~
EAR]

(O
goooobooooo

5910 1986 O 30-44

Applications of a Subset Generating Algorithm to

Base Enumeration. Knapsack and Minimal Covering Problems

Ivan Stojmenovic

Institute of Mathematics, University of Novi Sad,
dr Ilije Djuricica 4, 21000 Novi Sad, Yugoslavia
= JIl iIF 8, (Masahiro Miyakawa)

Electrotechnical Laboratory, 1-1-4 Umezono,
Sakura-mura, Niihari-gun, .Ibaraki 305, Japan

We modify a backtrack procedure for lexicographic enumeration of all
subsets of a set of n elements proposed by I. Semba (J. of Algorithms
5, 281-283 (1984)). On the basis of this procedure we give an
algorithm for both determining of all bases consisting of functions
from a given complete set in a considered subset of the set of
k-valued logical functions and for enumeration of all classes of bases
in the subset. We use the lexicographic algorithm also for solutions
of Kknapsack and minimal covering problems. A cut technique Iis
described which is used in these algorithms to reduce the number of
examined subsets of {1.....nl.

1. GENERATING ALL SUBSETS OF {1.....n} IN LEXICOGRAPHIC ORDER

In this Section we consider the problem of generating all r-subsets
(subsets containing r elements) of the set {(1.2.....,n} for 1=r=n and
for 1=r=m=n. We assume that each subset will be rebresented as a
sequence a;a,...a, where 1=a,<...<a.=n.

Recall definition of lexicographic order of subsets. For two subsets
a=(ay....,ay) and b=(b;....bgy), a < b is satisfied if and only if there
exXists i (1=i=q) such that a;=b; for 1=j<i and either a;<b; or p=i-1.
This order has an important property that enables simple calculation
with r-subsets.

Ehrlich [2] described a loopless procedure for generating of subsets
of a set of n elements. A procedure based on Gray code for the same
problem is given in [131 Also, in [131 an algorithm for generating
all r-subsets (1=r=m=n) in lexicographicis order is proposed. Semba

[181 impoved the efficiency of the algorithm. We will modify his

algorithm by presenting it in PASCAL-like notation without goto
statements. Application of the algorithm for minimal covering problem
results in another modification of the algorithm in the case
1€r=Em=n. ' ‘

The lexicographic enumeration of r-subsets goes in the following

manner (for example., let n=5):

1, 12, 123, 1234, 12345,

1235,
124, 1245,
125,
13, 134, 1345,
135,
14, 145,
15;
2, 23, 234, 2345,
235,
24, 245,
25;
3. 34, 345,
35,
4: 45'

5.

The algorithm is in “extend” phase when it goes from ~"left” +to
"right” staying in a row. If the last element of a subset is n then
algorithm shifts to the next row. We call this phase "reduce” phase.

Every subset of {1.....n} is represented in the algorithm below by a
sequence jp...,J,. 1=r=n, 15j,<..<j.=n.

First we give algorithm for generating all r-subsets for 1=r=n.
This algorithm will be used in base enumerations.

BEGIN
read(n); r:=0: j.:=0;
REPEAT
IF j.<n THEN extend ELSE reduce:
print out jq....J,
UNTIL j=n
END:

extend=BEGIN j . :=j+1; ri=r+1 END
reduce=BEGIN r:=r-1; j.:=j +1 END .

Note that between any two printed subsets exactly two conditions are
checked: j.<n and j;=n.
The algorithm for generating all r-subsets for 1=r=m=n we modify

with respect to its use in minimal covering problem.

3

BEGIN
read(n);: r:=0; j.:=0;
REPEAT
IF J <n and r<m THEN extend ELSE cut:
prlnt out jip.o....J,
UNTIL jq=n
END:

extend=BEGIN j ., :=j, +1 r:=r+1 END
reduce=BEGIN r:=r-1; j.:=j.+1 END
cut=IF j.<n THEN j.:=j.+1 ELSE reduce

Besides'”extend" and “"reduce” phases we use in the algorithm a new
phase called "cut” phase. The phase will be used when algorithm goes
from some subset to some subset in a lower row (not necessarily in the
subsequent row) skipping several subsets (when the number r of

elements in these subsets is greater than m).

