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0. Introduction

Recently, there have been publlshed a number of 1nterest1ng

W

papers on map generatlng systems. (For example, see papers in
[1] and [2].) They also include the Cell division sysStems which
are motlvated from a biological p01nt of view.

A map is deflned comblnatorlally by Tutte [3]

In [4], we proposed two map generatlng systems based on
string generation.} The flrst one 1s blnary, propagatlng map OL
system w1th makers (mBPMOL systems) The second one is blnary,
propagatlng map IL system with makers (mBPMIL systems) ‘Then, we
consider the follow1ng de0151on problems (1) and (2) on these
systems: _ _ ‘ ‘ ' . | ‘ ,
(1) Whether or not an arbltrary mBPMOL system 1s deterministic ?
(2) Whether or not an arbltrary mBPMIL system lS determlnlstlc ?

These decrslon problems were solved 1n the paper [4]. Also, in
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the same paper the decision problem of stability of these two
systems was solved. It is not so difficult to show that the
membership problem of prcpagating systems is recursively
solvable. ‘

In this paper, we shall consider an extension of binary,
propagating map OL systems with makers. We propose map 0L
systems with makers (mMOL systems). The systems are
nondeterministic, and also neither binary nor propagating. Then,
we shall examine the membership problem of the mMOL systems. As
an interesting result, we show that ;his\decision problem is
recursively unsolvable. The main purpose of this paper is to
prove this fact.

We assume that readers are familiar with the basic

definitions and notations of map generating systems.

1. Definitions .
We give here some definitions and notations. They are

almost the same to those of [4].

Definition 1.1 A binary, propagating map 0L system with makers
(mBPMOL system) is a quadruple ( &, {Jﬂ T,+rq(,)},P,S), where
(1) X is a finite edge alphabet, '

(2) P is a finite set of edge productions,

(3) S is a starting map:

Here, edge productions are of the form A —> a, where A is a
member of L (an edge label) and X is a sequence of members of
Y and signs +, -, and of markers l, T and matched parentheses.
In this case, only one symbol appears within a closed
parentheses. For instance, the rewriting of an edge represented-
in Figure 1 is written as the edge production:

A — D*c™ } (E7)BM.
The makers |, ? indicate the place and the direction (to the
left or right of the original edge according its ofientation) in
which a new edge can be inserted. The edge symbol and sign

between parentheses associated with the maker indicates the label.



207

and orientation of the new edge ("+" if the orientation-agree

with the arrow, and "-"

if it is opposite).

In these systems, a derivation step consists of the
rewriting of all the edges surrounding a given wall (a wall means
a cell in the two-dimensional case), of finding
the makers pointing inwards into the wall, and of inserting one
new edge if there are at least two makers with matching labels
and orientation present. The insertion of a new edge is uniquely
determined if there are exactly two such matching makers, and the
insertion is nondeterministic if there are more than three such

makers.

Definitions 1.2. An mBPMOL system is deterministic when all

derivation steps are deterministic. Otherwise, an mBPMOL system

is nondeterministic.

Deterministic systems are a special case of nondeterministic
ones. in general, mBPMOL systems mean nondeterministic mBPMOL
systems. When we need Eo distinguish those two systems,
deterministic and‘nondeterministic'ones are denoted by DmBPMdL
and NmBPMOL systems, respectively.

We now extend mBPMOL systems as follows:

Definition 1.3. A map OL system with markers (mMOL systems) G
is a quintuple ( TV {g} , { y,t.,+,-,.(,)Y,p,Ss, A, where

(1) ¥ is a finite edge alphabet, '

(2) &€ is the blank symbol which is not in ,

(3) P is a finite set of edge productions, which satisfies the
following conditions: |
Edge productions are of the form A — & , where A is a
member of Z and & is a sequenceiof ZLJ{E} and signs,
of markers and matched parentheses,

(4) S is a starting map,

(5) A is the empty map.

The meaning of productions is the same to that of
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Definition 1.1, except the case containing § . Productions
containing &€ are as follows: Let the production be A = § |
Then, A is erased and two end points of A become a point. If an
edge labelled A has only one vertex, then this‘vertex remains (if
it is a part of another boundary), or it goes to A. For two or
more A's having the same end points, this process is done
nondeterministically. We give some examples of applications of
A —> & .

By applications of A= §, B==>D*, C—~=E~ to the map of
Figure 2a, we get a new map of Figure 2b. Also, by applicationé
of the same rules to the map of Figure 3a, we get
nondeterministically one of the maps shown as in Figure 3b-c.
That is, one of A's is erased and both of its ends become a
vertex, and then the A disappears. _ ' ‘

For a submap surrounding with edges labelled with A, the
same situation occurs. For example (a case of existingvtree
edges having label A), by applications of A= § , B=—>G*, C=HT,
D—>K* to the map in Figure 4, we get nondeterministically one of
the maps shown in Figure 5a-c.

Derivation steps of mMOL systems are also the same to
mBPMOL's. A derivation step of mMOL systems consists of the
rewriting of all the edges surrounding a given wall, of finding
the makers pointing inwards into the wall, and of inserting new
edges, if there are at least two markers with matched labels and
orientation present. 1In this case, there may be more than one
inserted if there are four or more matching mérkers. For
instance, let Figure 6 be a configuration obtained after
rewriting of all edges. From this configuration, we get one of
the maps in Figure 7. ,

Deterministic and nondeterministicvcases of mMOL systems are
defined by the same way to the mBPMOL systems.

In mMOL systems, it happens that a wall disappears. An
example is given as follows: |

By applying production rules A—>A*, B—>BY, C—> &, we have
the derivation represented in Figure 8. Thus, mMOL systems are

generally nondeterministic. and also neither binary nor
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propagating.

