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~ A sufficient condition for a bipartite graph to have

a k-factor.
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In this paper, we con;ider only finite undirected simple graphs. A graph
denoted by (X,Y;F) is a bipartite graph with partite sets X and Y and edge set
Ec Xx Y. If A is a subset of vertices, N(4) denotes the set of vertices adjacent
to one of the vertices of A. For two disjointvsubsets of vertices 4 and B, e(A,B)
denotes the number of the edges joining 4 and B. A veftex z is often identified
with {x]. So e(z,B) means e({z},B) a»d N(z) means N({z}]). The other nota-
tions may be found in [1]. |

A k-regular spanning subgraph is called a k-factor. In a bipartite graph
(X,Y,E), a complete k-matching from X to Y is defined as a spanning subgraph
such that the degree of each vertex of X is k, and the degree of each vertexof Y
is at most k. We abbreviate the complete 1-matching from X to Y as a complete

matching from X to Y.

Theorem A (Hall[2]). A bipartite graph (X,Y;E) has a complete matching

from X to Yif and only if |[N(S)| = | S| holds for all ScX.
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The next theorem, first proved by Ore and Ryser, gives a necessary and
sufficient condition for a bipartite graph (X,Y;E) to have a complete k-matching B

from X to Y. Now, for SCX and TCY, we define

5(S.T) :=e(S,Y-T) +k|T| —k|S|.
Theorem B (Ore, Ryser[4]). A bipartite graph (X,Y,E) has a complete k-

matching from X toY if and only if 6(S,T)=0 holds for all SCX and all TCY.

In this paper, we give a sufficient condition for the existence of a complete
k-matching in a bipartite graph, which is an extension of Hall's theorem

(Theorem A). Katerinis proved the following theorem.
Theorem C (Katerinis[3]). If a bipartite graph (X,Y;E) satisfies (C.1) and

(C.2), then (X,Y.E) has a 2-factor.
(C.1) | X]=|Y]|=2

(C.2) Forall MCX,

2

As a generalization of Theorem C, we give our main result in this paper.

INOD1= 2 M1 i< |2y

INOD | =YL i) =

Theorem 1. Suppose k = 2.. If a bipartite graph (X,Y;E) satisfies (1.1),

(1.2) and (1.3), then (X,Y,F) has a complete k-matching from X to Y.

(1.1) X = |Y|, |Y|=k.

(1.2) For k every | McX satisfying [M] <

(k=147 Yll,

INGD) | = (k~-1+ i—) | M | holds.

(1.3)  For every MCX satisfying |M| = (k——1+i—)"lY|j, IN(M)| = | Y] holds.

In case of |X| = | Y], a complete k-matching from X to Y is equivalent to a
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k-factor. Therefore, Theorem 1 also gives a sufficient condition .on the existence
of a k-factor. Hence, in case of k=2, Theorem 1 implies Theorem C. Moreover, if
we apply Theorem 1 to the case of k=1, then we have the non-trivial implication

of Hall’s theorem.

The next theorem is slightly stronger than Theorem 1. Hence, we prove
Theorem 2 instead of Theorem 1.
Theorem 2. Suppose k = 2. If a bipartite graph (X,Y;F) satisfies (2.1),

(2.2) and (2. 3),-:th,en (X,Y;E) has a complete k matching from X to Y.

(1) |X|=|Y], |Y|=k.

(2.2) Fer every McY satisfying M) < |(k—1+ j’t—)'l | YIJ and

| M |=1 (modulo k), |N(H)| = (Ic—1+%—)lM|,

(2.3)  For every MCY satisfying |M | =

(k:——1+lt—)"’lY|J, |N(#)| = | Y| holds.

Before proving Theorem 2, we state the following lemma.

Lemma 3. let k = 2 be an integer, and G = (X,Y,E) be a bipartite graph
satisfying |X| < |Y| and | Y| = k. Suppose there exist SCX and TCY such that
6(S,T) < 0. If we choose such S and T so that S\ y(Y—T) is minimal, then (3.1),

(3:2), (3.3) and (3.4) hold.

(3.1) For any wvertex z of S, e(z,Y-T)<k-1 holds. Therefore

e(S,Y-T) < (k—1)|S| holds.

(3.2) For any vertexy of YT, e(S,y) <k—1 holds.
(33)  IN(S)] < (k=1+IS].
(3.4) There ezxists a subset M of S such that |M|=1(modulo k) and

[
|N ()| < (Ic-—1+’i—)|M| holds.




Proof. Suppose there exists a vertex z of S such that e(z,Y=T)=k. Let

S':=8 —{z]. Then

5(S'.T)=k|T| +e(S",Y-T) —k|S’]
<k|T|+e(S.Y-T)—k —k|S|+k
=6(5,T) < 0.
This contradicts the minimality of S| j(¥Y—T). Thus we obtain (3.1).

Similarly, suppose there exists y€Y—T such that e(S,y)=k, and let
T':=Tyly}. Then 6(S,T')=<6(S,T) <0, contradicting the minimality of
S J(Y-T), and (3.2) follows.

