A sufficient condition for a bipartite graph to have

a k-factor.

Katsuhiro Ohta (太田克弘)

Department of Information Science

Faculty of Science

University of Tokyo

In this paper, we consider only finite undirected simple graphs. A graph denoted by (X,Y;E) is a bipartite graph with partite sets X and Y and edge set $E \subset X \times Y$. If A is a subset of vertices, N(A) denotes the set of vertices adjacent to one of the vertices of A. For two disjoint subsets of vertices A and B, e(A,B) denotes the number of the edges joining A and B. A vertex x is often identified with $\{x\}$. So e(x,B) means $e(\{x\},B)$ and N(x) means $N(\{x\})$. The other notations may be found in [1].

A k-regular spanning subgraph is called a k-factor. In a bipartite graph (X,Y;E), a complete k-matching from X to Y is defined as a spanning subgraph such that the degree of each vertex of X is k, and the degree of each vertex of Y is at most k. We abbreviate the complete 1-matching from X to Y as a complete matching from X to Y.

Theorem A (Hall[2]). A bipartite graph (X,Y;E) has a complete matching from X to Y if and only if $|N(S)| \ge |S|$ holds for all $S \subset X$.

The next theorem, first proved by Ore and Ryser, gives a necessary and sufficient condition for a bipartite graph (X,Y;E) to have a complete k-matching from X to Y. Now, for $S \subset X$ and $T \subset Y$, we define

$$\delta(S,T) := e(S,Y-T) + k |T| - k |S|.$$

Theorem B (Ore, Ryser[4]). A bipartite graph (X,Y;E) has a complete kmatching from X to Y if and only if $\delta(S,T) \ge 0$ holds for all $S \subset X$ and all $T \subset Y$.

In this paper, we give a sufficient condition for the existence of a complete k-matching in a bipartite graph, which is an extension of Hall's theorem (Theorem A). Katerinis proved the following theorem.

Theorem C (Katerinis[3]). If a bipartite graph (X,Y;E) satisfies (C.1) and (C.2), then (X,Y;E) has a 2-factor.

- (C.1) $|X| = |Y| \ge 2.$
- (C.2) For all $M \subset X$,

$$|N(M)| \ge \frac{3}{2} |M|$$
 if $|M| < \left\lfloor \frac{2}{3} |Y| \right\rfloor$,
 $|N(M)| = |Y|$ if $|M| \ge \left\lfloor \frac{2}{3} |Y| \right\rfloor$,

As a generalization of Theorem C, we give our main result in this paper.

Theorem 1. Suppose $k \ge 2$. If a bipartite graph (X,Y;E) satisfies (1.1), (1.2) and (1.3), then (X,Y;E) has a complete k-matching from X to Y.

- $(1.1) |X| \le |Y|, |Y| \ge k.$
- (1.2) For every $M \subset X$ satisfying $|M| < \left| (k-1+\frac{1}{k})^{-1} |Y| \right|$, $|N(M)| \ge (k-1+\frac{1}{k})|M|$ holds.
- (1.3) For every $M \in X$ satisfying $|M| \ge \left| \left(k 1 + \frac{1}{k} \right)^{-1} |Y| \right|$, |N(M)| = |Y| holds.

In case of |X| = |Y|, a complete k-matching from X to Y is equivalent to a

k-factor. Therefore, Theorem 1 also gives a sufficient condition on the existence of a k-factor. Hence, in case of k=2, Theorem 1 implies Theorem C. Moreover, if we apply Theorem 1 to the case of k=1, then we have the non-trivial implication of Hall's theorem.

The next theorem is slightly stronger than Theorem 1. Hence, we prove Theorem 2 instead of Theorem 1.

Theorem 2. Suppose $k \ge 2$. If a bipartite graph (X,Y;E) satisfies (2.1), (2.2) and (2.3), then (X,Y;E) has a complete k matching from X to Y.

- $(2.1) |X| \le |Y|, |Y| \ge k.$
- (2.2) For every $M \subset Y$ satisfying $|M| < \left| (k-1+\frac{1}{k})^{-1} |Y| \right|$ and $|M| \equiv 1 \pmod{k}, |N(M)| \ge (k-1+\frac{1}{k})|M|$.
- (2.3) For every $M \in Y$ satisfying $|M| \ge \left| (k-1+\frac{1}{k})^{-1} |Y| \right|$, |N(M)| = |Y| holds.

Before proving Theorem 2, we state the following lemma.

Lemma 3. Let $k \ge 2$ be an integer, and G = (X,Y;E) be a bipartite graph satisfying $|X| \le |Y|$ and $|Y| \ge k$. Suppose there exist $S \subset X$ and $T \subset Y$ such that $\delta(S,T) < 0$. If we choose such S and T so that $S \cup (Y-T)$ is minimal, then (3.1), (3.2), (3.3) and (3.4) hold.

