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Algebraic surfaces for regular systems of weights

ABSTRACT:. We costruct following families of surfaces by compactifying Milnor fibers.

i) 49 families of K3-surfaces with certain curve configulations, most of which
admitf elliptic fibrations over P .

ii) 9 families of algebraic surfaces of K= 1, q = 0, % = 1 or 2 with elliptic
fibrations over P .

jii) 6 families of algebraic surfaces of general type satisfying the numerical

equalitiy B = [cf/2) + 2 for ¢f= 1,1,2,2,3,5.

(K:=Kodaira dimension, %,:=ge0metric genus, qg:=irregularity, cf:=second Chern number)
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¢1 Introduction

1.1 Pinkham [20] gave an interpretation for the Arnold’s strange duality (11,
using comapactifications of 14 triangle singularities of Dolgachev (5], where the
comactifications are K3 surfaces with certain curve configulations. Looijenga
studied such compactifications in details for triangle and Fuchsian singularities
{15,161, to describe possible singularities in the deformation of them.

Along simitar idea, we study compactifications of some hypersurface singularities
listed by regular systems of weights [24]. As a result we obtain 49 fémilies of K3
surfaces with curve configulations for minimally elliptic singularities of Laufer,

9 families of elliptic surfaces of Kodaira dimension | and 6 families of surfaces



of general type with the equality B =[@'/2]+2. (See (1.6),(1.7),(1.8) and $'s 2,3,4)
One motivation of this paper is an attempt to extend examples of period maps
associated to primitive forms(cf (3.6),0181,026)), which were well understood

only for simple and simple elliptic singularity cases.

(1.2) We briefly recall Pinkham’s compactification ?, at a special point 1 of the
moduti S . A review on weighted homogeneous singularity of dim 2.and the constru-
ction of the family §E (tESZ& of the surfaces for the singularity are given in §5,
which prepare notations and concepts for the paragraphs 2,3 and 4. Some readers

may be suggested to go directly to %'s 2,3 and 4 and refer to $5 for notations.

(1.3) Let positive integers a,b,c and h with GCD(a,b,c,h)=1 ,called a reduced
system of weights, be given. The hypersurface X,:=( (x.y.z)ECat f(x,y,z)=0 )
for a weighted homogenous polynomial f(x,y,z) = X ci-hxiyJZrl with coefficients
ti+bjrche-h

generic in € has an isolated singular point at the origin 0, iff the following
rational function in T dose not have a pole on the unit cicle (Tl = 1 (cf [23]).
A LTTH AT (TH-T9)

(T® -1etP 1€ -0y

AT)Y =

We call such (a,b,cih) a regular system of weights. Then X(T) can be developed in,

m) mu

m
Ty =T '+ T2, +7

for some integers ml,...,mP » called the exponents for (a,b,cih). This establish

‘Solutee(
a one to one correspondence between the hypersurfachgTﬁgjlarity Xo with a Cx-action
. . . =&)(h=b)(h
and the regualr system of weights up to a suitable equivalence, Here Mi:= @—iﬁ%gL—;Q
is the Milnor number of the singularity. The smallest exponent = a+b+c-h =:¢ is

characterized by several means ( for instance [8],0323,[23]), playing an important
roll for Xg. For instance the singularity Xy is a rational double point for £€> 0,

a simplly elliptic singulariy for €= 0, and a Fuchsian singularity for £= -t.

(1.4) For a regular system of weights (a,b,cih), let us consider the hypersurface
Xy = ( (xiyiziw)E€PCa,b,c.1) ! flx,y,z) = wh )},

where P(a.b,c,1):=(€%=(0))/((x,y,z,wn(thx, by, €2, tw) for te€®). ¥, is a compact-
ification of the Milnor fiber X|:=(‘(x.y,z)e€3: f(x,y,z) = 1 ) by adding a curve at

~
infinity, Denote by X| the surface of the minimal resolution of the singularities of

2
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of i‘at infinity. Put Dy = Yl' Xy and call it the divisor at infinity, which defines
. a star froming dual graph with the central curve E .
. ~ ~
o 2 & -
For example, X, is a rational surface with K= 2 for €> 0 , X, =X, is a Del Pezzo

surface for €= 0, and Y‘ is a K3 surface for £¢=-1 (See for instance [ 1C 3[ 3L 1.)

(1.5) After the above mentioned systems of weights (a,b,cih) with €= 0 or £1, we
are interested in the following three extremal boundary cases in the present paper.

i) (a,b,c:h) having only one negative exponent & without 0 exponent.

ii) (a,b,c:h) having only one negative exponent ¢ with some 0 exponents.

iii) (a,b,cih) such that the smallest expanent §£:= a+b+c-h is equal to -2 ,

(1.6) The surfaces §1 far the first group (1.5) i) is studied in §2.

There are 49 = 22+7+8+2+7+3 sdch reduced regular systems of weights according
as £= -1, -2, -3, -4, -5 and -7 (See [241), All these weights defines minimally
elliptic singularities i, in the sence gf Laufer‘[l4] (cf. (5.7) iv) b)),

This group includes 22 systems of weights with &= ;1 for Fuchsian singularities,
particularly 14 exceptional unimodularbsingularities. Including these Fuchsian

&~
cases, the surfaces X\ for the group (1.5) i) have the following descriptiaons.

There is a maximal sub-configulation Dy 0f Dg which can be blow down 10

¥ b2
a _smooth point. The blow down surface X, := X, /D, is s K3 surface with a
curve configulation De/D . (Particularly Dy = $ for Fuchsian singularities.)

~ .
There is a sub-configulation D; of D4/D;, whose linear system defines a fibration

4
of X over P' , most of which are elliptic fibrations.

—

The detailed descriptions of the divisor Dy and the fibration are given in § 2.

Note 1. Shioda’s study on elliptic surfaces [29].

o
(1.7) .The surfaces X; for the second group (1.5) ii) are studied in §3,
There'ére 12 = 9+2+1 reduced resulér systems weights according as €= -1,-2 or -3

far this group. The surface Y, is already minima! whose Kodaira dimensiaon K is equal

1o 0 or 1 according as &= -1 or less. The geometiric genusly and the first Chern

number c, of the surface are 1 and 0 respectively. The linear system }-tE,| defines

an elliptic fibration which admitts a gicbal simple double or triple section

according as €= -1,-2 or -3. The details will be described in §3.

3
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(1.8 The surfaces Xy for €= -2 of the group (1.5) iii) are studied in §4.
There are 21 reduced regular systems of weights with €= -2, In this case the

o Where E, is smooth of genus

cannonical divisor of the surface is given by K% = E
1
a, and E; = ap- |. Here a, is the multiplicity of 0 exponents.
. : ~ )
Therefore the surfaces Xy are classified according to a, as follows.

i) a,= 0: There are 7 regular systems of weights of this class. They belong

1o the class of (1.5) i) too, which are studied in 2. By blowing down the

gurve Eo » One obtains a family of elliptic K3 surfaces as described there,

ii) a,= 1t There are 8 regular systems of weights of this class, Two of

them belong to the class (1.5)ii) studied in $3. The remainings are surfces of

Kodaira dimension K= 1 with the irregularity a = 0 and % = 1. The linear system

lE,l defines the elliptic fibration over P' which has a global section.

iii} ay> 11 There are 6 regular svstems of weights of this type. They give
families of surfaces of general type. The pair (Pé,cf) of the geometric genus

and the second Chern number of X; .are (4,5),(3,3),(3,2),(3,2),(2,1) and (2,1),

| defines either

0

which satisfy a relation % = [67/2] + 2. The linear system IE

a 9=2 fibration, a triple or double covering or an embedding as a quintic surface.

The more detailed description of the surfaces is given in §4.

Note 1. These 21 regular systems of weights are naturally corresponding
-1 0
to co-compact subgroups [ of SL(2,R) satisfying (0_4)§T' (cf. (5.3) Note 2.).
Note 2. In general an inequality Pgé [cT/2] + 2 holds. Those surfaces
with the equality are studied by sevral authers Enrigues, Noether, Moischezon,

Horikawa, Todorov and others (cf [133,0321,[281).

(1.9) The auther was supported by MPl for Math. in Bonn in Spriné ’85 when he was
preparing this paper, He expresses his gratitude to Prof. Hirzebruch and the
members of the institute for the hospiatlities and encouragings. He aiso
expresses his gratitude to E. Brieskorn, E, Looijenga, [. Naruki, F. Sakai,

E. Sato, A. Todorov, M. Tomari and J. Wah! for their inspiring discussions.
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§ 2 The class having one negative exponent without 0 exponent

In this paragraph, we study the surfaces for regular systems of weights which has one
negative exponent but no 0 exponent. The main results formulated in (2.5),(2.6) show
that the most of them give families of elliptic K3 surfaces,

(2.1) Systems of weights for minimally elliptic singularities,

Consider a weighted homogeneaus hypersurface isolated singular point at 0 'in Cg,

(2.1.1) Xo i= ¢ (x,y,2)€@: f(x,y,2) = 0 ),

(2.1.2) f(x,y,z) =2 cﬁkﬂy3ﬁ .
avtbjecksh ) ) © Definition

where (a,b,cih) is a reduced regular system of weights (cf. (1.3),(5.5)).

The singularity Xy is minimally elliptic (characterized as p, = 1, Laufer [141),

3

iff there exists one non-positive exponeqt for (a,b,cih)(cf(5.7)ivib)). The condition
is equivalent that either one of the followings‘holds((S.S.Y),[Za (4.3)1):
(2.1.3) i) €= -1 and min(a,b,c) > -£+ 1,
i) min(a,b,c)‘= -E + 1.
The TABLE 1. is a recalling of the tist of reduced regularvsystems of weights
(a,b,cih) satisfying i) or i) from {241, (The 14 systems of = -1 Type Il in the

table satisfy the innequality i) and al!l the remainings satisfy the equality ii).)

