Critically (k,k)-connected graphs

Kiyoshi Ando Nippon Ika University Kosugi Nakahara-ku Kawasaki Japan

Yoko Usami Ochanomizu University Otsuka Bunkyo-ku Tokyo Japan

Abstract

A fragment of a connected simple graph G is a subset A of V(G) consisted of components of G-S such that V(G)-A-S \neq \emptyset where S is a minimum cut of G. A minimal fragment of G is said to be an end of G. The complement of G is denoted by \overline{G} . A simple graph G is said to be critically (k,\overline{k}) -connected if $\kappa(G-x) = \kappa(G)-1$ or $\kappa(\overline{G}-x) = \kappa(\overline{G})-1$ for each x of V(G) where $\kappa(G)$ means the vertex connectivity of G. We proved the followings:

Let G be a critically (k,\overline{k}) -connected graph $(k \geq \overline{k} \geq 2)$. We denote by η and a the number of ends of G and the minimum order of the ends of G, respectively. Similarly $\overline{\eta}$ and \overline{a} denote those of \overline{G} . Suppose 2a > k and $2\overline{a} > \overline{k}$. Then

(A) If there is no minimum cut of G containing all the ends of \overline{G} then $\eta = 2$, 3 or 4 and $\frac{\eta}{\eta - 1} \left\lfloor \frac{k}{\overline{a}} \right\rfloor \geq \overline{\eta} \geq \frac{\eta(k+1)}{2(2\overline{a}-1)}$.

Furthermore, if $\eta = 2$, then $|G| \le 2k + \overline{\eta} \overline{k}$, if $\eta = 3$, then $|G| \le \frac{9}{4}k + \overline{\eta} \overline{k} - \frac{11}{4}$ and if $\eta = 4$, then $|G| \le 2k + \overline{\eta} \overline{k} - 6$.

(B) If there is a minimum cut of G containing all the ends of \overline{G} then $\eta(G) = 2$ or 3 and $\left\lceil \frac{\eta a}{\overline{k}} \right\rceil \leq \overline{\eta} \leq \left\lfloor \frac{k}{\overline{a}} \right\rfloor$.

§1 Introduction and main results

In this paper we consider only finite simple graphs. We denote by V(G) the vertex set of a graph G. Let G be a connected graph. We call a set S of V(G) a cut of G if G-S is disconnected, and S is said to be a minimum cut of G if $|S| \leq |S'|$ for any cut S' of G. The order of a minimum cut of G is called the vertex connectivity of G and denoted by $\kappa(G)$. The minimum degree of the vertices of G is denoted by $\delta(G)$. The complement of

a graph G is denoted by \overline{G} . As usual for a real number r we denote by $\lceil r \rceil$ and $\lfloor r \rfloor$ the integers such that $r \leq \lceil r \rceil < r+1$ and $r-1 < \lfloor r \rfloor \leq r$.

A non-empty subset A of V(G) is called a *fragment* of G if A is consisted of components of G-S and V(G)-A-S $\neq \emptyset$ for some minimum cut S of G. A minimal fragment of G is called an *end* of G. We denote by η (G) the number of ends of G.

A graph G is said to be *critically k-connected* if $\kappa(G) = k$ and $\kappa(G-x) = k-1$ for each vertex x of V(G). G. Chartrand, A. Kaugars and D. R. Lick [2] have shown that if G is a critically k-connected graph, $k \ge 2$, then $\delta(G) \ge \frac{3k-1}{2}$ and this bound is sharp.

In [1] we introduced critically (k,k)-connectedness of graphs. More generally we define here that a graph is said to be *critically* (k,\overline{k}) -connected if $\kappa(G) = k$, $\kappa(\overline{G}) = \overline{k}$ and $\kappa(G-x) = k-1$ or $\kappa(\overline{G}-x) = \overline{k}-1$ for each vertex x of V(G). In [1] we proved the following theorem concerning critically (k,k)-connected graphs.