- (3.1) For any vertex x of S, $e(x,Y-T) \le k-1$ holds. Therefore $e(S,Y-T) \le (k-1)|S|$ holds.
- (3.2) For any vertex y of Y-T, $e(S,y) \le k-1$ holds.
- (3.3) $|N(S)| < (k-1+\frac{1}{k})|S|.$
- (3.4) There exists a subset M of S such that $|M| \equiv 1 \pmod{k}$ and $|N(M)| < \left| (k-1+\frac{1}{k})|M| \right|$ holds.

Proof. Suppose there exists a vertex x of S such that $e(x, Y-T) \ge k$. Let $S' := S - \{x\}$. Then

$$\delta(S',T) = k |T| + e(S',Y-T) - k |S'|$$

$$\leq k |T| + e(S,Y-T) - k - k |S| + k$$

$$= \delta(S,T) < 0.$$

This contradicts the minimality of $S \cup (Y-T)$. Thus we obtain (3.1).

Similarly, suppose there exists $y \in Y - T$ such that $e(S,y) \ge k$, and let $T' := T \cup \{y\}$. Then $\delta(S,T') \le \delta(S,T) < 0$, contradicting the minimality of $S \cup \{Y - T\}$, and (3.2) follows.

Since G is a bipartite graph, $|N(S)| \le |T| + e(S, Y - T)$. By the fact that $\delta(S,T) < 0$ and (3.1),

$$|N(S)| \le |T| + e(S, Y-T)$$

$$< |S| + (1 - \frac{1}{k})e(S, Y-T)$$

$$\le |S| + (1 - \frac{1}{k})(k-1)|S|$$

$$= (k-1 + \frac{1}{k})|S|.$$

Thus (3.3) is obtained.

If $|S| \equiv 1 \pmod{k}$, then immediately (3.4) holds. By the fact that $\delta(S,T) < 0$, $S \neq \phi$. Hence let $|S| \equiv 1+r \pmod{k}$ where $1 \leq r \leq k-1$ and R be a subset of S such that e(R,Y-T) is maximum over |R| = r and $R \subset S$. Let $d := \min\{e(x,Y-T); x \in R\}$ and M := S-R. Then we have

$$e(x, Y-T) \ge d$$
 for all $x \in R$
 $e(x', Y-T) \le d$ for all $x' \in M$

and by (3.1), $d \le k-1$. On the other hand, $|N(M)| \le |T| + e(M, Y-T)$. Therefore,

$$|N(M)| \le |T| + e(M, Y-T)$$

$$< |S| - \frac{1}{k} e(S, Y-T) + e(M, Y-T)$$

$$= (1 - \frac{1}{k}) e(M, Y-T) - \frac{1}{k} e(R, Y-T) + |S|$$

$$\leq (1 - \frac{1}{k})d |M| - \frac{1}{k}d |R| + |S|$$

$$= \frac{d}{k}\{(k-1)|M| - |R|\} + |S|$$

$$\leq \frac{(k-1)^2}{k} |M| - \frac{k-1}{k} |R| + |M| + |R|$$

$$= (k-1 + \frac{1}{k})|M| + \frac{1}{k}|R|$$

$$\leq \left| (k-1 + \frac{1}{k})|M| \right|$$

and (3.4) follows.

Proof of Theorem 2. We assume that (X,Y;E) has no complete k-matching from X to Y. By Theorem B, there exist $S \subset X$ and $T \subset Y$ satisfying $\delta(S,T) < 0$. We may assume that the situations of (3.1) - (3.4) occur. By the assumption (2.2) and (2.3), we have N(M) = Y. Since $M \subset S$, also we have N(S) = Y.

Let $z:=\min\{e(S,y);y\in Y-T\}$. Note that $Y-T\neq \phi$, by the assumption that $\delta(S,T)<0$. Hence z is well-defined, and $1\leq z\leq k-1$, by (3.2) and the fact that |N(S)|=Y. The neighborhood of S, that is Y, is at most $|T|+\frac{1}{z}e(S,Y-T)$. Hence by (3.1) and the fact that $\delta(S,T)<0$,

$$|Y| = |N(S)| \le |T| + \frac{1}{z} e(S, Y - T)$$

$$< |S| + (\frac{1}{z} - \frac{1}{k}) e(S, Y - T)$$

$$\le |S| + (\frac{1}{z} - \frac{1}{k}) (k - 1) |S|$$

$$= \frac{k^2 - k + z}{kz} |S|. \tag{1}$$

Let y_0 be a vertex of Y-T such that $e(S,y_0)=z$, and let $S_0:=S-N(y_0)$. Since $N(S_0)\subset Y-\{y_0\}$, S_0 cannot satisfy the conclusion of (2.3). Hence

$$|S_0| = |S| - z \le \frac{k}{k^2 - k + 1} |Y| - 1.$$
 (2)

By (1) and (2),

$$k(k-1)(z-1)|S| < z(z-1)(k^2-k+1)$$

 $|S| < (k-1+\frac{1}{k}) \cdot \frac{z}{k-1}$

$$\leq k - 1 + \frac{1}{k}$$

Thus |S| < k and therefore |M| = 1. But (3.4) and the fact that N(M) = Y imply that $|Y| = |N(M)| < \left|k-1+\frac{1}{k}\right| = k$. This contradicts the assumption that $|Y| \ge k$.