TABLE 1.
(a,b,c:ih) exponents
€ =0
(1,1,1:3) 0,1,1,1,2,2,2,3
(1,1,2:4) 0,1,1,2;,2,2,3,3,4
(1,2,3:6) 0,1,2,2,3,3,4,4,5,6

€= -1 Type 1.

(2,2,3:8) -1,1,1,2,3,3,3,4,5,5,5,6,7,7,9
(2,2,5:10) -1,1,1,3,3,3,5,5,5,5,8,8,8,9,9, 11
(2,3,3:9) -1,1,2,2,3,4,4,5,5,6,7,7,8,10
(2,3,4710) -1,1,2,3,3,4,5,5,6,7,7,8,9,11
(2,3,63]2) -1,1,2,3,4,5,5,6,7,7,8,9,10,11,13
(2,4,5:12) -1,1,3,3,4,5,5,7,7,8,9,9,11,13
(2,4,7:14) -l.1.3.3.5,5,7,7,7,9,9,11;11,13,15
(2,6,9:18) -1, 1,3,5.5,7.7,9,9,11,11,13,13,15,17,19

J..



€= -] Type

(3,4,4:12)
(3.4.5:15)
(4,5,6:16)
(3,5.6:15)
(4,6,7:18)
(6,8,9:24)
(3,4,8:16)
(4,5,10:20)
(3,5,9:18)
(4,6,11:122)
(6,8,15:30)
(3,8,12:24)
(4,10,15;30)
(6,14,21:42)

€= -2
(3,3,4:12)

(3,5,5:15) °
(3,5,7:17)
(3,5,10:20)
(3,7,9:21)
(3,7,12:24)
(3,10,15:30)
E=-3
(4,5,7:19)
(4,5,8;20)
(4,5,12:24)
(4,7,10:24)
(4,7,14:28)
(4,10,13:30)
(4,10,17:34)

(4,14,21:42)

I,
-l;2.3.3.5,6,6.7.9,9,10,13
-1,2,3,4,5,6,7,8,9,10,11,14
-1,3,4,5,7,8,9,11,12,13,17
-1,2,4,5,5,7,8,10,10,11,13,16
-1,3,5,6,7,9,11,12,13,15,19
-1,5,7,8,11,13,16,17,19,25
-1,2,3,5,6,7.8,9,10,11,13,14,17
-1,3,4,7,8,9,11,12,13,16,17,21
-1,2,4,5,7,8.9,10,11,13,14,16,19
-1,3,5,7,9,11,11,13,15,17,19,23
-1,5,7,11,13,15,17,19,23,25, 31
-1,2,5,1,8,10,11,13,14,16,17,19,22,25
-1,3,7,9,11,13,15,17,19, 21,23, 27,31

_])S’]]t13)]7’]9123'25'29-’3]t37)43

-2,1,1,2,4,4,4,5,5,7,7,8,8,8,10,11,11,14
-2,1,3,3,4,6,6,7,8,9,9,11,12,12,14,117
-2,],3,4.5,6,7,8.9,10,11,12,13i14,16,19
-2,1,3,4,6,7,8,9,10,11,12,13,14,16,17,19,22
-2,1,4,5,7,7,8,10,11,13,14,14,16,17,20,23
-2,1,4,5,7,8,10,11,12,13,14,16,17,19,20,23,26

-2,1,4,7,8,10,11,13,14,16,17,19,20,22,23,26,29,32

-3,1,2,4,5,6,7,8,9,10,11,12,13,14,15,18,22
-3,1,2,5,5,6,7,9,10,10,11,13,14,15,15,18, 19,23
-3,1,2,5,6,7,9,10,11,12,13,14,15,17,18,19,22,23,27
-3,1,4,5,7,8,9,11,12,13,15,16,17,19,20,23, 27
-3.],4.5,8;9,11,|2.13,15.16,17,19,20,23,24,27.31
-3,1,5,7,9,10,11,13,15,17,19,20,21,23,25,29,33
-3.1,5.7.9,I1,13.15,17.17.19.21,23.25.27.29,33,37

-3,1,5,9,11,13,16,17,19,21,23,25,27,29,31,33,37,41,45
4
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£= -4

- (5,6,9:24) -4,1,2,5,6,7,8,10,11,12,13,14,16,17,18,19,22,23,28
(5,6,15:30) -4,1,2,6,7,8,11,12,13,14,16,17,18,19,22,23,24,28,29, 34
E= -5
(6,7,9:27) -5,1,2,4,7,8,9,10,11,13,14,16,17,18,19,20,23,25,26,32
(6.8.11:30) -5,1,3,6,7,9.11,12,13,15,17,18,19,21,23,24,27,29,35
(6,8,13:32) -5,1,3,7,8,9,11,13,15,16,17,19,21,23,24,25,29,31,37
(6,8,19:38) -5,1,3,7,9,11,13,15,17,19,19,21,23,25,27,29,31,35,37,43
(6.16,21;48) -5,1,7,11,13,16,17,19,23,25,29,31,32,35,37,41,47,53
(6,16,27:54) -5,1,7,11,13,17,19,23,25,27,29,31,35,37,41,43,47,53,59
(6,22,33166) -5,1,7,13,17,19,23,25,29,31,35,37,41,43,47,49,53,59,65,71
g€= -1
(8,9,12:36) -1,1,2,5,9,10,11,13,14,17,18,19,22,23,25,26,27,31,34,35,43
(8,10,15540) -71,1,3,8,9,11,13,16,17,19,21,24,27,29,31,32,37,39, 47
(8,10,25;50) -7.1,3,9,11,13,17,19,21,23,25,27,29,31,33,37,39,41,47,49,57

(2.2) The polynomial f(x,y,z,X) and (m+’mo,m_).
Let f(x,y,z) be a weighted homogneous polynomial (2.1.2) having an isclated
critical point at 0, for the system of weights (a,b,c:h) of TABLE t1.(cf (1,3), Laufer

L14, appendix] has already listed such polynomial equations for minimally elliptic

singularities. Among them, 3 cases for = 0 are simplly elliptic singularities [ ]
and 14 cases for €= -1 Type Il. are exceptional unimodular singularities [ 1. In
general, singularities for = - are called Fuchsian ([ 1J).

In the TABLE 2. we recall and complete the list of polynomial f(x,y,z, ) with
m -number of parameters X=(},,..,]m), where My, m, and m_are dimensions of positive,
0 ‘
zero and negative graded part of the universal unfoiding of f respéctively (5.7.2).

The poiynomials are normalized for a later application (see (2.4) Note.).

TABLE 2.

zé;béc;h) . M m__.maA.m+ polynomial

(1,1,1:3) 8 0.1,71 x(x=y)(X=-W) - yz A%0,1,
(1,1,2:4) 9 0,1,8 Xy (x=y)(x-Ay) - z ' A%0,1.
(1,2,3:6) 10 0,1,9 yix =y)(x =}y) - z Ak0,1,



150

€ = - Type I.

(2,2,3:8)
(2,2,5;10)
(2,3,3:9
(2,3,4:;10)
(2,3,6:12)
(2,4,5512)
(2,4,7:14)
(2,6,9;18)
€= - Type
(3,4,4:12)
(3,4,5;13)
(4,5,6:16)
(3,5,6515)
(4,6,7:18)
(6,8,9:24)
(3,4,8516)
(4,5,10:20)
(3,5,9:18)
(4,6,11:;22)
(6,8,15:30)
(3,8,12:24)
(4,10,15:30)
(6,14,21:42)
€= -2
(3,3,47;12)
(3,5,5:15)
(3,5,7;11)
(3,5,10:20)
(3,7,9:21)
(3,7,12:24)

(3,10,15:30)

13

12

18

11,12

1y, 12

1,1,13

I IO T 4

1,13

1,0,11
1,0, 11
1,0,10
1,0, 11
1,0,10
1,0,9

1,0,12
1,0,11
1,0,12
Lot
1,0,10
1,0,13
1,0,12

1,0,11

3,1,14
2,0,14
2,0,14
2,0,15
2,0,14
2,0,15

2.0,16

L

x(x-y)(x-&y)(x-&;) + yzl &#O,I,A‘#LL

”
<

Xy(x_y)(x—&y)(x-%y) + z .&?0.1' %:)2.

Iy + z(z-y)(z=1y) A:0,1,

)

Cx(E=x2)(2-AxY) - vk A%0,1.

(vi-xdrviaaxdy v 22 140, 1.

y(y-xz)(y~lx2) - xz2 10,1,

2.

xy (y=x2)(y=1x%) - z A%0,1,

2

y(y-xI)(y=2x’) - z 1$0,1.

I.’L

x" + yz(y=-2z)

x3y + VQ'Z + 22)(

xt e vtz o+ zzx

3 3 2

Xz + y? + Xz

3

X"y + y3 + le

x‘f‘f y3 + x22

l 2
yxt o+ vz + 72

XY o+ ylz + Z2

xJz + xy3 & 22

uxf v xy? v 22

Fagd v g2

x¥z + v+ 22

YXj + y3 + Z'2

X

x7 4 y3 + 72

Xy(x=y)(x=Ay) + 237 A¥0,1.
xf + yz(y~-2)
xty + y22 + 7%x

x;y + ylz + Z'2

x¥z + y3'+ 22x
yz Fxyd o+ 22

7 y3 o+ 22



£= -3
(4,5,7:19)
(4,5,8:20)
(4,5,12:24)
(4,7,10:24)
(8.7,14:28)
(4,10,13530)
(4,10,17:34)
(4,14,21:42)
€= -4
(5,6,9:24)
(5,6,15:30)
€= -5
(6,7,9:27)
(6,8,11:30)
(6,8,13332)
(6,8,19:38)
(6,16,21;48)
(6,16,27:54)
(6,22,33366)
€= -1
(8,9,12:36)
(8,10,15:40)

(8.10,25550)

18

19

20

20

20

21
20

21

3,0,15
3,0,15
3,0,16
2,0,15
2,0,16
2,0,15
2,0,16

2,017

3,0,16

3,0,17

4,0,16
3,0,16
3,0,16
3,0,17
2,0,16
2,0,17

2,0,18

4,0,17
3,0,17

3,0,18

151

Bz o+ Bx v Ay
Bz o+ oyt o+ 2x
Wz o+ y¥fx o+ 22
x6 + yiz + zlx
x7 + ylz + f

xry‘*y'}*‘z‘zx

xéy + y3x + Z2

Bz + v3x + B
X; + y3X + 22y
x¥fy vyt v 2%
By« y¥ix o+ 2
X8+y3+zlx

xq +y3x+z.'2

T+ 3+ 2

X3Z +y¢ +

x5+ v¢ o+ Ay

23

X‘g-y +. y‘g.q- 22

As a conseqgence of the table we see and it is not hard to prove the following.

