The statement AN is equivalent to the statement $n(\beta \omega \setminus \omega) > c$ (Logic and the Foundations of Mathematics).

Author(s)
Kamo, Shizuo

Citation
數理解析研究所講究録 1986, 588: 20-24

Issue Date
1986-04

URL
http://hdl.handle.net/2433/99424

Type
Departmental Bulletin Paper

Text version
publisher

Kyoto University
The statement AN is equivalent to the statement $n(\beta\omega \setminus \omega) > c$

Shizuo Kamo (Univ. of Osaka Prefecture)

1. Introduction and results. A filter \mathcal{F} on ω is said to be ample, if there is an infinite subset a of ω such that, whenever $x \in \mathcal{F}$, $a \setminus x$ is finite. A filter \mathcal{F} on ω is said to be weakly ample, if for each free ultrafilter (uf) \mathcal{U} on ω, there is a function f on ω such that $f(\mathcal{U}) \supset \mathcal{F}$. Let us denote by AN the statement: "every free weakly ample filter on ω is ample."

In [2], we showed

PROPOSITION 1.

(i) AN implies the existence of c^+ Ramsey ufs on ω, where c denotes the cardinality of 2^ω.

(ii) The existence of c^+ Ramsey ufs on ω does not imply AN.

(iii) P implies AN, where P denotes the statement: "every free filter on ω generated by a set cardinality less than c is ample."

It seems to be interesting to consider how strong the statement AN is. As to this, we first show

THEOREM 1. AN is equivalent to the statement that $\beta\omega \setminus \omega$ can not be covered by a family of c nowhere dense sets, where $\beta\omega$ denotes the Čech-Stone compactification of ω.
Let us denote by \(n(\beta w \setminus w) \) the Baire number of \(\beta w \setminus w \) (i.e. the minimal cardinal of a family of nowhere dense sets covering \(\beta w \setminus w \)). As to the Baire number of \(\beta w \setminus w \), the systematic estimation was given and several consistencies were shown in [1]. In [1], it is shown

PROPOSITION 2 (5.2.V in [1]) The statement \(n(\beta w \setminus w) > c \) does not imply that \(\forall \kappa < c \ (|2^\kappa| < c) \).

Since \(\mathcal{P} \) implies that \(\forall \kappa < c \ (|2^\kappa| < c) \) ([3]), by Theorem 1 and Proposition 2, \(\text{AN} \) does not imply \(\mathcal{P} \).

Define the pseudo-ordering \(<^* \) on \(\omega^\omega \) by \(f <^* g \) iff \(\lim_{n \to \infty} (g(n) - f(n)) = \infty \). A family \(F \) of subsets of \(\omega^\omega \) is said to be unbounded, if there does not exist \(g \in \omega^\omega \) such that, whenever \(f \in F \), \(f <^* g \). Then, it holds

PROPOSITION 3 (4.6 and 4.7 in [1])

(i) The statement \(n(\beta w \setminus w) > c \) implies the statement \(\mathcal{D} \): "every unbounded family of subsets of \(\omega^\omega \) has the cardinality \(c \)."

(ii) \(\mathcal{D} \) does not imply that \(n(\beta w \setminus w) > c \).

By Propositions 1~3 and Theorem 1, the following diagram holds.

![Diagram](https://via.placeholder.com/150)

- 2 -
The only interesting in the above diagram which is not mentioned is whether \(AN + \forall \kappa < c \ (|2^\kappa| \leq c) \) implies \(\mathbb{P} \) or not. As to this, we show

THEOREM 2. \(AN + \forall \kappa < c \ (|2^\kappa| \leq c) \) does not imply \(\mathbb{P} \).

We shall prove Theorem 1 in the following section and Theorem 2 in section 3.