2. FUNCTIONAL COMPLETENESS AND ENUMERATION OF BASES

In this Section we describe an application of our Llexicographic
algorithm to base enumeration for a subset of the set of k-valued
- logical functions.

Let E, = {0....,k-1}. The set of k-valued logical functions, i.e.
the union of all the functions (f [E;*Ek for n=0,1,2,...} is denoted
by Py,. A subset F of P, is said to be closed if it contains all
superpositions of its members (cf. 14,585,186 1. For closed sets F and H
such that FCH (proper inclusion), F is H-maximal set if there is no
closed set G such that FCGCH. A subset X of H is complete in H if H
is the least closed set containing X. If the number d of H-maximal
sets is finite then a subset of functions in H is complete in H if and
only if it is not contained in any one H-maximal set (completeness
condition)(cf. [BD. Investigations of completeness and related
topics., which are usualy called functional compléteness problems are
directly related to logical circuit design. and they have a wide area
of applications in addition to their:mathematical importance.

A complete set X in H is called a base of H if no proper subset of X
is complete 1in -H. A set. of functions F={(f ..., fs} is called
nonredundant in H. if for each i, 1<i<s, there exists an H-maximal set

H;» 1=j=d which does not contain f; while all the other functions f;

(1=1,....s,L¢i) are elements of Hj (nonredundancy condition). From
these definitions it follows that a complete nonredundant set is a
pase. We call nonredundant incomplete sets simply addable. The rank of
a base (addable set) is the number of its elements.

We classify the set H of functions into nonempty equivalence classes
py using all its maximal sets as indicated below. Then we can discuss
the completeness properties in H in terms of these classes instead of
individual functions: if a set is complete (nonredundant), then by
replacing a function in the set by any function in the corresponding
equivalence class yields another complete (nonredundant) set.

The characteristic vector of feH is ¢;...cy where c¢;=0 if feH; and
c;=1 otherwise(1=i=d). Whenever it is possible to avoid confusion we
call characteristic vectors simply vectors. All functions fe€H with
the same (characteristic) vector form a class of functions. For a base
its class of bases is the set of classes of functions for functions
belonging to the base.

The conditions of completeness and nonredundancy of a set of
(classes of) functions F can be conveniently expressed by using
characteristic vectors of (classes of) functions belonging to F. We
can say that a base corresponds to a minimal cover of 1...1 (unit
vector), and nonredundant set corresponds to a minimal covef of some
non-unit vector (in which some 0’s may occur: we except null vector).

We define bitwise or operation Vv for characteristic vectors in the
following way: ‘

(ayp,....ag)viaj.....ag)= (ajvaj,....ajvay).

Criteria for the completeness and nonredundancy of a set a;.....a,

of characteristic vectors are respectively the following:
1. a;V...Vva,=1...1 (completeness) (2. 1

2. a1V...Vaj_'1V ajHV...Var# ajv...Var
for each j=1.....,r (nonredundancy). (2.2)

Thus any set containing null class (whose vector is 0...0) is
redundant. Addable sets are nonredundant. but not conversely.
If we have. a complete list of characteristic vectors for nonempty

classes of functions of a set. we can enumerate all its classes of

4

bases.
As an example. assume a set M contains 4 maximal sets M;. My, Mj M,

"and 6 classes of functions:
1.0011 2. 0100 3. 1000 4.0010 5. 0001 6. 0000 .

For instance. class 1 is the set Miﬂmzﬂﬁsﬁﬁw where i = M\X
(complement set). '

M has exactly two classes of bases: {1,2,3} and (2,3.4.5}. We
consider the class {1,2,3). Bitwise OR for the set results 1111
(completeness). Bitwise OR for the set { 1.2} results 0111, for the set
{1,3) results 1011 and for the set (2,3} results 1100 (nonredundancy).