Assertion i)

—_—

m

Mo

ii) The polynomial

in x,y and z.

polynomial

N

f(x,y,2,23)

( ee{a,b,c) : e < -28) + 1,

{ ee{a,b,c) ¢ e = -2¢8) .,

can be expressed as a sum of m, + 3 monomials

f(X|yrZ)

Particularly if my = 0 (which is most of the cases), the

—_—
\

is unigue up to automorphisms of the coordinate ring.

(Proof is a combination of (5.7.2), (2.1.3) and 23 (1.9.1),(3.6)3.)

9
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(2.3) From now on in this paper, we consider only the 49 cases with €< 0 . Note
that the .intersection form for the middle homology group of the Milnor fiber for
this class of singularities has signature (U, M6, u_) = (2,0,0-2) (cf (?.7.4)L

(2.4) The minimal good resalution T: Q;-—% X, of the singularity XO (2.1.1) is

described in (5.6)(cf [61,0141,0191,0[211). The exceptional set'ﬁ&O) defines a
star shaped dual graph (5.6.1), whose central curve is denoted by EO' The dual

graph is numerically determined by the data: i) the genus of E0= g(Ea). which is

always 0 in this case ((5.643)) so that it wil! be omitted, ii) the self intersection
number = Ej = -(l + #( e¢(a,b.,c) : e = d+1 ) (cf (5.6.4)), iii) the set

A= (p,\...,pr) of the orders of the cyclic isotropy subgroups of the Fuchsian

group I at the branching points on E, (5.6.%5), iv) the number d:= h-a-b-c = - &,

(The pi’s_for the 14 exceptional singularities are well known as Dolgachev numbers.)
o)
Furthermore the aﬁﬁytic data of the resolution is determined by the pgositians

of the branching points on Eo =lPl. Hence we give a rational parametrization:

.%
K

0 ( (x:y:z)elP(a,b,c) : f(x,y,z,A) = 0 )
t P> (x:y:2z)

of the central curve EO .

We shall describe in the TABLE 3. the following data for every regular

systems of weights (a,b,c:h) of the TABLE 1..

i) The set A = ( pl,..t.p”).

ii) Polynomial presentation (x(t),y(t),z(t)) of the parametrization:nP'~9 Eo'

iii) The values t; EE t at the branching points p; On E

0°

iv) The order of zeros (n’;.nyd,n;g) of (x(t),y(t),z(1)) at the branching point: p;.

v) The dual graph of the exceptional set %'&0).

( We used pz’scé as for the identification af the branching points on Ep.)
Note. In the TABLE 3. the polynomials f(x,y,z,A), x(t), y(t) and z(t) are normalized
as. follows. (Recall that the branching points lie on the coordinate axis (5.6).)

i) (the values of t at branching points of Ey) = (the roots of x(1Iy(t)z(t)=0>V (),

i) - 0 ¢Cngg L@, 0 <, <b and 0 < g < ¢ for preA = (D L.o...p ).
iii) Nyoo Ny and n,, are defined by the following retfation.

22 Ny a [a

: Ny = (my+ 1)|b for €= -1, or = (m + 2)|b| for £5 -2.

= n_u c c

10
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TABLE 3.
“(a,b,cih) A:=(pl ""’Dr) parametrization of Ey dual graph
€= - Type 1.
(2,2,3:8) 2,2,2,2,3

t o= 0.1,%401,0 (45)

ny= 21 1 11 x == 1 (-1 (t- A (t-4), D) D

ny= 11112 y == t(t=-1)(t-A)(t-25), .

22221  z=i0t-Dit-ap¥t- 0 (D <2
(2,2,5:10) 2,2,2,2,2

t = 0,1,MA0

ne=2 1 1 11 x ==t2Ct-1(t- ApCt-Ap), £ )

ny= 11112 y == t(t=1)(t= A)(t- A, ),

ng= 33333 z=2tdct-17-200 -4 £3) D
(2,3,3:9) 2,3,3,3

t = 0,0,1,2 .

ne= 1111 x = - t(t-1)(t=-2), D~ D

=311 y o= 2t(t-1)(1-1), &)

ng= 3211 z =1t2(t-1)(t-1). &5, E3)
(2,3,4;10) 2,2,3,4

t = 1,2,9,0 _

ne= 1111 X =-t(t=1)(t=)), ) &

ny= 221 1 y =tt(t=-17% (t-AF, &)

ng=2213 z = t3(t-1* (1=, @/ (D
(2,3,6312) 2,2,3,3

t =0,0,1,4

ng= 1111 x = t(t=-1)(t-2), &2 @

ng= 221 1 y =ttt (-1 (t-0, @

ny= 433 2 z = At (-1 (t-ak ) 3
(2,4,5;12) 2,2,2,5

t =0,1,3,@

=1 111 X =-t(t-1)(t=2A), £9) 2)

n,= 3221 y = ti(t-l)i(t-k)f, £3)

ng= 3331 z =23 (t-12% (-0, ) D
(2,4,7314) 2,2,2,4

t=20,1,4,®

= 1111 X ==t(t=1)(t=2),

ng= 322 | y = 31 (-0, &) @

n= 4 442 z =it4(t‘1)%(t"l)“. @ \@
(2.6,9:18) 2,2,2,3

t = 0,1.,4,%®

n,= 1111 X ==t(t-1)(t-2),

> b, Y S)

ny= 4332 y ==t* (-1 (1-2) )

n=5553 z =1t5 (- (=27, 5
Type 11, 9
(3,4,4:12) 4, 4, 4

t =0, 1, 0

=1 1 1 x =tt (t-1) , 9

ng=1 1 2 y ==t2(t-1)

=1 2 1 z =-t (t-1)%,
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(3,4,5:13)

(4,5,6:16)

(3,5,6315)

(4,6,7:18)

(6,8,9:24)

(3,4,8:16)

(4,5,10:20)

(3,5,9:18)

(4,6,11;22)

(6,8,15:30)

> 3
0o

PR = 8w

-

wwrn 8

wr —~ B w

w8

-

0o w8

-

wrn — 8w

B0 - 8w

o wr 8

0 &~ W3 N

) == = = N

4;
]s
]'r

-

N — — - N1

NN — = W

-

NN e =

3,

1,

RO o = e o

-

W — — W

-

W RN = =

-

D wWN - W

- - — O ;!

- - —oc oo

— e — O O —_ - O —a

W - - O

R e - O N = =0 W

N —- = O

W = - owm

(t-1) ,
(t-1) ,
Ct-1)% .

0]

[}
I+ 4
e+

x ==t (t-1) ,
y =it (t*l)“.

< X

N «< X

b

N <

x

N

x

N <

=-t (t-1)7.,

t (t-1) ,
t (t-1)%,
t o(t-12%,

==t (t-1) ,
=_t (t-1)%,
=it (t-1)%.

==t (1-1)%,
==t (t-1)3,
=4t (t-1)73,

o(t-1) ,
-t (t=-1) ,
-tICt-1 R

-t (t-1) ,
=2t (t-1) ,
=<3 (t-1)%,

=4t (t-1) ,
=31 (t-1)%,

=oti(t-1)
=zt2(t-1)3

==t (t-1) ,
=-t (t-1)*,
=+t2(t-1)3,

==t (1-1)2,
==t (t-1)%,
=112 (t-1)5,

12




(3,8,12:24)

(4,10,15:30)

(6,14,21:42)

€= -2

(3,3,4;12)

(3,5,5:15)

(3,5,7:17)

(3,5,10;20)

(3,7,9521)

(3,7,12:24)

(3,10,15;30)

3, 3,
t =0, 1,
ng= 1 1
Ny = 3 3
n, = 5 4
2, 4,
t =, 1,
ny= 2 1
nb= 5 3
n,= 6 4
2, 3,
t =W, 1,
ng= 3 2
ny= 7 5
ng =11 7
3,3,3,
t=0,12%,
ng= 322
ny= 2.2 2
n,= 333
5, 5,
t W, 1,
ny= 2 2
ny= 3 3
ng=3 4
1, 5,
t =0, 1,
ny= 2 2
ny= 3 3
Y
n;=4 5
5, 5,
t =0, 1,
Ng= 2 2
nbi 33
n, = 17 6
9. 3,
t =0, 1,
ng= 2 2
Ny= 4 5
ng = 5 6
1, 3,
t =0, 1,
ng=2 2
n,= 4 5§
Y
n,= 17 8
5, 3,
t =0, 1,
ny= 2 2
ng= 6 1
Y
n, = 9 10 1

~oNgw ~esNgw a0 fw wasa o ;M W W 8w M — o - o — o o o - S

\ommsw

x

N <

< X

x

N <

< X

z

x

N <

x

=+t (t-1) , (-3
= t2(t=1), @_

z ==t (t-1)"*.,

< X

z ==t (t-1) ,
y = ti(t-19, QG) 3
z =+t3(t-1)F.

x ==t (t-1)%,
y = t2(t-1)5,
z =+t (t-1)7%.