Theorem A ([1]) If G is a critically (k,k)-connected graph, $k \ge 2$, $\delta(G) \ge \frac{3k-1}{2}$ and $\delta(\overline{G}) \ge \frac{3k-1}{2}$, then $|G| \le 4k$.

In fact in [1] we proved the following stronger assertion:

Theorem ([1]) Let G be a critically (k,k)-connected graph, $k \ge 2$. Let a $(resp.\overline{a})$ be the order of minimum end of G $(resp.\overline{G})$. If 2a > k and $2\overline{a} > k$, then $|G| \le 4k$ and $(\eta(G), \eta(\overline{G})) = (2,2)$.

In this paper we will study critically (k,\overline{k}) -connected graphs and we will show more general results descrived as follows:

Main Theorem. Let G be a critically (k,\overline{k}) -connected graph $(k \ge \overline{k} \ge 2)$. We denote by η and a the number of ends of G and the minimum order of the ends of G, respectively. Similarly $\overline{\eta}$ and \overline{a} denote those of \overline{G} . Suppose 2a > k and $2\overline{a} > \overline{k}$. Then

(1) (A) If there is no minimum cut of G containing all the ends of \overline{G} then $\eta = 2$, 3 or 4 and $\frac{\eta}{\eta - 1} \left\lfloor \frac{k}{\overline{a}} \right\rfloor \geq \overline{\eta} \geq \frac{\eta(k+1)}{2(2\overline{a}-1)}$.

In particular $\eta \leq \overline{\eta}$.

- (B) If there is a minimum cut of G containing all the ends of \overline{G} then $\eta = 2$ or 3 and $\left\lceil \frac{\eta a}{\overline{k}} \right\rceil \leq \overline{\eta} \leq \left\lfloor \frac{k}{\overline{a}} \right\rfloor$.
- (2) In case (A) in (1) we have

If $\eta = 2$ then $|G| \le 2k + \overline{\eta} \overline{k}$.

If $\eta = 3$ then $|G| \le \frac{9}{4}k + \overline{\eta}\overline{k} - \frac{9}{4}$.

If $\eta = 4$ then $|G| \le 2k + \overline{\eta} \overline{k} - 6$.

In case (B) in (1) there is no upper bound of the order of G for each k and $\overline{k}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$

§2 Preliminaries

In this section we introduce some more notation and present preliminary lemmas which we will use in the following two sections to prove our main results. Let G be a connected graph. We denote by $\mathscr{C}(G)$ the family of all minimum cuts of a graph G, and set $C(G) = \bigcup_{S \in \mathscr{C}(G)} S$. We denote by $G[A] \subseteq \mathscr{C}(G)$ the subgraph of G induced by $A \subset V(G)$. Let $N_G(x)$ be the set of the vertices adjacent to x in G. For $A \subset V(G)$, we put $N_G(A) = \bigcup_{X \in A} N_G(X) - A$ and $X \in A$ and $X \in A$ Recall a fragment of G is a non-empty subset A of V(G) such that (i) $N_G(A)$ is a minimum cut of G and (ii) $G - N_G(A)$ is non-empty, and

that an end of G is a <u>minimal</u> fragment of G. We call a <u>minimum</u> fragment of G an atom and we denote by a_G the order of an atom of G. If there is no danger of ambiguity, we abbreviate $\eta(G)$, $\eta(\overline{G})$, a_G and $a_{\overline{G}}$ to η , $\overline{\eta}$, a and \overline{a} , respectively.

The following lemma expresses the essential relation between a graph G and its complement \overline{G} , so that we call it "Complement lemma".

Lemma (Complement Lemma) Let G be a graph and let A, B be subsets of V(G). If B is not contained in $N_G[A]$, then $N_{\overline{G}}[B]$ contains A.

Proof. Let x be a vertex of B not contained in $N_G[A]$. It is immediate that $N_G(x)\supset A$, since $x\notin N_G[A]$.