The set {1.3.4} 1is redundant, because bitwise or for the sets
{1.3.4} and { 1,3} are equal (to 1011).

3. THE LEXICOGRAPHIC ENUMERATION OF BASES AND CLASSES OF BASES

Let d and n denote the numbers of maximal sets and functions or
classes of functions respectively. Then we are given n vectors with
length d. indexed by 1.....n.

To perform an exhaustive enumeration of classes of bases we should
enumerate every r-typle of vectors a;.....a, for each r=2,....d (for:
r=1 it is trivial) and check the completeness (2.1) and redundancy
(2.2) conditions for them (rank r base criteria). However this direct
method does not work, because of too many r-typles to be generated.
Suppose we are enumerating r vectors a,.....,a, for checking the base
criteria. Instead of enumerating whole r vectors and checking criteria
for them, we will inspect i-tuple of vectors a;.....,a; incrementary
for i=1,..., r. and at each i-th stage we will certify (by examining
simple conditions) that this i-tuple can or cannot be included in a
rank r base (addable set). This idea of incremental check can be
conveniently implemented in the lexicographic enumeration of subsets.

The lexicographic algorithm enumerates classes of bases and addable
sets for every rank at the same time. Moreover the maximal ranks of
bases and addable sets are automatically given as a result.

Suppose we are enumerating taken r elements out of n object stored

in an array a consecutively, i.e. a(1),...,a(n). The selected indexes

35

are to be stored in an array j as jy.....Jj. 1=j;=n for each i.
igi=sr. ;

Suppose we are examining taken r-subset a(jy)..... a(j.), where
selected indexes are stored in an array j as jy....J. 1=§1<...<]j.=n

and a(i) denotes a;. There are three possible cases after the
examination: redundant., base and addable set (i.e.
nonbase-nonredundant). The enumeration of subsets in lexicographic
order can be controlled in the following manner. ‘
If a r—-tuple is either redundant or base then it is unnecessary'to
~extend” it to rti-tuple., since adding a new vector to theh will
result in “redundancy”: in the former case the r-tuple is already
redundant and in the latter one it is already “complete”. Hence in
these cases we can bypass the Lexicographic enumeration of subsets to
an appropriate point. The next subset is j jgp ..., J0p Jp.t1 if j.=n;
otherwise it is the next subset in lexicographic order and the bypass
effects nothing. Thus only the remaining addable case can be extended.
As an ‘example we consider the same set M as before. The class 6
(null class) is ommited. In this case n=b6 and d=4. The notions
"extend”. “reduce”. “cut”’, “redundant”, “base” and "addable” we denote

simply by "e”,”"r".”¢”,"n”,’b”, 7a” respectively.

}~a.e: {1,2}-a,e: {1,2,.3}-b.c:
»2,4}-n,¢;

»2,5}-n,c.r;

,3}-a,e: {1,8,4}-n,¢c:

.3, 5t-n,¢c, r;

,4}-n,c:

{1.5}-n.c. r:

{2}-a,es {2,3}-a,e; {2,3.4}-a.e’ {2,3.4,.5)-b.c.r:
{2,3.5})-a, r:

{2,4}-a,e; (2,4,5}-a,r;
(2,5}-a, r;

{3}-a,e; {3,.4)}-a,e: {3,4,5})-a,r;
{3,5}-a, r: '

{4})-a,e; {4,.5)-a, r;

{b}-a.

{1
{1
{1
{1
{1
{1

We can write our algorithm as follows. Let b. be the number of

(classes of) bases of rank r.

30

BEGIN
read n.d, a(i)., i:=1,n: r:i=1; j,:=1:
REPEAT
IF a(jp. ..., a(j,.) is addable
THEN IF j.<n
THEN extend
ELSE reduce
ELSE BEGIN
IF a(jy),...,a(j,.) is a base THEN b, :=b +1;
cut:
END
UNTIL jq=n:
print out b;, 1=i=d
END.