2. Proof of Theorem 1. We first show that \(n(\beta \omega \setminus \omega) > c \) implies \(AN \). So, assume that \(n(\beta \omega \setminus \omega) > c \). Let \(\mathcal{F} \) be any weakly ample filter on \(\omega \). For each \(f \in \omega^\omega \), set

\[
D_f = \{ \mathcal{U} \in \beta \omega \setminus \omega \ ; \ f(\mathcal{U}) \supset \mathcal{F} \}.
\]

Since \(\mathcal{F} \) is weakly ample, it holds that

\[
\bigvee \{ D_f \ ; \ f \in \omega^\omega \} = \beta \omega \setminus \omega.
\]

So, there is some \(f \in \omega^\omega \) such that \(D_f \) is not nowhere dense in \(\beta \omega \setminus \omega \). Take an infinite subset \(a_0 \) of \(\omega \) such that

\[
(\ast) \quad \forall x \subset a_0 \ (|x| = \omega \implies \exists \mathcal{U} \in D_f \ (x \in \mathcal{U}))
\]

Set \(a_1 = f^a a_0 \). Then, by \((\ast) \), it holds that \(a_1 \) is infinite and \(\forall x \in \mathcal{F} \ (a_1 \setminus x \ \text{is finite}) \). Hence, \(\mathcal{F} \) is ample.

Now, we shall prove that the inverse implication holds. The following fact which we shall use in the proof is well-known and easy.

FACT 1. There is a family \(W \) of subsets of \(\omega \) such that

1. \(|W| = c \),
2. \(\forall x \in W \ (|x| = \omega) \),
3. \(\forall x, y \in W \ (x \neq y \implies x \cap y \ \text{is finite}) \).
Assume that AN holds. Let $Q = \{ D_\alpha ; \alpha < c \}$ be any family of nowhere dense subsets of $\beta \omega \setminus \omega$. Let $\langle s_\alpha | \alpha < c \rangle$ be a monotone enumeration of a family W of subsets of ω which satisfies (1) \vee (3) in Fact 1. For each $\alpha < c$, take $f_\alpha \in w^\omega$ such that $f_\alpha : \omega \rightarrow a_\alpha$ one-to-one and onto. Define the filter F on ω by

$$x \in F \text{ iff } \forall \alpha < c \forall U \in D_\alpha (x \in f_\alpha(U)).$$

Then, it is easy to see that F is free and not ample. So, by AN, there is $U \in \beta \omega \setminus \omega$ such that

$$\forall g \in w^\omega (g(U) \not\in F).$$

Then, it holds that, for any $\alpha < c$, $U \not\in D_\alpha$, since $f_\alpha(U) \not\in F$. Hence, $U \not\in U \cup Q$.

3. Proof of Theorem 2. Let M be a countable transitive model of ZFC + GCH. We shall show that a generic extension of M on the poset $P \times Q$ which will be defined below satisfies that AN + $\forall \kappa < c (|2^\kappa| < c) + \neg \diamondsuit$. The poset $P \times Q$ is alike the poset used in 5.V of [1]. Let P be the Solovay-Tennenbaum's poset used for the consistency of MA + $2^\omega = \omega_2$. Define the poset $Q \in M$ by, in M,

$$Q = \{ q ; \exists \alpha < \omega_1 (q : \alpha \rightarrow 2) \}.$$

Let $G \times H$ be m-generic on $P \times Q$ and $\tilde{M} = M[G \times H]$. Then, similar arguments in [1] show that

$$\tilde{M} \models " |2^\omega| = |2^{\omega_1}| = \omega_2 + \text{AN}".$$

We shall show that $\tilde{M} \models \neg \diamondsuit$. Since CH holds in M, it holds that, in M, there is a dense embedding from Q to $P(\omega)/\text{finite}$.
So, we may assume that H is \mathcal{M}-generic on $(\mathcal{P}(\omega)/\text{finite})^\mathfrak{m}$.

Define $\mathcal{F} \in \tilde{\mathcal{M}}$ by

$$\tilde{\mathcal{M}} \models \{ x \in \omega \mid \exists \alpha / \text{finite} \in H (\alpha \setminus x \text{ is finite}) \}.$$

Since $\tilde{\mathcal{M}} \models |H| = \omega_1$, it holds that

$$\tilde{\mathcal{M}} \models \{ \mathcal{F} \text{ is an } \omega_1\text{-generated free filter on } \omega \}.$$

Moreover, since H is not in $\mathcal{M}[G]$, we have that

$$\tilde{\mathcal{M}} \models \{ \mathcal{F} \text{ is not ample} \}.$$

Hence, $\tilde{\mathcal{M}} \models \neg \mathcal{P}$.

References

