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Some results on reflection principles in fragments

of Peano arithmetic

Hiroakira Ono ( Hiroshima University )

M B OH OB

This is an abstract of the paper [3]. Let Izk denote the
fragment of Peano arithmetic, whose axioms are Peano's axioms

with induction restricted to Zk—formulas. | We will develop a

proof-theoretic study of various principles of fragments of
Peano arithmetic such as reflection principles, transfinite
inductions. well-ordering principles and large set principles,

and compare their proof-theoretic strength.

Let Prk(x) be a canonical representation of the provability

predicate for IZ Let 1%, + Tm be the arithmetic obtained

kK® K

K by adding all true ﬂm—sentences as additional axioms.

In the following. the function symbol # represents the Godel’'s

from IZ

B-function. So. B(x.i) = y means that y is the i-th element of

the sequence coded by X. We will define ordinals mn by oh = ]
“n |

and o1 T Q. For each positive integer n. let <n be a

canonical primitive recursive well-ordering of natural numbers
of order-type @ - Sometimes. we will omit the subscript n of
<n' when no&confusions will occur. For each natural number X.
let lxln denote the ordinal « represented by k in the well-

ordering {n' By abuse of notations. we will often write the
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ordinal o in place of X, when o = lxln.

We will consider the following seven principles:

| RFNz (Izk) ( Zm-un{form reflection principle of 1%, ):

k
m

Foruany Zm—formul& Q(xX)., VxPrk(rw(i)1) D Vxe(x).

istency of I

2)  Con( izk + T ) con

3) Tl [mn3 ( 7

[5al

K + Tm 3.

ansfinite induction up to e, for W -formulas ):

[As}
=5

m
For any ﬂm—formuzg Wix).

Yo < mn[ vy( VB( B <n Y 2 ¥(B) ) D ¥(y)r ) o () 1.

4) WOP_ le.1 ( well-ordering principle of o for T -formulas ):
Zm n n m

Let 8 be a formula Containinq'at least two free variables
and let F(8) denote the formula VVx3lyo(x.,y). Then. WOP: [wn]
m
is the schema: for anv Zm-formula 8 containing at least ftwo

free variables,
F(8) o Ix3y3z( 9(X.¥y) A B(x+1.2) A ( Z <n vy ) ).

Rdughly speaking. WOPZ [wn] means that if a function f : N — v

n
m

is represented by some Zm—formula then the sequence f(0), f(1),

f(2)y.... is not strictly descehdinq with respect to <n‘

5) LSPZm[mn] ( mn-Largg

w

et principle for Zm-farmulﬁg ).

Let [x.y]l denote the set { z { ¥ £z £y } of natural
numbers. Suppose that 6 is a formula containing at least tuc
free variables. Then. SIF(8) is the formula

anlye(xly) A VYXYYYZO ( BIX.y) A B(x+1.2) ) Dy < z ),
which means that 8 is the graph of a strictly increasing
function. Let {vy}(x) be the fundamental sequence defined in

[(11. Let fsn be the function symbol which represents the
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primitive recursive function fsn such that fsn(u,x) = w 1if and
only if {Iuln}(x),= len. Now, for each o <’wn and each
formula 6. we will abbreviate the followinq formula
3z[ 8(z.0) = o A Vu(y-x)3udt( B(z.,w) = u A B(xX+u.t)
A B(zousl) = f5,(U.t) ) A B(z,y=x) = 0 1,

to Ix.v]l is («.@)-large’. Then, LSP [mn] is the schema;

m

™

N

3t two free variables.

&

for any Zm-formuéa 8 containing at lec
SIF(8) o VYo < mnVXEy( [x.,v] i35 (x.8)-large ).

Clearly. LSP [wn] means that if a function f is represented by

0 ’
some Zm-formula then for any « </mn Vx3ay( IX.yl is (a.f)-
large ) holds. Here. we say that [X.y]l is (a.f)-large if the

set f(lx.y]l) is a-large ( see [2] 1.

*®

6) WOP o, 1 ( well-ordering principle of w, for T _-~definable
. n n m
m
funections )3 Fov any Em-formuza 0 containing at least two free
varicolas.

Prm(rF(G)1) o IAxIAyIAz( (XK. v) A B({x+l.2) A 0 Zz < 'y ¥ ).

* , . . ) L
7) LSP o1 ( v _~-large 3¢t principle for Z -definabls
z n n m
m :
unctions J): For any Zm—formuza 8 containing at least two free

Prm(fSIF(ell) 5 Vo < manEy( [x.vl is (x.0)-large ).

Thern. we have the following theorems{

THEOREM 1. Let m be positive integer
= i {1z ‘ T | .
I Iz, + RENg  (IZ ) F I“‘Lwn+l3 for n >0
m+ 1 il ‘



2) The following three theories are 2quivalent (n =2 0 ):
a. Izl + TIn.[mn+1].
i
b IZ  + WOPZ [mn+1]‘
m
c. Izm + LSPZ [mn+1]‘
m
3) ILI +,TI“ [mn+1] F Izm + RFNZ (Izm+n-l) for n >0
m M
4) The following four principles are eqiivalent in IZm
(n >0 ):
G RFNZ Iz n-1) 5. Cont 2 in-1 Ty 0
- * o *
s LSP 5 [wn+1] ) WOoP 5 {®n+1]'
0 m
THEOREM 2. 1) For each m >0, {Zm F RFNZ ({Zm_13.
m+ 1
2 Forv onaan . ey - i ‘
2) For each kK > 0 and m = 0. ILk + Tm-F RFNZm(IZk) f IZk
T i3 consistent.
m

To prove Theorem 1. 3), we need to introduce Skolem
functions. and reduce the original fragments of arithmetic to
fragments in the extended language, having weaker mathematical

induction. ( As for details, see €3 of [31. )

In the following, we will give a proof of Theorem 1. 2).