Theorem 2 is in some sense best possible. The graph (X,Y;E) defined as the following shows that the condition $|N(M)| \ge (k-1+\frac{1}{k})|M|$ of (2.2) cannot be replaced by $|N(M)| \ge \left|(k-1+\frac{1}{k})|M|\right| - 1$ (see Fig. 1).

$$\begin{split} X := A \cup A' \\ \text{where } A &= \{a_1, \cdots, a_{km+1}\} \\ A' &= \{a_{km+2}, \cdots, a_n\} \\ Y := B \cup C \cup D \\ \text{where } B &= \{b_{ij} \mid 1 \leq i \leq km+1, \ 1 \leq j \leq k-1\} \\ C &= \{c_1, \cdots, c_m\} \\ D &= \{d_1, \cdots, d_l\} \\ E &= \{a_i b_{ij} \mid 1 \leq i \leq km+1, \ 1 \leq j \leq k-1\} \cup (A \times C) \cup (A' \times Y). \end{split}$$

Moreover, in this graph all but one M (= A) satisfy (2.2).

Besides, the conditions (1.2) and (1.3) of Theorem 1 cannot be unified to the condition:

$$|N(M)| \ge \min\{|Y|, (k-1+\frac{1}{k})|M|\} \quad \text{for all } M \in X.$$
 (1.4)

The graph in Fig. 2 satisfies (1.1) and (1.4) but has no complete k-matching from X to Y.

But the graphs which satisfy (1.1) and (1.4) and have no complete kmatching from X to Y have a similar induced subgraph. Finally, we prove the
next theorem.

Theorem 4. Suppose $k \ge 2$. And also suppose that G = (X, Y; E) is a bipartite graph such that $|X| \le |Y|$ and $|Y| \ge k$. If G satisfies (1.4) and G has no

Fig. 1.

complete k-matching from X to Y, then there exist $S \subset X$ and $T \subset Y$ such that (4.1), (4.2) and (4.3) hold.

- (4.1) |S| = k |T| + 1.
- (4.2) e(S,y) = 1 for all $y \in Y T$.
- $(4.3) e(x,Y-T) = k-1 for all x \in S.$

Proof. Since G has no complete k-matching from X to Y, we may assume that we have (3.1) - (3.4). Therefore we have N(S) = Y. Let $z := \min\{e(S,y); y \in Y - T\}$. Since $Y - T \neq \phi$, z is well-defined, and $1 \le z \le k - 1$. Now, we have

Fig. 2.

$$|Y| = |N(S)| \le |T| + \frac{1}{z} e(S, Y-T)$$

$$< \frac{k^2 - k + z}{kz} |S|.$$

Let $y_0 \in Y - T$ such that $e(S, y_0) = z$, and let $S_0 := S - N(y_0)$. Since $N(S_0) \subset Y - \{y_0\}$, we have

$$|Y| - 1 \ge |N(S_0)| \ge (k - 1 + \frac{1}{k})|S_0| = (k - 1 + \frac{1}{k})(|S| - z).$$

By the above two inequalities, we have

$$\begin{split} \frac{k^2 - k + z}{kz} \, |S| > |Y| &\ge (k - 1 + \frac{1}{k})(|S| - z) + 1, \\ (k^2 - k + z) |S| > z(k^2 - k + 1)(|S| - z) + kz, \\ z^2(k^2 - k + 1) - kz > (z - 1) k (k - 1)|S|, \end{split}$$

Since $|Y| \ge k$, $|S| \ge |M| \ge k+1$. Hence

$$z^{2}(k^{2}-k+1) - kz > (z-1)k(k-1)(k+1),$$

$$z^{2}(k^{2}-k+1) - zk^{3} + k(k^{2}-1) > 0.$$

We claim that the only situation that z=1 makes this inequality true. Suppose $z\geq 2$, and let $f_k(z):=z^2(k^2-k+1)-zk^3+k(k^2-1)$. Then, since $k\geq z+1\geq 3$,

$$f_k(2) = 4(k^2 - k + 1) - 2k^3 + k(k^2 - 1)$$
$$= -k^3 + 4k^2 - 5k + 4$$
$$= -k(k - 2)^2 - k + 4 < 0,$$

and

$$f_k(k-1) = (k-1)^2(k^2-k+1) - (k-1)k^3 + k(k^2-1)$$

= $(k-1)\{1 - (k-1)(k-2)\} < 0$.