=td (-0 (1-?, D—D D—)
=ttt (-1t (-7, 3
=-t3(t-1)% (t-a93. ED—DD C)—D

L]
-

N
-~
-

1
~

(3

=33 (t-nt C2)
=it§(t-1)§, S CD—C3)
=FO(t-1°, 2

=stf (-8, C2D)—C0)
=212 (1-1)%,

= -1,

= tF(t-1)6,

=112<1-1)i. ) C—C2)
=ttt -7,

=35 (t-nt, C2)—(5)
:tti(t—l)’;, DG C)—(2)
=ttt ct-1¥,

=-t?(t-1f, C)—C9)
=212 (1-1)%, CD)—(2)
= tbt-n7, )—LD—CE)

=37 (t-1)". C2)—<£3)

I3



&= -3
(4,5,7:19) 7, 5, 4
: t=0,1, 0

ng=3 2 3 x = t3(t-1%, CD—C)—C2

ny= 4 2 4y =ttt (D—0)—0) ‘

n,=5 3 6 oz =3t5(t-1)3. C—C2)—<=3)
(4,5,8:200 8, 4, 4

t=o0,1, ® i

nx=2 3 3 x = ti(t-l);, GG LD)—CD—CD)

ny= 2 4 4 y =tt=(t-1)*f, :

ne=3 6 1z =-t3(t-DF, D—D)—2
(4,5,12:24) 5, 4, 4

t=0,1, @ _

=2 303 xo= -, G C)—2)—(2)

Ny= 2 4 4y =+t2(t-1)%,

n_:_= 5 910 oz =_t5(t-1. C—2—C2
(4,7.10:24) 10, 7., 2

t= 0. 1, 0

= 3 3 2 «x =—135_(t—1)g, S ED)—L2)—L3)

n,= 5 5 4 y =xt7(t-1)7, P

ni= 1 8 5z =-tT(t-1)7. C2)—2)—C9)
(4,7,14:28) 1. 7, 2

t=o0,1, 0

=3 3 2 x ==t3ct-1), (D—)—3)

ny=5 5 4 y =ttft-1)” G)—2)

ng=10 11 7 z = to(t-1) ED—)—3)
(4,10,13:30) 13, 4, 2

t= 0, 1, ® _

ng= 3 3 2 x ==t3(t-1)3, CO—C2—2)

ny= 7T 8 5 y =-t’(t-1f, 2 )—C2)

ng= 910 1z =3t0t-Dlo, D——
(4,10,17:34) 10, 4, 2

t= 0,1, ® ; '

= 3 3 2 x ==t3(t-1), CD—L 22—

ny= 1 8 5 y ==t*(t-1)3, C2—2) ‘

ng= 12 13 9z =xt2(t-1)3, D—)—L9)
(4,14,21:42) 7, 4, 2

t =0, 1,0 : 5 S

ny=3 3 2 = 12(t-1)3,

=10 11 1 ; = tF(t-1)M C2)—(C2) = _

’ »

n,=15 16 11z =tt/ct-1)%, (D—CD—(3
€ = -4 )
(5.6,9;24) 9, 5, 3

t=w, 1,0

ny=4 4 2 x =it2(t~1)‘:_, CO—C)—C)—-2)

ny=5 5 2 y=trt-0D%, EH—C2

ng=17 8 3 z=:t3t-18, CD—CD)—C2)—()
(5,6,15;30) 5, 5, 3

t =0, 1, o .

ng= 4 4 2 (-1, CD—CD—D—D

ny= 5 5 2 vy = t°(t-1), CE3I—C2)

ng=13 12 5z =FtRc1-1, CD—CD—CCD—(-))

I+



t s -§
(6,7,9:27) 1, 6, 3
t =0, 1, 0
ny=3 5 4
nq..’: 3 6 5
n.=4 8 6 '3
(6,8,11:30) 11, 8, 2
t =0, 1, 0
n=5 4 3 (=3
n15= 7 5 4
n,=9 1 6 (-2D—
(6,8,13:132) 13, 6, 2
t =0, 1, ®
- 4 3
= = -7,
nx_ 4 5 3 X _-ts_(t- 2 Q s @ Q
ny=5 T 4 y=-t>(t-1D", (2
n= 8 11 7z =¥l C—-D—CD—C2)—<2)
(6,8,19:38) 8, 6, 2
t =0, 1, © )
=4 5 3 x = tha-n?, CO—(D—L(2)
ny=5 1 4 y=-t‘$-(t-l)76, ED—C2D)
ng=12 16 10z =2t'%t-1) C)—)—2—(D—42
(6,16,21:48) 21, 3, 2
t= 0,1, @
ng= 5 4 3 x=-t5'(t-l):i. C2y—(-2)
ng= 13 11 8 vy =-tlkt-1", @D—C2)
ng= 17T 14 11z =gtRce-DlY, CO)—CD—CD)—C2)—5)
(6,16,27:54) 16, 3, 2
t= 0, 1, O -
M= 5 43 xetha-nt CD—(D
ng= 13 11 8y =—tPce-n!, ED—2)
ng= 22 18 14z =kt®1-1)%, CO—D)—)—(2D—G9
(6,22,33:66) 11, 3, 2
t= 0,1, 0 . )
n,i 5 4 3 xi—t‘&(t-l)u_, Q 2 ‘
ny= 18 15 11 v = thct-7, (D—2)
nz= 271 22 11z =12k t-1) O—CD—(C)—(0—<3)
g = -1
(8,9,12:36) 8, 4, 3 |
t =0, 1, 0 i
ny= 1 6 3 x=—t§(t-1)7. C—C2)—D
ng=8 1 3 y=ttict-nF, P—(2 _
ng=t1 9 4z =-tlt-nt, C)—D—(D)—D)—CD)—2)—X2
(8,10,15:40) 15, 5, 2
t=0,1, 0
na=T1 5 4 x ==tFct-n)¥, CD—3)
=9 6 5 y==tt-1f, (D—C
Y 13 g’
np=13 9 8z =2tt-1)7, ED—D)—(D)—L2) C2)—€3)
(8,10,25:50) 8, 5, 2
.t o= Oy ], © 7 S—
ng= 1 5 4 x ==~t'(t-1)7, 2)
ng=9 6 5y ==tTt-n, @D—e) &
ng=22 15 13z =ptft-1)l%, C2)—L(2)

DD D—D)—2)

I5
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As a consequence of the above calculations, we obtain the following.

Assertion i) The number r of the branches of the resolution graph is given by

ii) The coordinates of the branching points on the central curve Eo can be chosen

to be 0,1,00, )a,...,Am:where ( ﬂ,,...,Ang is the coordinates for the Sa(= the degree 0 .

part of the universal unfolding of f (cf. (5.7) i)) used in the TABLE 2. .
iii) a Ny, Ny
det.|{ b nB° ny, = %1

C Nzg Py

iv) The shape of the resolution graph, forgetting about the self-intersections of

the componentsydepends only on the integers m_ , m, and €= a+b+c-h (= -d).

0

v) The cannonical diviser Kg (5.6.7) depends only on the shape of the graph.
0

In the following TABLE 4. we list the shape of the dual graph and the
coefficients of the cannonical diviser for the minimal good resolution above.

TABLE 4.

o
[}
[
3
"
3
i
[

- 0
-2 0 -1
1"
-1 -2 -2 -1
= -2, m_ = 3, m,= 1 -3
-1 -2 ~ 2 -1
-2 -1
€= -2, m_ = 2, my= 0 -1 -2 -3
-2 -1
-3 =2 -1
€= -3, m_ = 3, my= 0 -1 -2 -4
-3 =2 -1
-3 -2 -
€= -3, m_ =2, my=0 -2 -4
-3 -2 -1
-4 -3 -2 -1
€= -4, m_ = 3, my= 0 -2 -5
-4 -3 -2 -

16
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Note. Many of the above graphs have the figure of affine Coxeter graphs of types

B,» E (k=6,7,8). Such singlarities (called Kodaira sing.) are studied in [10].

(2.5) Compactifications.

The compactification‘?t‘of a Milnor fiber X; for teésS is described in (5.8).

Recall that Yt = KtU by, (5.8.3), where 9; is the minimal resolution of the affine

variety Xt(5'7'3) and Dm is the divisor at infinity (5.8.4)., The cannonical divisor

of it is K§t= Ka)+ g%&ﬁx where Km is the cannonical divisor at infinity and K, is

the cannonical diviser of the resolution i;-# Xtof a singular point.x on Xt(5.8.7).
In this paragraph in TABLEs 5,6. we shall describe Dy and Km explicitely.

Before giving the TABLEs, we summerize some of their structures in the following

Theorem, which .implies that a minimal model gt of Yt is a K3 surface for tes;

Theorem Let (a,b,cih) be a regular system of weights of TABLE 1. Let (X

¢ Do’
for teS . be a pair of the compact smooth surface and its divisor at infinity for

(a,b,cih) as described in (5.8), Then the divisor Doo has the follwing decomposition,

(2.5.1) : Dw= D'UD‘Q_UDS

with the following properties:

i) The divisor D, Lﬂ Yt can be blow down to a smooth paoint. l.et us denaote

~ ~ ~

by T: it —_— Q; the blow down map, whgre Y¥Z= gt/q

is the smooth surface.

¥
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ii) The cannonical divisor K“)is equal to the cannonical divisor of the map@T. (l.e.

Km=div(ﬁ3<uﬂ) for a nonvanishing holomorphic 2-form (o on X

s

!

near the point?KD‘).)

t

This is equivalent to say that the cannonical divisor K;fgi X, is given by

where the sumation is agver singularities aof the atfine surface Xt( cf.(5.8.7)).