In the algorithm extend. reduce and cut are defined as before.
Note that the last set {(n} are not checked in the atgortihm It can

be easyly done before printing resutlts.

4. REDUNDANCY CHECKS

We describe a technique (called bitwise pivotality checks) to reduce

the computation in redundancy checks.

Suppose we are checking redundancy of a;.....a, (for simplicity we
write a; for a(j;)). For every redundancy check we know that
a;,...,a,.; are included in the tuple which we examined just before

(only a, is a newly added vector). Thus we can assume that we already
have Ry=a;V...Va, for 1=k=r-1 in an array R (for a convenience we add
Ry and assume Ry=0).

The redundancy condition for the r-tuple can be formulated in the
foLLowing way (we use a variable B to reduce the number of bitwise or

operations).

For r=22. ‘ }
R.=R,..;Va, and R._;#R,. (4. 1)
B=BVva,,, (initial B=0) and R,_,VB#R, for k=r-t..... 1 (4. 2)

For r=1.

a; is addable if it is neither null vector nor unit vector (if a,
is

unit vector then it is a base)

3

The program checks (4.1) and (4.2) for k=r..... 1: k22 in this
order: and whenever a condition is not satisfied the check ends
jmmediately with redundancy result.

For a rank r redundancy check we need at most r comparisons and at
most 2r-1 bitwise or operations.

1f the number of components d in vectors a; is less than the number
of bits (usualy 16 or 32) of given computer then it is possible to
make a integer number for each vector a; on the following way:

cit2-cot. .. 12971 ¢y ;
where ¢iCy...C4q are components of (characteristic) vector a; and
operate with vectors in redundancy check as with integer numbers
pecause OR operation between integer numbers' can be defined .as a
machine instruction OR between corresponding components of their
binary notations.

Otherwise bitwise or can be realized with (characteristic) vectors
as an array of d elements. However, in this case there are another
technique called counter redundancy check which is proved faster as
well.

In the check of redundancy we use two auxiliary sequences s;
(1=i=d) and p; (1=i=r). s

position in the vectors p(jy).....p(j._{). The sequence p, ...,p, has

i 1Is the number of units in the i-th
the following property: p;-th position of each.vector is equal to 1
only for p(j;) (it is equal to 0 for the vectors p(jy), 1=t=r, t#i).

The presented lexicographic algorithm.can be supplemented also with
this technique. |

Note that algorithm with bitwise redundancy check using machine
command is proved as about twice faster (when n is about 500 and d is
about 15) than one with counter redundancy check.

Applying this algorithm classes of bases for several subsets of P,
are determined (cf. [121]). '

P, has exactly 18 maximal sets [51] and 406 classes of
functionsl 10, 19.1.

We present the numbers of classes of bases of P3; of each rank in the
following table: '

bases 1 8265 794256 4612601 810474 141124 6239721

The lexicographic enumertion algorithm with this bitwise redundancy
check requires about 16 minutes computer time (the computer FACOM M380
is used). The total number of examined tuples is N=194759642 for
classes of functions sorted according first to the number of units in
the vector and then sorted lexicographicaly within the same group.
Bearing in mind the total number of subsets 2405 we can calculate
efficiency of cut technique in this case. The program generates in the
average 4.41-tuple and consume in the average 2.17 bitwise or
operations to recognize whether it is a base. addable or redundant
(bitwise redundancy check is used). Note that computer time depends on

the order of characteristic vectors.

5. APPLICATION OF THE BASE ENUMERATION ALGORITHM

Kabulov [6] considered the following problem: Given a complete set F
of functions from P, together with the Boolean matrix displaying the
relation "€” between the members of F and maximal sets in P, (i.e
with characteristic vectors of functions in F), determine all bases
composed from functions of the set F. He described a method. using
Boolean expressions. to solve this problem.

