U NG(A)I. We may suppose » = 3
Acd

or 4. We denote by #4 the number of fragments of 4. Because the family
of ends of G is mutually disjoint the inequality 2a > kK 2 | A| implies each

A of 4 contains exactly one end of G, so #u« =9 For each B of 3, N_(B)
G

can contain at most one fragment A of «, since 2a > k. Therefore by
Complement lemma for each B there are (#4-1) fragments of & such that NG(A)

containes B.  Consequently | U Ny@)| s #dk-(#4-2)| U B| s 7k-7
Acd - Be 8

a(n-2). From the first inequality in the proof of Main Theorem (1) (A) it

follows 7a = i—(nk+277+w), so finally | U N A)| = ;11- {(6=n)nk-(7+27)(7-2)}
Ac d '

and this completes the proof. a
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