In the above lemma, if $A \cap B = \emptyset$, then we can replace the closed neighbourhoods $N_G[A]$ and $N_G[B]$ with the open neighbourhoods $N_G(A)$ and $N_G(B)$, respectively. Therefore the next lemma (we also call it "Complement lemma") is an immediate consequence of the above lemma. This lemma will play a fundamental roll in our argument through this paper.

Lemma 1 Let G be a connected graph and let W be a subset of V(G) such

that (i) $|W| > \kappa(G)$, (ii) for any minimum cut S of G, W-S is contained in a component of G-S. We denote by A the family of the maximal fragments of G each of which has no intersection with W. Then

- (1) $A \cap B = \emptyset$ for any two distinct elements A, B in A,
- (2) $A \neq \emptyset$ and any minimum cut of G is contained in $\bigcup N_G[A]$. $A \in A$

proof. To prove (1) suppose not, i.e. suppose that there are two distinct fragments A_1 and A_2 in \mathcal{A} such that $A_1 \cap A_2 \neq \emptyset$. Let $\widetilde{A}_i = V(G) - N_G[A]$ for i = 1, 2. Then since $A_1 \cap A_2 \neq \emptyset \mid N_G(A_1 \cap A_2) \mid \geq \kappa(G)$. Consequently $\widetilde{A}_1 \cap \widetilde{A}_2 \neq \emptyset$, since $|N_G[\widetilde{A}_1] \cap N_G[\widetilde{A}_2]| \geq |W| > \kappa(G)$. Therefore $|N_G(\widetilde{A}_1 \cap \widetilde{A}_2)| = \kappa(G)$, which implies $A_1 \cup A_2$ is also a fragment of G, cotradicting the maximality of A_1 and A_2 .

To prove (2) let S be any minimum cut of G and let H_S be the component of G-S containing W-S. Then the fragment $A = V(G) - N_G[V(H)]$ has no intersection with W, so there is an element A' in $\mathcal A$ containing A such that $S = N_G(A) \subset N_G[A']$.

We remark that in the above Lemma 1 if $W \subset C(G)$, then $W \subset \bigcup_{A \in \mathcal{A}} N_G(A)$, in particular, $|W| \leq \eta(G) \kappa(G)$.

As a slight extension of a result of Mader[4], we can easily show the followings which will be the firm bases of our arguments. (cf. Theorem 1 and Lemma 1 in [1])

Lemma 2 Let G be a critically (k,\overline{k}) -connected graph and let $\{X_1, X_2, ..., X_{\eta}\}$ and $\{Y_1, Y_2, ..., Y_{\overline{\eta}}\}$ be the set of all the ends of G and that of \overline{G} , respectively.

Set
$$X = \bigcup_{i=1}^{\eta} X_i$$
 and $Y = \bigcup_{j=1}^{\eta} j^*$. Suppose $2a > k$ and $2\overline{a} > \overline{k}$. Then

- (i) $X \cap C(G) = \emptyset$ and $Y \cap (\overline{G}) = \emptyset$.
- (ii) Let A and B be any two distinct elements of $\{X_1, X_2, ..., X_{\eta}, Y_1, ..., Y_{\overline{\eta}}\}$. Then $A \cap B = \emptyset$.

§4 A proof of Main Theorem (1)

Throughout this section and the next section suppose G is a critically (k,\overline{k}) -connected graph such that 2a > k, $2a > \overline{k}$ and $k \ge \overline{k}$. Let $\{X_1, X_2, \dots, X_{\eta}\}$ and $\{Y_1, Y_2, \dots, Y_{\overline{\eta}}\}$ be the set of all the ends of G and \overline{G} , respectively, and put $X = \bigcup_{i=1}^{\eta} X_i$ and $Y = \bigcup_{j=1}^{\eta} Y_j$.