We can apply the same algorithm as decribed in Section 3, because
each function is represented by their class of functions. The output
in this case are exactly bases instead of classes of bases. Note that
in the considered application several function may have the same
characteristic vector. However. they compose different bases.

Our algorithm can be used to calculate the number of (classes of)
bases composed from vectors mt+i1.,...,.n at the same time (for a given
m=n), because in the lexicographic order we examine first all subsets
containing vector 1, then all subsets containing vector 2..

In [9,14,20] procedures for determining the number of bases of P,
consisting of n-ary functions are described and computational results-
for n=2 and n=3 are obtained. There exist no formulae for numbers of

n-ary functions in some classes of functions of P, because the number
of n-ary monotone functions in P, is not known. We present another
approach to this problem. It is divided into several subproblems.

1) determination of classes of functions for considered set (not

limited to P,), »

2) determination of the number of n-ary functions in each class.

3) determination of all classes of bases.

4) determination of numbers of bases containing n-ary functions (or

functions with at most n variables). ‘

The methods presented in [9,14,20] use only step 4) for P, Our
method can be applied for solving 3) assuming that 1) is already
solved. Also, our algorithm can be applied for solving 4) assuming
that 2) is solved by applying another procedure. Note that 2) can be
done without solving 1) because for each function f we can determine
corresponding class of functions. It is sufficient to check inclusion
of f in each maximal set of considered closed set: such procedure can
be easily written using description of maximal sets [161 In this
manner we can determine classes of functions containing n-ary
functions. We can apply our algorithm to count bases. We obtain the
number of bases containing n-ary functions in a class of bases by
multiplying the numbers of n-ary functions in the classes of functions
which compose the base., whenever a class of bases is found. During
this procedure we can also enumerate classes of bases consisting of
classes of n-ary functions. '

Following this description we determined the number of bases of
Boolean functions composed from n-ary functions for n=4. Obtained
data are presented in the following table. For n=2 this result is
derived by Wernick [20] and for n=3 by Kudielka and Oliva [91 Note
that the set P, of Boolean functions contains 5 maximal sets [151 15

classes of functions [4.3.8 1 and 42 classes of bases [3.8

bases 32 6664 275790502

o -

o
C‘“

6. MINIMAL COVERING PROBLEM

Minimal covering problem is one of famous combinatorial problems and
there exist a list of solutions for this problem (cf. [17.21D. We
will give a solution using the lexicographic enumeration of subsets.

The minimal covering problem 1is the problem of minimizing the
objective function x;+...+Xx, subject to constraints

Xy o X)) AZ (1. ..., 1) (6. 1)
where A=l a;;] is an nXd coefficient matrix with a;;=0 or 1. and each
variable x; is 0 or 1 for each j.

We will introduce some new notions in order to give a new solution

for the problem and to show connection between minimal covering

problem and base enumeration.

A vector (Xy,...,X,) satisfying (6.1) is called complete for A. We
call a vector (X;,...,Xx,) nonredundant in A if '
(X v e s XA (Y.L YDA
is valid for each vector (yy.....,y,) for which y;=x; for each i,

1=i=n and y;+... +y,<x;+. .. +Xx, is satisfied.

A vector (Xq,...,X,) is called base in A if it is complete and
nonredundant in A. Nonredundant noncomplete vectors we call simply
addable. The rank of a base (addable set) (x;.....,Xx,). is the sum
Xit... +x,. Thus minimal covering problem is problem of finding a base
in A with minimal rank.

There is another definition of minimal covering problem [71: For a
given collection C of subsets of a finite set and positive integer
r<|C| decide whether C contain a cover for S of size r or less, i.e.
a subset C’'SC with [C’ | =r such that every element of S belongs to at
least one member of C’. This prdblem is exactly to find a base with
rank r or less. if we represent a subset by n bits characteristic

vector. Karp [71 proved that this problem is NP-complete.