Pii Put 32 i= Dy . Then B; is either one of the followings,

~ ~
a) A system of smooth rational curves whose intersection diagram is D¢ or Ek (k=6,7;

b} Three smooth rational curves intersecting at a point normally each other.

c) Two smooth rational curves cantacting at a point of order 2 or 3.

d) One rational curve with a cusp singular point of type (2,3),(2,5) or (3,4).

(Here (p.q)-cusp is a plane curve singularity, locally given by a equation x?- %= 0.)

compfeta ~ pe >
v) The [l inear system'Dzliﬂ \t defines a fibration of Xt over\P', most of which

CA)

are elliptic fibrations. (For exact descriptions, see (2.6).)

v) 53:= R(Ds) is a union of smooth rational curves of selfintersections -2, whaose

connected componenis are of types either A Al.gg Ag.

Corollary The surface ?} is a K3 surface with a curve configulation Dwp/D = EQVE

Vs

ig: 1635(1he rational doubie point part(cf (5.7)ii)). Hence the middie homoiogy

group  Hy(xy,2) of a Milnor fiber of the polynomial of TABLE 2. is embedded in the

~r
~

~
lattlice of the K3 surface as an orthogonal compiement of the classes of DlUDs.

fard o~y
X ~ < ~ L
(2.5.3) Hy (20 T ¢ 2[Dyu 5]

A proof of the theorem is done, if we have explicitely determined the divisors Do
and Ky »which will be done in the following TABLEs 5. and 6.. An explicite excecution
of the calculations is as described in §5 and is omitted fram this paper.

For a proof of the Corollary, see (5.9),.

The following TABLE 6. describes the dual! graph of Dp and its decomposition

DﬁJDLUD3 for each (a,b,cih) of TABLE 1, These data together with that af the
position of branching points on E,% Ey and A:= (P sveesp ) in the TABLE 3.,

completely determine the divisor Dm at infinity.
i8
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X
D, .

In the following TABLE 5. we summerize the data: D,UD, and 2
Here D| (resp. Dy ) is described by dotted (resp. real) lines,

TABLE 5.
-1 The configulation D; is élways void. The configulation Dy is a

union of smooth rational curves whosg inte;section diagram is one af

the affine Coxeter diagrams of type Q+ or Ex (k=6,7,8) (cf TABLE 6.).

-2, m_= 3 and 2. :
- = T ] Y,
- '

Ko = Ego » ‘ Three smooth rational curves,
intersecting transversaly at a point.

€= -3, m_= 3 and 2.
-4 -4 2E,
_ ) % _ X N
B, VD, = : L — WDy = D, Dy = 0.
S e
i Egw
Koo = 2 Ept g, Two smooth rational curves,
contacting at a point with order 2.
E= -4, m_= 3. 2E, |
\ .
B N
\ .
_ \( i g Xy
q J DL = A —_— (D, ) = D2 D, = 2,
1
__________ L_Ll
/I ER:
Ko = 3 Eet 2 E; + E, Two smoaoth rational curves,
contacting at a point with order 3.
€= -5, m_= 4, 3 and 2.

-4 -3g. =2
s itz e
t I ! 75 R ”2
D UD, = : : —  WUDy =1, D, = o.
]
- R

—

1 Ex

S R A
t

Ko = 4 Ept 2 En+ Ez . A rational curve with a (2,3) cusp.

-2 .
-% \ 14 v .
- . 7y E, Y 2
o, VD, g, |2 — WDy =D, D, = 4.
\ 3 \r E‘
' €
"

Ko = 6 Ew+'4 E v 2 E,+ 55 . A rational curve with a (3,4) cusp.
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3.
‘)-A\l:} -3 N
\ —
\\ //t:"Z /El
%
2R
I Y S
7= -
/ Ee

(The subdiagrams

TABLE 6.

I~
T(D,y) = D

-
-

A rational

~< D

curve with a (2,5) cusp.

subdiagrams surounded by a dotted square describes D; .)

(a,b,cih)
£ - -1
(2,2,3:8)
(2,2,5:10)
(2,3,3;9)
(2,3,4;10)
(2,3,6:12)
(2.4,5;12)
(2,4,7514)
(2,6,9:18)
14 systems
of weights
of type 11
= -2

(3,3,4:12)

(3,5,5:15)

(3,5,7:17)

(3,5,10320)

(3,7,9:21)

(3,7:12:24)

(3,10,15:30)

(m_,mo)

1,2)

(1,1

(3, 1)

(2,0)

C(2,0)

(2,0)

(2,0)

(2,0)

(2,09

dual

graph

\
0

P
|

D

"- ’

Here p =

surounded by a real square describes D,V Dz of (2.4.1) and the

2 or 3.

Here (p,q,r) = (3,3,3),(2,3,4),

(p, D, 03)

S

I E .
Q7T

e G
rO— G -

TTINGCG—CED

- D
D Y

T TN DO—D
B

RS S

I )
~©—4.

TN DO—OD—D
D .—

T @2—@

[ty . @
= D—-C I

ST

(2,3,32,(2,2,5),
(2,2,4),(2,2,3).

Here (Dprr> =(313'3('(2!4'4)'

or (2,3,6).

= the set of

Dolgachev numbers.



(4,5,7:19)
(4,5.8:20)
(4,5,12:24)
(4,7.10:24)
(4,7.14:28)
(4,10,13;30)
(4,10,17:34)

(4,14,21:42)

E= -4

(5,6,9:24)
(5,6,15:30)
€= -5

(6,7,9:27)
(6,8,11:30)
(6,8,13:32)

(6,8,19:38)

(6,16,21:48)

(3

(3

(3

(2

(2

(3,

(4,

(3,

(3,

(3,

(2

<o

0

L0

»0)

,0)

»0)

o)

»0)

0)

0)

0)

0

0)

163
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(6,16,27:54) (2,0)

- e = -

(6,22,33:66) (2,0)

(8,9,12:36) (4,0)

(8,10,15:;40) (3,0)

(8,10,25:50) (3,0)

As a consequence of the above explicite description of the divisor Dm at

infinity, we have the following:

Assertion Except for the case: m_= 1 and mg = 0 (corresponding to 14
exceptional singularities), the triple (€& ,m ,m,) determines D, , D, of Dy, .
Note 1. It is quorious to observe that the cannonical divisor and the

resalution graph of the singularity Xy is also determined by the same triple
CE.m_,my) (cf. (2.4) AsSertion iv), v) and TABLE 4.). Since these numbers
¢£,.,m_ and m, are well defiﬁed fﬁr all Gorenstein singularity with a ttaction. it
may be reasonable to ask the following:

Conjecture Let Xabe a minimally elliptic singularity with Cx-action. Then

a smoothing thi Xoover a positively graded part of the parameter, is naturally

cogmpactified by a K3 surface, whose Structure such as described in (2.4) Assertion

iv),v) and (2.5) Assertion deepends only on the triple ( €,m_.my).

Note 2. There are 9 more regular systems of weights with &= -1 besides
those of the TABLE 1. The Miilnor fibers are also compactified by K3 surfaces.
In 6 cases of them, the divisor Dm is a smooth elliptic curves with Di = 0.

Hence the surface ?;admitts a structure of eltiptic fibrations (cf §}3L

22
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9 3 The classs having one negative exponent with 0 exponents

In this paragraph we study surfaces for régular system of weights (a,b,cih)
which has € as the only negative exponent and 0 as an exponent. If €= -1 then the
corresponding singularities are Fuchsian and hence the corresponding surfaces
are K3 as stated in the introduction. Otherwise we shall see that the surfaces

are of Kodaira dim 1 with elliptic fibrations over(P'( see (3.5),(3.6)),

(3.1) System of weights. There are 9+2+]1 reduced regular systems of weights
which has one negative exponent and some 0 exponents according as £€=-1,-2 or -3,
which are listed in the following TABLE 8. ( The case £= -1 is already treated

in (23] so that we shall omitt the case from the consideration in this paper.)
(Proof. For a system (a,b,c:h) after the smallest exponent €, the next small exponent
is + min(a,b,c). Hence the condition on the sysstem implies €+ min(a,b.c) = 0.
Further if £% -1, then | must be an exponent for the system (cf (5.5),[24]), which

implies - &+ 1 e(a,b,c). A catculation similar for the TABLE 1 shows the resuilt.)

TABLE 8.
(a,b,cih) exponents
€= -2
(2,3,5:12) -2,0,1,2,3,3,4,4,5,6,6,6,7,8,8.9,9,10,11,12,14
(2,3,7514) -2,0,1,2,3,4,4,5,6,6,7,7,8,8,9,10,10,11,12,13,14,16
£= -3
(3,4,5:15) -3,0,1,2,3,4,5,5,6,6,7,8,9,9,10,10,11,12,13,14,15,18

Note that the multiplicity a of zero exponents is 1 in all cases.

0

(3.2) Polynomial f(x,y,z,A). For each system of weights (a,b,c:h) of the TABLE 8.,
we associate!: i) a weighted homogeneous polynomial f(x.y,z,A) with a parameter ]

for the weight (5.5.2), ii) the Milnor number/¢ and the signature (Pﬁfffg of the

Mitnor fiber (5.7.4), iii) the dimentions (m_.mo,m+) of deformation of f (5.7.2).
: TABLE 9. .
(a,b,ci) M Fi fo m_ omy m, polynomial restriction
¢

(2,3,5:12) 21 2,2,17  3,1,17 xb o+ vt e xz? A xPyz A -edko.

. 4
(2,3,7514) 22 2,2,18  3.1,18 xT o+ xy* + 22 + AxPyz X -edi0.
(3,4,.3:13) 22

2,2,18 4,101,171 x5+ xy3 + 23+ Axtyz f*éT#O-

23
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Note that the number m, Of the parameter L ( =dimension of homogeneous deformation

of f ) is always 1. Another normal form will be given in § 4 TABLE 14.,

(3:.3) Resolution. The minimal good resolution of the singularity X,== ((x,y,Z)GCSZ
f(x,v,z,L)=0> is described in (5.6). Numerically it is determined by the data:
the genus g(Eo) and the self-intersection number E? of the central curve E,
, the set A of the order of cyclic groups and d := -€ .,
In the TABLE 10., we give such numerical data and the resolution graph

with the coefficients of the cannonical divisor near by for polynomials of TABLE 9..