Since G is a bipartite graph, |N(S)| < |T|+e(S,Y—T). By the fact that
6(S,T) < 0and (3.1),

IN(S)| <= |T| +e(S,Y-T)
<IS|+(1=De(S.Y-T)
1
<151+ (1-Dk-1)5]
1

= (k— — .

(k—1+ 15|
Thus (3.3) is obtained.

If |S|=1(modulo k), then immediately (3.4) holds. By the fact that’
5(S,T) <0, S #¢. Hencelet |S|=i+r (modulo k) where 1 <7 <k—1 and R be
a subset of S such that e(R,Y-T) is maximt!tm over |R| =7 and RCS. Let
d := minfe(z,Y-T),xe€RkR} and M := S—R. Then we have

e(z,Y-T)=d forallzeR
e(z'\Y-T)=<d forallz'el v v ,
and by (3.1), d =k—1. On the other hand, |N(M)| < |T|+e(M,Y-T). There-
fore,
IN(M)| < |T| +e(HM,Y=T)
<|S| - -’t—e(S,Y—T) +e(H,Y-T)

= (1—;—)e(M,Y—T) - }c—e(R,Y—T) +15]
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< (1= M| = =d|R]| +[S]
= S{k-1)| M| - R} + |S]

(k=1)? k—1 '

= =Ml - SR+ M+ |R]
(14l 1

= (k=1+ D) M | + R

[ 1
N et~k

and (3.4) follows. =

73

Proof of Theorem 2. We assume that (X,Y;E) has no complete k-matching

from X to Y. By Theorem B, there exist SCX and TCY satisfying 6(5,T) < 0. We

may assume that the situations of (3.1) — (3.4) occur. By the assumption (2.2)

and (2.3), we have N(M) = Y. Since MCS, also we have N(S) = Y.

Let z := min{e(S.,y);y€Y-T}. Note that Y—T#¢, by the assumption that"

(5(5,7‘) < 0. Hence z is well-defined, and 1 < z < k—1, by (3.2) and the fact that

[N(S)|=Y. The neighborhood of S, that is Y, is at most |T| + ;—e(S,Y—T).

Hence by (3.1) and the fact that 6(S,T) < 0,

Y] = IN(S)I = |T| + S-e(S.Y=T)
<IS|+ (=D (S.Y-T)

<151+ (5= Dk-1)IS]|

_ kP—k+z

e |S].

(1)

Let y, be a vertex of Y—T such that e(S,y,) = z, and let Sp:= S — N(y,).

Since N(So)CY — {yo}, So cannot satisfy the conclusion of (2.3). Hence

_k._lyl - 1.
+1 ‘

Sol =|S| —2z =<
1Sol = 15| =2 = =

By (1) and (2).,
k(k_—1)(z—1)|5| < z(;-1)(k2—k+1)

z
k-1

1
[S| < (k 1+k)

()
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1
<k-1+—
k

Thus |S| <k and therefore |M| = 1. But (3.4) and the fact that N(M) =Y
[ 1

imply that |Y| = |N(H#)] <Ik—1+ 1= k. This contradicts the assumption that

|Y|=k. «

Theorem 2 is in some sense best possible. The graph:(X,Y;F) defined as the

following shows that the condition |N(M)| = (k—1+ —;—)]Ml of {2.2) cannot be

[
replaced by |N(M)| = (Ic—1+,t—)|MII— 1 (see Fig. 1).

X = AyA
where 4 = {@, " \Qgm+1}
A= (G - ,Qn ) n>(k*+k+1)m +2k —1.
Y:=Bycyb ' ‘
where B = {b; | Isi<km +1, 1<j<k -1}
C={cy " ,Cn) . |
D=i{d,, - .d) (k=1)(km +1)+m +l=n.

E = {a;by; | 1=ikm +1, 1=j<k -1} () (4XC) U (4'XY).
Moreover, in this graph all but one # ( = 4 ) satisfy (2.2).
Besides, the conditions (1.2) and (1.3) of Theorem 1 cannot be unified to the

condition:

|N(#)] = min{| Y[,(k—u}c—)w]g  for all MCX, (1.4)

The graph in Fig. 2 satisfies (1.1) and (1.4) but has no c.ofnplete k-matching from
Xto?. |

But the graphs which satisfy (1.1) and (1.4) and have no complete k-

matching from X to Y have a similar induced subgra’ph. Finally:, we prove the

next theorem.

Theorem 4. Suppose k = 2. And also suppose that G = (X,Y;E) is a bipar-

tite graph such that || < |Y| and |Y| = k. If G satisfies (1.4) and G has no
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complete k-matching from X to Y, then there exist SCX and TCY such that
(4.1), (4.2) and (4.3) hold.
(4.1) |S|=k|T] + 1.
(4.2) | e(S,y)=1for al;er—T.
(4.3) e(z,Y-T)=k—-1 forallzesS.