proof of (A) To prove the former part of (A) it suffices to show the following two inequalities: $\eta(k+1) \leq 2\overline{\eta}(2\overline{a}-1)$ and $\overline{\eta} + \left\lfloor \frac{k}{a} \right\rfloor \eta \geq \eta \overline{\eta}$. If they hold, then $\overline{a}\overline{\eta} + 2(2\overline{a}-1)\overline{\eta} - \eta \geq \overline{a}\overline{\eta}\eta$, which implies $\eta = 2$, 3 or 4. By the assumption of (A) $N_G(X_1) \Rightarrow Y$ for each i thus $X \subset N_G(Y)$ and this implies the first inequality, since $\eta k \leq \eta(2a-1) \leq 2|X| - \eta \leq 2|N_G(Y)| - \eta \leq 2\overline{\eta}\overline{k} - \eta \leq 2\overline{\eta}(2\overline{a}-1) - \eta$. To show the second inequality note that $N_G(X_1)$ contains at most $\left\lfloor \frac{k}{a} \right\rfloor$ ends of \overline{G} and $N_G(Y_1)$ contains at most one end of \overline{G} , since $2a > k \geq \overline{k}$. Furthermore, Complement lemma assures us that for any of pairs (i,j) either $N_G(X_1) > Y_1$ or $X_1 \subset N_G(Y_1)$. Thus $\overline{\eta} + \left\lfloor \frac{k}{a} \right\rfloor \eta \geq \eta \overline{\eta}$. Next we prove the latter part of (A). For each end Y_1 of \overline{G} , $N_G(Y_1)$ can contain at most one end of G. On

the other hand, the assumption of (A) implies each X contained in N (Y) for some j, so $\overline{\eta} \geq \eta$.

proof of (B). To prove (B) it suffices to show the following three inequalities: $\eta \leq 3$, $\eta a \leq \overline{\eta} \overline{k}$ and $k \geq \overline{\eta} \overline{a}$. The last one is immediate consequence of the assumption of (B). To show the former two inequalities put $H = \overline{G}[\bigcup_{i=1}^{\eta} X_i]$. Then as a consequence of Lemma 2 H has the complete η -partite graph with vertex clases $X_1, X_2, ..., X_{\eta}$ as its spanning subgraph. Therefore if $\eta \geq 3$ then $\kappa(H) \geq 2a > k \geq \overline{k}$, so by the remark after Lemma 1 $\eta a \leq |H| \leq \overline{\eta} \overline{k}$. In particular, if $\eta \geq 3$ then $a \overline{a} \eta \leq \overline{a} \overline{\eta} \overline{k} \leq k \overline{k}$ so $\eta \leq \frac{k \overline{k}}{a \overline{a}} < 4$, thus the first inequality holds. In the case that $\eta = 2$, we may suppose $a > \overline{k}$, since otherwise $\eta a = 2a \leq 2\overline{k} \leq \overline{\eta} \overline{k}$. If $a > \overline{k}$ then $\kappa(H) \geq a > \overline{k}$ and again by the same remark $\eta a \leq \overline{\eta} \overline{k}$.

§4 A proof of Main Theorem (2)

At first we introduce two new families of subsets of V(G), \mathcal{A} and \mathcal{B} , which will hold the key of our proof. Recall X is the union of all the ends of G and Y is that of \overline{G} . Let \mathcal{A} be the family of the maximal fragments of G each of which has no intersection with Y. Similarly \mathcal{B} stands for the family of the maximal fragments of \overline{G} each of which has no intersection with X. To prove Main Theorem (2) we need the following two lemmas which express remarkable properties of \mathcal{A} and \mathcal{B} . Throughout this section assume that there is no minimum cut of G containing Y. We remark that there is no minimum cut of \overline{G} containing X, since $\eta a \geq 2a > k \geq \overline{k}$.