We assume the familiarity with Ketonen and Solovay (1] and

Kurata [21. We remark that both implications ¢. ==> b. and
b. ==> a. can be proved in the same way as Theorems 2.5.5 and
2.5.6 in [2]. In either case. we need the Zm—mat%ematicwl

induction Indzm or the Zm—Least number principle Lzm. which is

%
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equivalent to Indzm. To show this, we will give here a
detailed proof of the implication b. ==> a.
Let T be the theory obtained from IZm by adding
(1) VX( Vy( y <n X D @ly) ) 2 ¢(x) )
and
(2) dz "e(z)
as additional axioms, where @(z) is a Hm—formula. - We can

suppose that ¢(z) is Vuy(z.u) for a Zm -formula ¥(z.u). Then,

-1
it follows from (1) that ’
(3 T F ¥xVudyavl Wi(x,u) o ( ¥ <n X A ﬁw(y.vi ) 1.

Let J be the primitive recursive pairing function defined by
JIX.y) = —%—[(x+y)2+3x+y] and both K(z) and L(z) are primitive
recursive projection functions satisfying that
i. J(K(z).L(z)) = z,
iit. K(J(xX.y)) = x and L(J(xX.y)) = y.
Now. define 9(z) by -¥(K(z).L(z)). Clearly, 6(z) is a L
formula. From (3) it follows that
T F Vz3uwl 6(2) > ( K(w) <n K(z) A 8(w) ) ).
Let t(z.,w) denote the formula
0(z) o  K(w) <n K(z) A 8(w) ).
Then. &(z.,w) belongs to Am' Since
Jwg(z.w) > Fwl g(z.w) A Vuwg(z,u) )
follows from LZm,
T F VzIlw( &lz.w) A Yukwg(z.u) ).
Similarly. since T F 3w6(w) and moreover 3Jwd(w) > Iw( G(w) A

Vu<wagiu) ) follows from Lzm. we have

TF FTwl B8(w) A Yuw8(u) ).

i
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Now define T -formulas t(x.t) and o(%.5) by

i

tix,t) = 3zl Iy 8(z.0) = y A 8(y) A VWy8(uw) )
| A VUKxAvaw( B(z.u) = Vv A E(v.W) A Vr<wig(v.r)
A Blz.,u+l) = w ) A Blz,x) = t 1.
and

o(X.,s)

It Tix,.t) A 5 = K(t) ).
( Notice that T and o represent the graphs of functions g and f
in the proof of Theorem 2.5.6 in [2]. respectively. ) By using
Indzm. both F(t) and F(o) are provable in T. On the other
hand.

TFEF (0o(xX,3) Ao(x+1,8") ) 2 3t3t°'[ s = K(t)
A s’ = Kt A tix,t) A t(x+1.t7) A C(E.L°) 1.

Clearly. ¢g(t.t') implies 0O(t) o K(t*") <n K{t), i.e., 8(t) o

s’ <n s. ~ But by using Indzm. TF Tix.t) 2 0(t). Therefore.

T F ¥VXV¥sVs*'( ( o(xX,8) A o(x+1l.5'}) ) o s° <n 5 ).
Hence, WOPZ [mn] for ¢ fails in T. By taking the contra-

m
position. we have
Izm + wOPZ [mn} F TIW [mn].
m m
Next, we will show that Izm + Tlnm[mn] + LSPZmLan. We

remark here that TI" [mn] is equivalent in 121 to the schema
m ,

(4) Axf(x) o IyLD Yly) A ¥zl z <n y D Wi(z) ) 1.
where ¢¥(x) is a Zm—formula. Let T be the theory obtained from
Izm by adding the above schema (4) and the formula SIF(8) for a
Zm—formula 8, as additional axioms. Let o be an ordinal such
that a < @ - For a given number x, let G*(s,v) denote the

following Zm—formula:
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Az[0 B(z.0) = o A Vu<sIuat( B(z.w) = u A B(x+w,t)

A Blz.,w+l) = fsn(u,t) ) A Blz.s) = v 1,

Clearly, 6*(5,0) means that [X.x+s] is (a.8)-large. When a =
it is obvious that T+ 3507 (s,0). So. suppose otherwise.
Let ¥(r) be 3s3v( 8%(s,v) A v < T ). Then, T b 3r¢(r).
Thus, by the schema (4)

TEF Arl ¥(r) A Vz( 2z <n r o Wiz) ) 1.
Take such an r. Then, 3Js3v( 9*(s,v) AV <n r ). Take also

such s and v. Then, "¢ (v) holds. Hence

(5) Tk Vs'Wy'( 87(s'.v') 27 v < v ).
On the other hand.

T + Vs'awe*(s',w)

by using Indzm. In particular. T F 3w (s+l.w). Thus we
have

T b 3Is3vIw( 9*(s,v) A 6*(s+1,w) AW <n v ) )
by (5). ‘But, fundamental sequences have the property:

0,

T F VsVuvu( ( 87(s.v) A 85(s+1.w) A O < V) o w <, v

n
Hence, T F 359*(5,0). Therefore,

Yo < mn ¥x3y( [x.y] is (x,83-large )

is provable in T.

Remark here that Iz, + TITT [l F Lzm if o < «o. Thus.

1 m

IZm + Tlnm[mn] is equivalent to IZ1 + TI"m[wn] when n > 0.

Therefore. we have Theorem 1. 2).
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