Proof. Since G has no complete k-matching from X to Y, we may assume
that we héve (3.1) - '(3.4). Therefore we have N(S)=7Y. Let
z := minf{e(S,y);yeY-T1. Sinée Y-T#¢, z is well-defined, and - 1<z <k-1.

Now, we have



k-1
k-1
km +1
,’ 7,
\ ’/// &
Y/ |
<2/ N0 | k-1
TN |
///ﬂ{') >
, A —< )
l 7 X
( Osl=m +(k -2)(km +1) ) m

Y] = IN(S)| = IT| + -e(S.Y-T)

k?—k+z

< P

IS 1.
Let yo€Y—T such that e(S,y,) =2, and let Sg:=5 — N(y,). Since

N(Sy)CY — {yo}, we have

1 1
Y] =12 [N(So)| = (k=141 So] = (k=1+2)(|S | -2).
By the above two inequalities, we have

k2k+2z

1
kz IST> Y] 2 k-1+9(]5]-2) + 1,

(k?-k+2)|S| > z(k2~k+1)(|S|—z) + kz,
23(kP—k+1) —kz > (z-1) k (k-1)|S],

Since |Y| =k, |S|= |M|=k+1. Hence



23(kP—k+1) —kz > (z—-1)k(k—1)(k+1),
2¥3(k?—k+1) — zk3 + k(k?*—1) > 0.

We claim that the only situation that z = 1 makes this inequality true. Suppose

2>2, and let fk(z)bzz 2%(k®—k +1) — zk3 + k(k?®—1). Then, since k>z+1=3,

4(kP—k+1) — 2k3 + k (k*-1)
—k3+ 4k? -5k + 4
—k(k—2)°—k +4<0,

Fe(R)

and

| Fellke—=1) = (k—1)2(k?—k+1) — (k=1)k3 + k (k?®-1)
=(k-1){1 — (k—-1)(k-2)} < 0.

Hence, 2=z =k —1 implies f (2 )<0, which is a contradiction. Thus the claim fol-

lows.

Define

U:={ueY-T:e(Su) =1},
W=fweY-Te(Sw)=2}=Y-T-U.

Since z=1, U#¢. We choose u€U arbitrarily, and let x, be the only neighbor-

hood of v in S. Now, define «, § and y as the following non-negative integers

(especially, note that y = 1).

a:= Y (e(S,w)—-1),

wel
B:=Y(k—1—-e(z,Y-T)),
z€eS
Cyize(zy,. U).

By these definitions, we have

Y] = |N(S)| = |T| +e(S.Y=T) —a,
e(S.Y-1) = (k-1)|S| - 8

Y] =72 IN(S—{@})] = (k=1+(1S |-1).

By the definitions of « and §, -

a=e(zx,, W),

=k —1—-e(z,,Y-T).

(3)
(4)

(5)

(6)
(7)

77
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Thus we have

a+pB+y=k-1. ' ' (8)
By (3) and the fact that 6(S,T) <0,

Y] < |S]| + (1——;:—)e(S,Y—T) ~a

And by (4),

1 1,, ‘
Y] <(k-1+ 95| —a = (1-198. (9)
Thus with (5), we have
a+y+ (k=1)(a+B+y) <k®—k + 1.
If a+8+7y=k, we have a + y < 1. This contradicts the fact that y= 1.

Therefore in (8), hence also in (8) and (7), the equality holds.

From the equality of (7), we have e(2,Y—T) =k—1forallzeS — {z,]. From
the equality of (8), for all weW, e(S,w)=2 and z,eN(w)NS, and hence
a=|W]|.

First we claim that W = ¢. In case of ¥ =2, W = ¢ is an immediate conse-
qu;ence of (3.2). Thus it suffices to show the claim in case of k = 3. Assur_ﬁe
W+#¢ and let wgeW. Since |S|=k+1=4 and e{S,wy) =2, thare exisis
z,€S — N(w,). We note that xz,#=z,. Because of the fact that
e(zg, Y—T)=k—1>a = |W]|, there exists ve UNN(z,). Especially v#u, and the
only neighborhood of v in S, say z,, is zo. Hence the similar arguments lead us
to the fact that z, e N(w)N\ S for all weW. But z, =z £ SN\ N(wy). This is a

contradiction. Thus we have the claim, and therefore (4.2) holds.

Next we prove (4.3). It suffices to show that e(;t:u,Y—T) = k—1. Since
|S|=k+1=3, we can take z'€S — {z,}. From the above arguments, we can
regard z' as the only neighborhood in S of some vertex veU = Y—T.. Then by
the similar arguments, e(z,Y—T) = k—1 holds for all z€S — {z’']. Especially

e{z,,Y—T) = k-1 holds.

_10_



The results given above show that a =8 =0 and 7 = k—1. Hence by (5) and
(9)1
(k=14 D)|S| - +-=< | Y] < (k=1+ D[ 5|
k k k ’
and so

71 = (k-1)]s] + 2L
This implies (4.1), for we have |Y=T| = (k—1)]|S| from (4.2) and (4.3). And we

complete the proof. =
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