Lemma 3 Suppose $|G| > 2(k+\overline{k})$. Then

- (1) Each of \mathcal{A} and \mathcal{B} is a family of mutually disjoint subsets of V(G).
- (2) $C(G) \subset \bigcup_{A \in \mathcal{A}} N_G[A]$ and $C(\overline{G}) \subset \bigcup_{B \in \mathcal{B}} N_{\overline{G}}[B]$.
- (3) $|A| \leq \overline{k}$ for each $A \in A$, and $|B| \leq k$ for each $B \in \mathcal{B}$.

We give a proof for A (We can prove the result for B similarly). Let S be any minimum cut of G and let \mathbf{A}_1 and $\mathbf{A}_2 \in \mathcal{A}$ such that $\mathbf{A}_1 \cap \mathbf{A}_2 \neq \mathbf{A}_2 \in \mathcal{A}_1$ For i = 1 and 2, let \widetilde{A}_i stand for $V(G)-N_G[A_i]$. Then according to the proof of Lemma 1 to prove (1) and (2) it suffices to show (i) Y-S is contained in a component of G-S and (ii) $\widetilde{\mathbf{A}}_1 \cap \widetilde{\mathbf{A}}_2 \neq \varnothing$ (i) By the assumption that S \supset Y , there is an end $Y_{\mbox{S}}$ of $\overline{\mbox{G}}$ not contained Also there is an end of G, say X_1 , not contained in $N_{\overline{G}}(Y_S)$. Complement lemma $N_{G}(X_{1}) \supset Y_{S}$, so $k \ge |Y_{S}|$ and $k+\overline{k} \ge |N_{\overline{G}}[Y_{S}]|$. Let \widetilde{Y}_{S} = $V(G)-N_{\overline{G}}[Y_S]$. Then $|\widetilde{Y}_S| > k$, since $|G| > 2(k+\overline{k})$. Hence $S \Rightarrow \widetilde{Y}_S$. Consequently the subgraph G[YSU \widetilde{Y}_S -S] of G is connected, for G[YSU \widetilde{Y}_S] includes the complete bipartite graph with vertex classes Y_S and \widetilde{Y}_S . Let H_S be the component of G-S containing $Y_S \cup \widetilde{Y}_S$ -S. Note that any other end of \overline{G} which is disjoint from Y_S is contained in \widetilde{Y}_S . Then Y-S \subset V(H_S). (ii) Assume $\widetilde{A}_1 \cap \widetilde{A}_2 = \emptyset$. Then $|A_1 \cup A_2| > 2\overline{k}$. Thus, without loss of generality, we may assume $|A_1| > \overline{k}$. On the other hand, by the assumption that $N_G(A_1) \Rightarrow Y$ there is an end of \overline{G} , say Y_1 , not contained in $N_G(A_1)$, i.e. $Y_1 \not\in N_G[A_1]$. However, since $Y_1 \cap A_1 = \emptyset$, as an immediate consequence of Complement lemma $N_{\overline{G}}(Y_1) \supset A_1$ contradicting the assumption $|A_1| > \overline{k}$.

To prove (3), for each A in \mathcal{A} put $S = N_G(A)$. Then, by the choice of the component H_S , $H_S \cap Y \neq \emptyset$ so $A \cap V(H_S) = \emptyset$. Thus $A \subset N_G(Y_S) \cup S$, this implies $|A| \leq \overline{k}$, so (3) holds.