The notions of addable sets. bases and rank have almost the same

meaning in both base enumeration and minimal covering problem. Minimal
covering problem corresponds directly to finding a base with minimal
rank. Thus we can modify our algorithm so that once we find a base
with rank r then no subsets of rank =2r will be considered further.

In the presented branch and bound algorithm a(i) denotes the i-th

row of matrix A (1=£i<n), i.e. a(i)=(a;

IR a;,). We suppose that

1

minimal rank of bases (solution of our problem) is between 2 and n-1
to make our algorithm shorter. It is easy to improve our algorithm to
deal with these cases. Also some techniques for eliminating some rows

or columns (cf.l1 17)) can be applied before running the algorithm.

BEGIN :
read n.d. a(i), i:=1,n: minrank:=d: r:=1; jqi=13 T:=(1}
REPEAT '

IF a(jy).....a(j.) is addable in A

THEN IF j.<n and r<minrank-1
THEN extend

ELSE cut
ELSE BEGIN :

IF a(jy).....a(j,.) is a base in A THEN
BEGIN
minrank=r:
Te=lip...ndphs
END:

cut

END

UNTIL j;=n or minrank=2:
print out minrank. T
END.

extend and cut are defined as before. Note that T corresponds to a
solution (xy,....x,) of minimal covering problem so that x;=1 if and
only if jeT.

7. KNAPSACK PROBLEM

An input for the knapsack problem are integer numbers a;.....a,C.
The problem is to find a subset T of {(1.....n}) to maximize Z;cra;
subject to the requirement that X;.ta;=C. A more general formulation
of the knapsack problem has more applications than this. Namely the
input consists of C and two sequences aj.....a, and Ppy.....P, The
problem is to maximize X;.ip; subject to the restraint Y;eta;=C where
T. as before. is a subset of the indexes.

We give a solution for more general knapsack problem based on the
lexicographic order of subsets. Elements i that are a; greater than C

should be eliminated. In the presented algorithm a(j;) denotes aj;..

2

BEGIN
read n.d. a;, p;, i=1.n;:
ri=1: jy:=1; maxsum:=py; T:={1};

REPEAT
St=a(j)+...+a(j.);
IF S=C
THEN BEGIN
Pi=p(jp+...+p(j.):
IF P>maxsum THEN BEGIN
maxsum:=pP:
STl n g}
END:
IF j.<n THEN extend ELSE reduce
END
ELSE cut:
UNTIL j=n:
print out maxsum, T
END.

In the algorithm extend. reduce and cut is defined as before. The

set {n} should be examined before printing

8. CONCLUDING REMARKS

In this paper we modified backtrack procedures for Llexicographic
enumeration of subsets and applied the procedure to the base
enumeration, knapsack and minimal <covering ©problems. Several
variational uses of base enumeration algorithm are presented. The
presented "cut” techniques use special properties of bases and addable
sets, owing to which., for instance. base enumeration were possible for
about n=600 (for the case n=605, d=15 it took about 8 hours using
bitwise redundancy check by FACOM 380 computer with 24 mips).

Karp [7] proved that the problem of determining of a covering set
with rank =r for given r is NP-complete. Qur algorithms are directly
related to the problem. Thus any algorithm for solving these problems
takes exponential time according to numbers of rows and columns n and
d. There exist a number of algorithms for exact and approximate
solution of knapsack and minimal covering problems (see, for example.
11,17, 21 D.

{3

ACKNOWLEDGEMENTS

This work was done during the first author’'s stay at
Etéctrotechnical Laboratory. Ibaraki. between Nov. 17. 1985 and Feb.
14, 1986. The authors thank for kind help offered by members of
Mathematic Engineering Section. Espécially they acknowledge' the
comments given by Dr. Nobuyuki Otsu and Mr. Hideki Asoh which lead to
an essential improvement of the results. They also express their
gfatitude to Drs. Akio Tojo, Director of Compu{er Science Division,
and Koichiro Tamura. Chief of the Planning Section. for their
encouragement to the project. Special thanks go to RIPS (Research
Information Processing System) for offering computational facility.
They acknowledge the financial support by Science and Technology

Agency. Government of Japan.