TABLE 10.
(a,b,cih) S(Ey)  Ex A resolution graph
(2,3,5:12) 1 -1 5 E —C3
A 6=/ -3 -2 -1
(2,3,7:14) I -1 3 C2—(2)
o=y -3 -2 -1
(3,4,5318) 1 -1 s ‘4!’ E—(-2—2)
=y -4 -3 -2 -1

Note. The shape of the dual graph and the cannonical divisor depends

only on the triple (E,m_,m,). (Compare (2.4) Assertion iv),v).)

(3.4) The compactification. The unfoiding of the polynomial f, the compactifications

A~

it of their Milnor fiber Xt for teS (ar S;) are described in (5.7),(5,8). The sur-

~ Xt
face ?% is a union of the open part ?; (the resolution of the Milnor fibéfpjand the

divisor at infinity Dp + The cannonical divisor of Yt is a sum K+ 2 Ky, where
~ reX,
supp(K 1C D and the second term K, vanishes away for teS; .

In the TABLE 11., we describe the dual graph of DCU and the cannonical divisor Wo'

TABLE 11,
E) E, Ego
(2,3,5:12) CD)—3) K

n
m
ﬁm
S
"
o
.

£ g
(2,3,7:14) Ko = Ep » Egp= 0 -

& Ew

(3,4,5:15) {IDP——!!I' K

In the above tablie, the vertex in the right terminal of the graphs denotes the curve

b}
n
o
m
m

2.
Py 0 .

Em, which is an elliptic curve of self intersection zero. Note that the cannonical

2¢



divisor K., is determined by the triple (g,m_,m,)(Compare (2.5) Assertion.)

(32.5) Now we have the following descriptions of the surface X, for teS; (cf(5.7)ii)).

t T

i) The surface Y% is minimal.

it) The geometric genus Q#XQ is equal to V. The second Chern number'c% is equal ito 0.

iii) The Kodaira dimension bf the surface is equal to 1.

~r

iv) The complete linear system I-EEw[ defines an elliptic fibration of Yt aver iP' such

that - tE,is a muitiple fiber and E, ( in the notation of the TABLE 11.) is a - & -ple

section of the fibration. (See (3.6) for details.)

Proof, i) Since Km is an efective elliptic curve, the adunction relfation

shows that Yt is minimal and that Yt is not a ruled surface.

ii) The first Chern number c, = Euler number of X = 1+ u+ #H(irreducible components
of D_\NE.> = 24 (TABLE's 9 and 11) The second Chern number c% = Kl'= El =0

» S0 . : ! 0 ’
Hence the Noether’s formula P% # 1 = (¢t + €y )/12 implies %‘= 1.

¥
iii) K; = 0 implies that kX 2. Since Xy is not ruled, X is only possible to be 1,

(3.6) As was stated in (3.5) iv), we see in this section that:

The complete linear system (-¢ Ewl defines an elliptic fibration of %; over&P';
First tet us see that the f(-¢€E,) = 2 and |- CE,l is spanned by the constani

t=w/w and x/w® , where (x:yiz:w) is the homogeneous coordinate for the ambiant

weighted projective'spacetP(a,b,c,l) of Y;. (Recall that ﬁ; is the resclution of

Yt and Em is the strict transform of the divisor in i} defined by w = 0 (cf (5.8)).

Since deg(w) = 1, homogeneous polynomials in (x,y,z,w) of degree fess or equal
than -€ is either one of 1, w,--+, W%, x. Hence the complete linear system }- £ Ey!
is contained in the space spaned by t and x/w'E . In fact we shall see by explicite

calculations of each cases, the function x/w™% is holomorphic on the exceptional set
of the resolution Yt - Yt . Before-we describe each individual cases, we summerize

some generality of the fibration as a statment, which are verryfied by case by case.

i) The rational function x/w® on Y% for teS¥ defines a fiat morphism:

~

T= )(/wﬂ“p X

L —s .
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-
ii) The fiber W) is -EE

s o (¢f TABLIT)
iii) The restriction of 7 on the curve Elc;:IE;?T;;;/a -€ -fold covering

gj;P' which is branching at ® of order -£ and at some other points.

iv) The general fibers of T are elliptic curves.

v) In the following we figure the singular fibers of the fibrations ®W:X, —> |P'

t
for te S/\(Oxd%,O) = the degree zero part of the parameterspace S.
N 5]
(2,3,5:12)  equation: xb+ v¥+ xz% +« 2x%vz - w'?= 0.
case A = 0
tocation ! singular fiber
x/w*= 0 a union of 5 smooth rational curves,intersecting in D¢ diagram.
(x/w¥ =1 two smooth rationa! curve contacting at a point.
x/w¥= 00 . 2 multiple of the ellipntic curve E,
0

S

case A% 0
location ! singular fiber
x/w = 0 M a union of 5 smooth rational curves, intersecting in ﬁ;diagram.
(x/w2)t = : a ratiocnal curve with a node.
7\" PR > . C .
(l—z;)(x/w*) =1 two smooth rational curve crossing at two points.
x/w = © : 2 multiple of the elliptic curve E
6 W

(2,3,7:14)  equation: X'+ xv¥+ 22+ 2%vz - w* = 0.
case A= 0 .
location ! singular fiber

x/wt= 0 s two smooth rational curves contacting at 0 on E,.
(x/wl)}= 1 f two smooth rational curves contacting at a point.

x/wk= 00 ¢ 2 muitiple of the elliptic eurve E,

o]
/ N
9E,
(/V——J
7

24
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case A% 0 !
location ! singular fiber
x/w = 0 two smooth rational curves contacting at 0 on E,.
(x/w ) =1 ! a rational curve with a node.
'\ . . )
(I‘Z;)(x/w )y = 1 two smoOoth rational curve crossing at two points.
X/w =

(3,4,5:18)  equation: X*+ xvo+ 23+ Axtyz - w” = o,
case A= 0
location | singular fiber
x/w= 0 three smooth rational curves crossing at 0 on E,.
(x/w‘);= 1 three smoath ratiognal curves crossing at a paint.
X/w = ® : 2 multiple of the elliptic curve Em.

case A% 0 “Y;T—J 3Em
location ! singular fiber
x/W=0 three smooth rational curves crossing at 0 on El‘
(x/w3)y= 1. a rational curve with a node.
X s . . . .
(!-Ii)(x/w y=1 7 three smooth rational curve forming a triangle.

x/w’= (Y] . 2 multiple of the elliptic curve E,.
[+4]
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§4' The class for the smallest exponent £ eaquals to -2

[n this paragraph we study. surfaces .for regular system of weights (a,b,cih)

such that

0, 1

4. 1) In
(Due to the
three cases

According to the multiplicities of exponents,

(a,b,cih)

(3,10,15:30)

(3,7,12524)

(3,7,9:21)

(3,5,10:20)

(3,5,7:17)

(3,5,5:15)

(3,3,4512)

(2,3,7:14)

(2,3,5:12)

(1,6,9:18)

(1,5.,8:16)

(1,5,7318)

(1,3,6:12)

(1,3,5:11)

(1,3,3:9)

(1,2,5510)

(1,2,3:8)
(1,1,4:8)

(1,1,3:1)

or >1,

'= atb+c-h = -2. According as the multiplicity a; of zero exponent is

the surface is K3, of Kodaira dim | or general type (see (4.5)\

the TABLE 13., we list up reduced regular system of weights with €= -2,
general inequality - €+1 > min(a,b,c) (cf (5.5.7),[241), we have only
1,2 or 3.

min(a,b,c)= Detailed calculations are cumbersome and omitted.)

they are divided into groups.
TABLE 13.
exponents

-2,1,4,7,8,IO,]1,13,14,16.17;19,20.22.23,26,29,32
-2,1,4,5.7,8,10.11,12,13,14,15,17,i9,20,23,26
-2,1,4,5,7.7,8.f0,11,13,14.14.16.17,20.23
-2,1,3,4,6,7,8,9,10,11,12,13,14,16,17,19,22:
-2,1,3,4,5,6,7,8,9,10,11,12,13,14,16,19
=2,1,3%2,4,6%2,7,8,9%2,11,12%2, 14,17

-2,1%2,2,4%3,5,5,7,7,8%3,10,11%x2,14

~2,0,1,2,3,4%2,5,6%2,7%2,8%2,9,10%2,11,12,13,14,16

-2,0,1,2,3%2,4%2,5,6%3,7,8%2,9%2,10,11,12,14

-g.ﬁl.o.i,2,3,4*2,5*2,6*2.7*2,8*2,9*2,10*2,11*2,]2*2,13*2,14*2,15.16,17,
1T, 19,20 . » S

-é:-l,o,1.2.3,3,4*2.5*2.6*2,7*2,8*3,9*2,10*2.11*2.)2*2.!3*2.14,15,!6.17,
-g,-l,0.l.2.3*2,4*2.5*3.@*2,7*2.8*2,9*2.l0*3,}1*2,12*2.13,14,15.]6,17
~2,‘l,0,1*2,2*2.3*2,4*3‘5*3,6*3,7*3.8*3,9*2;10*2,11*2,12,13,14
-2,-1,0,1%2,2%2,3%3,4%3,5%3,6%3, 7%3,8%3,9%2,10%2,11,12,13

-2,-1,0,1%3,2%3,3%3,4%4,5%4,6%3,7%3,8%3,9,10, 11

~2,-1,0%2,1%2,2%3,3%3,4%4,5%4,6%4,7%3,8%3,9%2,10%2,11,12
-2,-1,0%2, 1%3,2%4,3%4,4%5,5%4,6%4,7%3,8%2,9,10
~2,-1%2,0%3, 1%4,2%5,3%6,4%7,5%6,6%5,7%4,8%3,9%2,10

=2,-1%2,0%3,1%5,2%6,3%7,4%7,5%6,6%5,7%3,8%2,9

28
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(1,1,2:6) -2,-1%2,0%4,1%6,2%8,3%3,4%3,5%6,6%4,7%2,8
(151,135 -2,-1%3,0%6,1%10,2*%12,3%12,4%10,5%6,6%3, 7"

Here recall the convention that u*v means u,...,u (v-copies).