2. Membership problem

In this section, we consider the membership problem of the
mMOL systems. it has been known that the usual OL system has the
decidability result for its membership problem. In contrast with
this fact, the menbership problem of our map oL systems with
markers is recursively unsolvable. As the usual technique to
prove the unsolvability, the idea used here is based on the
halting problem of Turing machine. Exactly speaking, we use the

2—systems

result of the meeting problem of the finite causal w
(see [5]).

The meeting problem (A) of finite causal w2

-system has been
given as follows:

(A) To decide, for an arbitrary given finite causal w2

-system
with one input symbol, whether or not it will meet with a
given sbecial state under starting from a given initial
state.

In [5], we proved that this decision problem (A) is unsolvable.

We use this result to prove that the membership problem of mMOL's

is recursively unsolvable. ,
Before the proof, we give meanings of some notations used

2—systems,

below. Let us assume that |Q|=t. In finite causal w
all squares in the first guadrant have been given in advance. An
mBPMIL system could build these squares by making use of
interaction I, as mentioned in [4]. However, an mMOL system can
also build those squares nondeterministically, as described
below. In the following notations, h, v, u, and r correspond to
"horizontal", "vertical", "upper“, and "right", respectively.
Also, D, E mean "odd" and "even" in the horizontal direction from
the (1,1)-square. As edge labels, we use gquadruple (qi,u,w,n),
(q,r,w,n), ((qi,qj),u,W)n), where i=1,...,t, w=D,E, and n=0,1,2.
As .seen in the following explanation, gq; of (gj,r,w,n)
corresponds to a state a; (of the finite causal u)z—system) of
the under square of this edge label. Similarly, aj of (qi,r,w,n)

corresponds to a state g; of the left square of this edge label.
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In addition to these edge labels, we use synbols such as dg» T

Vyr hg, by, (vg,n), (hg,n). These meaning is possibly under

stood from Figure 9-14.

Lemma 2.1 One can define an mMOL system that constructs a map
corresponding to the two-dimensional cell space spread over the
first quadrant.

Sketch of the proof:

As exact proof of this lemma is complicated and tedious,

So, we give a sketch of the proof. As mentioned before, an ideg

2—system in which the

is based on simulation of a finite causal w

two-dimensional cell space is constructed. Since an mMOL systenm

cannot get the neighboring information, it proceeds by guess.
Now, we consider an mMOL system

c=( Su{e} , {,L,T,+,=,(,)},P,S,7\) satisfying the

conditions:

(1) § consists of all symbols which appear in Figure 9-14, and
in the following P.

(2) P consists of all rules which are necessary for derivations
‘as shown in Figure 10-14.

(3) S is the map shown in Figure 9.

Derivations by G are very lengthy and for this reason omitted

here. The first step is shown in Figure 10a-b. Notice that, in

Figure 7, gqq of (gqq,u,D,2) and gy of E(qz,u,E,Z) are

SETECEE &z

nondeterministically chosen. But, qy ofls(q1,u,D,2) is

determined from g4 of (qgqg,u,D,1) by the corresponding finite
—

2

causal @ “-system and also g, of (dp,u,E,2) is similarly

determined. The next step is shown in Figure 11. Tﬁen, we get
the maps in Figure 12 and 13. Notice here that, in Figure 13, dq4
is determined from (g,,93) by the corresponding finite causal
a)z—system. By repeated these processes, we get the map shown in

Figure 14. Therefore, we get this lemma.



The G of Lemma 2.1 could construct a map which corresponds
to the two-dimensional cell space. 1In this case, labelling of
edges similates the state transition of the corresponding finite

causal (pz

-system. This is done by guessing. By this guessing,
however, G generates also the map shown in Figure 15. We want to
exclude such a map. By making use of this illegal map, we prove

the following theorem. .

Theorem 2.2. | The membership problem for mMOL systems is

recursively unsolvable.
Proof: Let us consider an mMOL system which can simulate a

finite causal uJZ

-system. This is definable by making use of the
mMOL system of Lemma 2.1. Because the mMOL system of Lemma 2.1
was defined such a way that its edge labels correspond to states
of finite causal cuz—system. Here, we notice again that the mMOL
system generates illegal maps.  to characterize this illegal map,
we extend the mMOL system of Lemma 2.1 in such a way that it
generated illegal edge i

This illegal edge i_, is obtained by

connecting between a "V;itidal"'odd edge and a fLorizontal" odd
edge (or a "vertical" even edge and a " horizontal" even edge).
" In this case, to obtain this illegal edge the makers are put for
consecutive two steps sfter generation of edge labelled with 0.
Thus, we get an illegal edge as shown in Figure 16. Further, we
extend this mMOL system in such a way that it satisfies the
fillowing conditions:
(1) All edges except illegal edges and the special edge
corresponding to the special state of the problem (A) of a

2—system are erased after‘thfee steps from

finite causal w
generation.
(2) The special edge generates a special map and the illegal:
edges generate the extra maps. o
This extension of the mMOL system is always possible, although
the definition is complicated. Here, we consider legal map.
Then, we ask if a map which contains the extra map and all other

edges are erased is generated by the extended mMOL system.
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Obviously, this question is equivalentto the meeting problem (A)

of finite causal qu

-system. Therefore, we get this theorem.
3. Remark

We have proposed mMOL systems which are neither propagating
nor binary. These systems seem to be interesting since they
include the possibility of developmental sequences with certain
walls or edges disappearance. There are further problems on
relationships between the mMOL and map OL systems with other
controle devices than markers (e.g., those in [6]) for division

determination.
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