Hence, $2 \le z \le k-1$ implies $f_k(z) < 0$, which is a contradiction. Thus the claim follows.

Define

$$U := \{ u \in Y - T; e(S, u) = 1 \},$$

$$W := \{ w \in Y - T; e(S, w) \ge 2 \} = Y - T - U.$$

Since z=1, $U\neq \phi$. We choose $u\in U$ arbitrarily, and let x_u be the only neighborhood of u in S. Now, define α , β and γ as the following non-negative integers (especially, note that $\gamma \geq 1$).

$$\alpha := \sum_{w \in W} (e(S, w) - 1),$$

$$\beta := \sum_{x \in S} (k - 1 - e(x, Y - T)),$$

$$\gamma := e(x_u, U).$$

By these definitions, we have

$$|Y| = |N(S)| = |T| + e(S, Y-T) - \alpha,$$
 (3)

$$e(S, Y-T) = (k-1)|S| - \beta,$$
 (4)

$$|Y| - \gamma \ge |N(S - \{x_u\})| \ge (k - 1 + \frac{1}{k})(|S| - 1).$$
 (5)

By the definitions of α and β ,

$$\alpha \ge e(x_n, W), \tag{6}$$

$$\beta \ge k - 1 - e\left(x_u, Y - T\right). \tag{7}$$

Thus we have

$$\alpha + \beta + \gamma \ge k - 1. \tag{8}$$

By (3) and the fact that $\delta(S,T) < 0$,

$$|Y| < |S| + (1 - \frac{1}{k})e(S, Y - T) - \alpha.$$

And by (4),

$$|Y| < (k-1+\frac{1}{k})|S| - \alpha - (1-\frac{1}{k})\beta.$$
 (9)

Thus with (5), we have

$$\alpha + \gamma + (k-1)(\alpha + \beta + \gamma) < k^2 - k + 1.$$

If $\alpha + \beta + \gamma \ge k$, we have $\alpha + \gamma < 1$. This contradicts the fact that $\gamma \ge 1$. Therefore in (8), hence also in (6) and (7), the equality holds.

From the equality of (7), we have e(x,Y-T)=k-1 for all $x\in S-\{x_u\}$. From the equality of (6), for all $w\in W$, e(S,w)=2 and $x_u\in N(w)\cap S$, and hence $\alpha=|W|$.

First we claim that $W=\phi$. In case of k=2, $W=\phi$ is an immediate consequence of (3.2). Thus it suffices to show the claim in case of $k\geq 3$. Assume $W\neq \phi$ and let $w_0\in W$. Since $|S|\geq k+1\geq 4$ and $e(S,w_0)=2$, there exists $x_0\in S-N(w_0)$. We note that $x_0\neq x_u$. Because of the fact that $e(x_0,Y-T)=k-1>\alpha=|W|$, there exists $v\in U\cap N(x_0)$. Especially $v\neq u$, and the only neighborhood of v in S, say x_v , is x_0 . Hence the similar arguments lead us to the fact that $x_v\in N(w)\cap S$ for all $w\in W$. But $x_v=x_0\notin S\cap N(w_0)$. This is a contradiction. Thus we have the claim, and therefore (4.2) holds.

Next we prove (4.3). It suffices to show that $e(x_u, Y-T) = k-1$. Since $|S| \ge k+1 \ge 3$, we can take $x' \in S - \{x_u\}$. From the above arguments, we can regard x' as the only neighborhood in S of some vertex $v \in U = Y-T$. Then by the similar arguments, e(x, Y-T) = k-1 holds for all $x \in S - \{x'\}$. Especially $e(x_u, Y-T) = k-1$ holds.

The results given above show that $\alpha = \beta = 0$ and $\gamma = k-1$. Hence by (5) and (9),

$$(k-1+\frac{1}{k})|S|-\frac{1}{k} \le |Y| < (k-1+\frac{1}{k})|S|,$$

and so

$$|Y| = (k-1)|S| + \frac{|S|-1}{k}$$

This implies (4.1), for we have |Y-T| = (k-1)|S| from (4.2) and (4.3). And we complete the proof.

Acknowledgements.

The author would like to thank Professor Hikoe Enomoto and Mr. Akira Saito for helpful discussions with them.

References.

- [1] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs & Digraphs, Prindle, Weber & Schmidt, Boston, MA (1979)
- [2] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30
- [3] P. Katerinis, Two sufficient conditions for a 2-factor in a bipartite graph, preprint.
- [4] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ. 1962.