(4.2)  The poiynomial f(x,y,z,Ad), (m_ . my v My and (s Mos HOD

Let (a,b,cih) be a system of weights of TABLE 13. In the TABLE 14., we shall
give a weighted homogenous polynomiat f(x,v,z,4) with mc—number of parameters for
the weights, where My o Me and m_ are the numbers of parameters of an uinversal
unfolding of f with positive, zero and negative weights respectively(5.7.2),

The first 7 systems of TABLE 8. is already treated in TABLE 2, and are omitted.

TABLE 14,

(a,b.cih) H M Ao po m_m m polynomial

(2,3,7:14) 22 2,2,18 3,1,18 xS -y 8- vy + 22 A% 0,1

(2,3,5,12) 21 2,2,117 3,1, 17 A=y (x3- vy v 2% A¥+ 0,1

(1,6,9:18) 34  4,2,28 4,1,29 vixb-yrxb-ayy + 2% r#0,1
. ﬂ £ s 2

(1,5.8:16) 33 4,2,27 4,1,28 Xy (x-y)(x°=2y) + z A% ¢ 1

(1,5,7318) 32 4,2,26 4,1,27 y(xyly)(xxlly) + xz2 A %01

(1,3,6:12) 33 4,2,21 5,2,26 VO - ORI O3 Ay + 22 : '

s 2y L2/ 2 & v & ¥ \ ( P A"*’\J 1/1‘,‘40,’1
(1.3.5510) 32 4,2,26 5.2,25 Ay O A O3 -hyy v vPz v xz? aa; 40,
(1,3,3:9) 32 4,2,26 6,3,23 Xy +y +z+ (y + yz + 7z )X
(1,2,5510) 36 4,4,28 6.3,27 v O Q) (xB-dy ) (x2Ay) + 2% A3, 2,70,

‘ 4 v
(1,2,318) 35  4,4,27 7,4,24 Sz Ty-axD v 22y Aty A0
v
(1,1,4:8) 49  6,6,37 10,5,34 Xy (x=y)(x=Ay)oo . (x=ky) + 2% 332 Ac+0.1
(1,1,3:7) 48 1 6.6,36 11,6,31 Z*x + g(x,y)z + h(x,y) where g,h are
. homogeneous of degree 4,7 respectively,

(1,1,2:86) 50 6.8,36 13,8,29 723 + g(x,y)z + h(x,y) where g,h are

: . homogeneous of degree 4,6 respectively,
(1,1,155) 64 8,12,44 20,12,32 f(x,y,z): homogeneous of degree 5

(4.3) Resolution. The minimal good resolution of the singularity Xo== ((x.y,z)eCBi
fix,y.z,M)=0) is described in (5.6). It-is numerically deteremined by the data:

. 2 Eo
the genus g(EO) and the self intersection number E; of the central curvér)the set A

(D .....p.) of the order of cyclic grouns and f:= -£= 2.  (See TABLE 15.)

29
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For a system (a.b,cih) of TABLE 13., the set A consists of odd integers due
" to (5.6.5). Hence the dual graph for the minimal good resolution of the singutarity

and the coefficients of the cannonical divisor KQ of the singularity are as follows:

r-branches,

= - = = |+b-r.
l+a‘ ao,and g genus(Eo) 1+b-r

TABLE 15.

(a,b,cih) A resolution graph dual graph of D

(2,3,7:14) 3

(2,3,5:12)

[41]

(1,6,9:18) 3
(1,5,8:16) 5
(1,5,7,15) 7

(1,3,6:12) 3,3

(1,3,5:11) 3,5

(1,3,3:9) 3.3,3

(1,2,5;10)

(1,2,3:8) 3

20
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(1,1,4:8) EO 'Eoo
(1,1,3:7) 3 Eo “)—(-2 @EN

(1,1,2:6) E,,
(1,1,1:5) Eo EW

Note. The shape of the dual! graph and the coefficients of cannonical divisor are
determined by the triple (E,m_,mo) except for the pair (1,3,3:9) and (1,2,5:10),

which are already distinguished by ao(=the multiplicity of zero exp.)(cf (2.4) Ass.).

(4.4) Compactifications., The compactifications Yt of the Milnor fiber X, (t&ScTSf)

&

are described in (5.8), Ky s a union YtUDm of the resolution ?£ of the Milnor
~ - .
fiber and the divisor Dy at infinity. The cannonical divisor okat is a sum Ky+ Z:Kx

, xeX
such that supp(Ky) CDy and the second term Ky is zero for tQSf.

Let us describe more details for the case of £= -2,

Assertion i) The dual graph of the diviser Dy is the following (See TABLE 15.):

r-branches
s where K3:=(p.-1)/2 for npea.
————— L v ——— ¢

[
m

- r
(1) Ky = Ey and Ky = Eg = g-1 , where gi= g(Ey) = 9(Eg) = a

0°
Proof. i) Since pe A is an add integer, it has the following continued fractian: .
: 1 1 1 1
p/(p-2) = 2 - — —_— — — , where p = 2 k +1.
2 - 2 ...- 2 - 3
C _
k-1

This gives the intersection numbers for the curves on the branches of Dg.
ii) Let us put Ky= E+ K’ , whereAK' is a diviser with support on the

branches. The adjunction formula KgE + E = 2g(E)-2 vimplies‘that K*E

= 0 far all curves E on the branches of Dg,. Since the intersection matrixes

on branches are nondegenerate, K’ = 0 and hence Ky = En. Again applying the

adjunction formula 29(Egx)-2 = KyEe + £ » we obtain ii) ., QED

P
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(4.35) Summerizing those calculations above, the surfaces Yt (tES;) are as follows.

We distinguish three cases according to a, -1 = g(Eo)—l .

. 8(Eg-1 < O.

In this case Kg® Eq is an exceptional curve of the first kind. The cannonical

X % 7
bundle of the blown down surface XL = xt/Em is trivial for teS+, so that xt is a K3

surface with a configulation of three lines crossing normally at a point.

This case is already studied in §3 , S0 that we omitt further details.

1. g(Ex)-1 = 0.

In this case Ky,= Eyn _is a smooth elliptic curve with self-intersection

- ~ B
zero and hence the surface is minimal. Xy for t€S4 is of Kodaira dimension 1,

which has a structure of elliptic fibration over P' with Epn as _a regular fiber.,

a4
( That Ky, is an elliptic curve implies Xt is minimal. Then Ké =0 implies
~ o '
that the Kodaira dimension. of Xﬁ can not be 2. Since Xt can not be a . ruled surface
~
( Ky is effective), the Kodaira dimension of 7{ is only possible to be 1. The fact
N ~
the irregularity g of the surface is zero (5.9) implies that Xﬁ has a structure of
an elliptic fibration over P’ accarding to the classification of surfaces [ 1. ged)

An explicite description of the elliptic fibration is given in (4.8).

LI g(Eg-1 > 0.

In this case Ky = Eg IS _a smooth curve of genus > | , whose selfintersection
number Ky = g(Ey)-1 is positive.
lad

The surface Yﬁ for tES{ is minimal and of general type, which satisfy the

i

numerical equality: Pﬂ= L cf/Q] + 2 where % is the geometric genus and c? is the

second Chern number of the surface (cf (4.6.2)). For this class of the surface, we

refered [ 1,0 1.
(For the same reasons as |, Yi is minimal and cannot be ruied., Then the positivi

-ty Kt) 0 implies that Y% is of general type due to classification of surfaces [ 1.)

. >
The numerical invariants Ps;c% and ¢, of the surface Xy is calculated in (4.6).

(4.6) We calculate: the first Chern number c,» the second Chern number cf= K;
2 o .
and the geometric genus P32= h"(6~) for the surfaces Xt (tEESf). They are easily
X .

calculated by the following formuia with the data in TABLE’s 14,15,16.

12



c,i= Euler # for i} ={Euler & for i;)+(Euler # for,Dp)

1

(1 #+ m)+(2 - 29 + #lirreducible components of D -E )] |

2is kis g -1
Py * 1 = (el +cy )/12 (Noether's formula) .

The following TABLE 17. gives the invariants of the surfaces and the number of

the weight (a,b,c) which.is equal to 1 for an application in (4.7).

TABLE 17.
sysfém of weights c, et % fileela,b,c): e=1)
(2,3,7:14) 24 0 P o
(2,3,5:12) 24 0 i 0
(1,6,9:18) 36 0 2 !

(1,5,8116) 36 0 2 |
(1,5,7315) 36 0 2 I
(1,3,6:12) 36 0 2 1
(1,3,5:11) 36 0 2 1
(1,3,319) 36 0 2 i

(1,2,5510) 35 1 2 1
(1,2,3:8) 35 1 2 1
(1,1,4:8) 46 2 3 2
(1,1,3:7) 46 2 3 2
(1,1.2:6) 45 3 3 2
(1,1,1:5) 55 5 4 3

As a consequence of the above table, we get the following formula.

(4. 6. 1) % (Xf) =1 + #( e (a,b,c) e=1 ) for te S..

£
Another consequence of the table is the following equality:
(4.6.2) Py (X,) = L ctr2] + 2

3

far the tast group of 7 systems of weights satisfying the condition a,> 1.