REFERENCES

1. 8. Baase, "Computer Algorithms: Introduction to Design and
Analysis”, Addison-Wesley. Reading, Mass.. 1978.

2. G. Ehrlich. Loopless algorithms for generating permutations,
??ggé?atéggss?gd other combinatorial configurations, J. ACM, 20, 3

3. K. Ibuki. K. Naemura and A. Nozaki, General the ry of complete sets
of logical functions. IECE of Japan 46, 7 (1963)., 934-3840.

9
4. S.V. Jablonskij. On superpositions of th functions of algebra of
logic (Russian), Mat. Sbornik 30, 72, 2 (1952)., 329-348.

b. 8.V. Jablonskij. Functional constructions in a k-valued logic
(Russian), Trudi Mat. Inst. Steklov 51 (1958 5-142.

6. A.V. Kabulov. Synthesis of bases of complete systems of Loglcal
functions (Russian), Dokl. Akad Nauk UzSSR (1982), no. 4, 3-b

7. R. M. Karp. Reducibility among combinatorial problems, in
"Complexity of Computer Computations”, (R.E. Miller and W
Thatcher eds.)., 85-103. Plenum Press., New York, 1972. :

8. L. Krnic, Types of bases in the algebra of logic (Russ1an). Glasnik
Mat. -fiz. i astr.. 20 (1965), 1-2, 23-32.

9. V. Kudielka and P. Oliva. Complete sets of functions of two and
three binarysyariables. IEEE Trans. Electronic Computers, EC-15

10. M. M1yakawa. Functional completenes and structure of three- valued

Log1 I Classification of P; -. Res. of Electrotech. Lab. 717

(1971), 1-85.

11.M. Miyakawa. Enumerations of bases of three-valued logical
functions, in Coll. Math. Soc. J. Bolyai 28, 469-487. Szeged., 1878.
North-Holland, 1981.

14

4 i

12. M. Miyakawa and I. Stojmenovic. Classifications and base
enumerations of the maximal sets of three-valud logical functions.
in Proc. Symp. Math. Found. of Alg. and their Applications. Kyoto
1986. RIMS Kokyuroku series, to be published.

13. A. Nijenhuis and H.S. Wilf, “"Combinatorial Algorithms”. 2nd ed..
Academic Press. New York, 1978.

14.S.R. Petrick and G.C. Setharés. On the determination of complete
gggs of logical functions. IEEE Trans. on Computers C-17, 3 (1968),

16.E. L. Post. The two-valued iterative systems of mathematical logic,
Annals of Math. Studies 5, Princeton Univ. Press, 1941.)

16. I.G. Rosenberg. Completeness properties of multiple-valued logic
algebra. in "Computer Science and Multiple-valued logic: Theory and
Applications” (Rine D.C. ed.). 144-186, North-Holland 1977.

17.R. Roth. Computer solutions to minimum-cover problems. Oper. Res..
17 (1969)., 455-473.

18. 1. Semba. An efficient algorithm for generating all k-subsets
(1=k=m=n) of the set {1.2,....n} in lexicographic order. J. of
Algorithms., 5 (1984), 281-283.

19. 1. Stojmenovic., Classification of P; and the enumeration of bases
g; g&. Rev. of Res..Fac of Sci..math.ser.. Novi Sad. 14.1 (1984),

20.W. Wernick, Complete sets of logical functions. Trans. Amer. Math.
Soc. B1 (1942), 117-132.

21.M.H. Young and S. Muroga. Symmetric minimal covering problem and

minimal PLA's with symmetric variables, IEEE Trans. Comput. C-34,
6. (1985), 523-541.

15