Lemma 4 Suppose $|G| \ge 2(k+\overline{k})$. Then

- (1) For any $A \in \mathcal{A}$ and any $B \in \mathcal{B}$ $A \cap B = \emptyset$.
- (2) $\bigcup A \subset \bigcup N(B)$ and $\bigcup B \subset \bigcup N_G(A)$. $A \in \mathcal{A}$ $B \in \mathcal{B}$ G $B \in \mathcal{A}$ $A \in \mathcal{A}$

proof. (1) Suppose not, i.e. there are $A \in \mathcal{A}$ and $B \in \mathcal{B}$ such that $A \cap B \neq \emptyset$. Let $\widetilde{A} = V(G) - N_G[A]$ then $N_G[\widetilde{A}] \Rightarrow B$, since $A \cap B \neq \emptyset$. As a consequence of Complement lemma $\widetilde{A} \subset N_G[B]$ thus $V(G) \subset N_G[A] \cup N_G[B]$. According to the previous lemma $|A| \leq \overline{k}$ and $|B| \leq k$, so $|V(G)| < 2(k+\overline{k})$ contradicting the assumption.

(2) We show only \bigcup $A \subset \bigcup$ N (B). Recall Y is the union of all the ends $A \in \mathcal{A}$ $B \in \mathcal{B}$ \overline{G} of G. For each $A \in \mathcal{A}$ $N_G(A)$ can not contain whole Y and also $N_G(A) \supset B \in \mathcal{B}$. According to (1) of this lemma it is an immediate consequence of Complement lemma that \bigcup $A \subset \bigcup$ N (B). $A \in \mathcal{A}$ $B \in \mathcal{B}$ \overline{G}

By now we are all set to prove Main Theorem (2). $proof\ of\ Main\ Theorem\ (2) \qquad \text{From the definition of critically } (k,\overline{k})\text{-connected}$ $graph\ V(G)\ =\ C(G)\cup C(\overline{G}). \qquad \text{Therfore as a consequence of Lemma 3 (2) } V(G)\ =\ \bigcup\ N_{\overline{G}}[A]\ \bigcup\ V(G)\ =\ \bigcup\ N_{\overline{G}}(A)\ \bigcup\ V(G)\ \cup\ V(G)\ =\ \bigcup\ N_{\overline{G}}(A)\ \bigcup\ V(G)\ \cup\ V(G)\ =\ \bigcup\ N_{\overline{G}}(A)\ \bigcup\ N_{\overline{G}}($

remains to check the upper bound of $|\bigcup_{A\in\mathcal{A}}N_G(A)|$. We may suppose $\eta=3$ or 4. We denote by #A the number of fragments of A. Because the family of ends of G is mutually disjoint the inequality $2a>\overline{k}\geq |A|$ implies each A of A contains exactly one end of G, so $\#A=\eta$. For each B of B, $N_G(B)$ can contain at most one fragment A of A, since $2a>\overline{k}$. Therefore by Complement lemma for each B there are (#A-1) fragments of A such that $N_G(A)$ containes B. Consequently $|\bigcup_{A\in\mathcal{A}}N_G(A)|\leq \#Ak-(\#A-2)|\bigcup_{B\in\mathcal{B}}B|\leq \eta k-\overline{\eta}$ $A\in\mathcal{A}$ $B\in\mathcal{B}$ $\overline{a}(\eta-2).$ From the first inequality in the proof of Main Theorem (1) (A) it follows $\overline{\eta}\overline{a}\geq \frac{1}{4}(\eta k+2\overline{\eta}+\eta)$, so finally $|\bigcup_{A\in\mathcal{A}}N_G(A)|\leq \frac{1}{4}\{(6-\eta)\eta k-(\eta+2\overline{\eta})(\eta-2)\}$ and this completes the proof.

References

- [1] K. Ando and Y. Usami, Critically (k,k)-connected graphs I, preprint
- [2] G. Chartrand, A. Kaugars and D. R. Lick, Critically n-connected graphs, Proceedings of the American Math. Soc. Vol 32, no. 1 (1972) 63-68
- [3] Y. O. Hamidoune, On critically h-connected simple graphs, Discrete Math. 32 (1980) 257-262
- [4] W. Mader, Ein Eigenshaft der Atome endlicher Graphen, Arch. Math. 22 (1971) 333-336
- [5] H. J. Veldman, Non- κ -critical vertices in graphs, Discrete Math. 44 (1983) 105-110