23
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(4.7) The cannonical [inear system lel for the surfaces ¢ (teS;) are as folliows,

: : by
Assertion The module for the linear system leI is spanned by w anJTfhe coordinatag

(x, y, z)> such that the coresponding weight ¢ (a, b, ¢)> is equal to 1,

Proof  Recalling Ky = E,, we have P = R (CF) = h%(6 (E) = din(the space of
meromorphic function on ?; which may have at most a simple pole along Eg.).

Let us show that if the weight (a,b,c) of a coordinate (x,y,z), say x, is |,
then the meromérphic function x/w belongs to the space HO(%;.Q)(EW)). In view of
the equality (4.6.1), this proves the assertion, (%t is not linear.)

First recall that %; is a resolution of the surface Yt injP¢a,b,c,1) by biowing
up the cyclic quaotient singularities an %}, which appear at the coordinate axis
LXVL?VL% inlP(a,b,c);= (w=0)C|P(a,b,c,1). Since Ep is the strict transform
of the curve §tn|P(é.b,c) and hence x/w has simple pole'along E,» we have only
to shaow that x/w does naot have poles an the excepticnal set of the resolution

A~

it —> it' The assumption on the weight a=1 and the description of the points
f;n<LquyuLE) (5.6.5) implies the.singiar points of i; lie only on Ly. [If, for
instance, z%0 at a singular point, Y} is locally at the point a quotient of smoath
yi= ((x.y,w)eCJZ fix,y,1) = wh 5 by the action of ;e?P, (X,y,w) > (4 x.4by,ﬁ\»ﬂ
Let (v,w) be a local coordinate system of Y at the fixed point, on which the action
af {ez2 is (4£v.4 w) (cf ). Let us develop x into a power series Z;aufv[w;
7

in the local coordinates. Sicne e Zracts on x as 4 x, the power se:ies is a sum
over the indixes (i.j)aNf such that -2i + j = 1 mod(p). In case j = 0, the
condition 2i + 1 = 0 mod(p) implies i = (p-1)/2 + n p for some naNy,. If we

have shown that J?4Vi/

w is hotomorphic on the exceptional set of the resolution
of the quotient singularty, we have also shown that x/w is Eolomorphic on the

exceptional set. Let us give a sharper form for a later use.

*x) Let E‘,...,E& be the exceptional set for the minimal resolution of the

cyclic quotient singularity of the type (p,-2) with k=(p-1)/2, which are intersecting
W=0 vs0

= E,
as: \§E?><f%..7<j§<//. Then the rational! function v h /w defnes a pole along w=20

B , a rational parametrization of E,, and a zero function on ElU..U Eﬁ.(Proof omitted)

This compliete a proof of the assertion. ged

J¢
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(4.8) We shall describe the cannonical map %1-——95P‘, for each systems of weights.
The details of the calculations are omitted.
(2,3,7:14), (2,3,5:12)
%;(%;) = ] for theée two cases. Hence the cannonical maps are constants,
(Note that the muitiple —er defines eltiptic fibration (3.6).)

(1,6,9:18), (1,5,8116), (1,5,7315), (1,3,6:12), (1,3,5:;11), (1,3,3:9)

(Kk) = 2 and Ho(ik, 0 (Ky)) = [1.x/w) for thesebcases. The cannonical
map W= (Xjw): ;c ~—> P! defines an elliptic fibration of Yt as follows:

‘-‘::D

i) The map W is a flat morphism.

-
i) M(o) = Epe

iii) The -3 curves of Dm (in the TABLE 15) are global sections of the map X.

iv) The general fiber of W is a smooth eliiptic curve.

v) Singular fibers for teS/\(OgEm%0)= (the degree 0 subsapce of S) are follows.

(1,6,9:18)  equation: voxd- vicxb-av) + 22 W= o,
case A-A 4+ 1 =0
location : fiber
x/w =0 3 smaoth elliptic curve.
It3 . . .
(x/w) =% a rational curve with a (2,3)-cusp.
X/W = B Ep ( a smooth elliptic curve)

0, (xoul =8, iw

’

" E L ] ]
smooth elliptic // ‘< o \ Ep SmoOth elliptic curve
L
15

A

case A7-2 + 130
location . fiber
x/w =0 . smooth elliptic curve.
(x/w#y=q ; a rational curve with a node.
(x/wfy=ﬁ . ~ a rational curve with a node.
x/w = (0 : E ( a smooth elliptic curve)
o, xwi =, <x/w>’y-/-5 ke

E
smooth ellnntnc/// O( C{ O{ C( En smooth elliptic

5
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v 2 b
(1,5,8:16) equation: X\(,\;~ Y)(x;-}\‘() + 7= W = 0.
case - + 1 =0
lacatian : fiber
x/w = 0 N a union of 3 smooth rational curves intersecting at a pont.
it .
(x/w) = ¥ . a rational curve with a (2,3)-cusp.
X/w = 0 . E, ( a smooth eltiptic curve)
, (x/w)’ - ', °°
__<{ << \\ 0 smooth elliptic
case A '
iocatnon f:ber
x/w = 0 a union of 3 smooth rational curves intersecting at a point.
ib .
(x/w; = X a ratignal curve with a naode.
JE . .
(x/w) =ﬁ ] a rational curve with a node.
X/W = E- ( a smooth elliptic curve)

16 16
0, (x/w) =a, (x/w) =p,
/ [ ! C{' [,
0<l?,_.0{ Ogv\ﬁ’ Ep smooth elliptic

(1,6,7:15)  eauation: v(x¥- vyoxd= avy + xz22 ub = 0.

2
case A-A *+1=0
location ‘ fiber
x/w =0 . a union of 5 smooth rational curves intersecting in D .
5 . . .
(x/w)y = Y . a rational curve with a (2,3)-cusp.
x/w = (0 . E ( a smooth elliptic curve)
0, (x/w)"‘- T, e
E /L 1 ) |
>%/ < \Ew smooth elliptic
L Ij
case -2+ 1 fo0
location ; fiber
x/w = 0 : a union of 5 smooth rational curves intersecting in D .
(x/wf = b a rational curve with a node.
(x/w)/‘g-= P : a rational curve with a node.
x/w = (0 : Ew ( a smaooth etliptic curve)
i
0, (x/w) =, (x/w) =P, o ,
E L ] Kl \ ;o
o c%g 6K§ E, smooth elliptic
e ——
.:F 15-

>{
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(1,3,6:12) egquation: Y(XB—,\,\')(XS-;\LY)(,\ -,\,Y) + Z')' - wii: 0.
case
location fiber
x/w = 0 a smoath ellibtic curves.
(x/w{;= 1 two smooth rational curves contacting at a pont..
X/w = M Ewo (= a smooth elliptic curve).
case
focation fiber
x/w = 0 a‘smooth efliotic curves.
(x/wits
(x/w)n=
Xx/w = W Ep (= a smoath elliptic curve).
case
lacation fiber
x/w = 0 a smooth elliptic curveé.
(x/w)it=
(x/w)u=
(x/w)a=
X/wW = 0 Eg (= a smooth elliptic curve).
A WL TRl _r
! / . \ / ‘ \
/ [T \ |

(1,3,5:11)  equation: Xov(x3- 4002y + v2z + xz? - W' = 0.

case ‘
lacatian fiber
x/w = 0 two smooth rational curves contacting at a point.
(x/wfl= 1 two smooth rational curves contacting at a pont,
x/w =0 E (= a smooth elliptic curve).
case
laocatiaon fiber
x/w = 0 {wo smooth rational curves contacting at a poini.
(x/w)“=
(x/wf'=
x/w = 00 E. (= a smooth elliptic curve).

%]

27
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case
tocation - fiber
x/w = 0 a smooth elliptic curves.,
(x/w) =
(X/w) =
(x/w) =
X/w = E (= a smooth elliptic curve).
01 [ Ilm 0 (% ?
Ew
=1 I
(1,3,3:9) equation: XY(X = ¥Y)X(X = ¥)XX - Y)Y+ 7 -W =0,
cése
tocation fiber
x/w = 0 a smooth elliptic curves.
(x/w ?= 1 three smooth rational curves crossing at a pont.
x/w = Ep (= a smooth elliptic curve),
case
location fiber
x/w = 0 a smooth elliptic curves,
(x/w)7=
(x/w)q=
X/w = 00 Ep (= a smooth elliptic curve).
case
location fiber
x/w = 0 a smogoth eltliptic curves.
(x/wﬁ=
(x/w) =
(x/w)q=
x/w = (0 E (= a smooth eliiptic curve).
Figure Do
0 L JER
e
¥j Y Y| TTTTTTTTETSToSoossssos mmmmsssssssssossmmseess
/ | | I e
~N——
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(1,2,5:107,(1,2.3:8)
P (X ) = 2 for these two cases. The linear system K | has a fixed paint
on E ; By blowing up X --> X at that fixed point, whose exceptional set will
refered as E., we obtain a fibration of X -=> P . The general fiber of

is a genus 2 curve and the exceptional set E is a gtabal sectian. The singular

fibers for the special point is as follows
(1,2,5:10)

(1,2,3:8)

(1,1,4:8),(1,1,3:7),(1,1,2386)

P (X ) = 3 for these 3 cases and H (X , (K )) [1,x/w,y/wl., The cannonial map
(x,y,w): X =-->P defines a covering, whose degree and descriminant are as foilows:
(1,1,4:8) equation: Z + g(X,Y,W) = 0 ,where g is homogenecus of degree 3.

is a double covering branching along g = 0,
The discriminant 1= ~4g is homogenbus of degree.8.

(1,1,3:7) equation: XZ + g(X,Y,W)Z + h(X,Y,W) = 0, where g and h arehomogenous
" of degree 4 and 7 respectively.

is a doublie covering of P branching along a degree 8 curve.
The discriminant := g - 4xh is homogenous of degree 8.

(1,1,2:6) equation: Z + g(X,Y,W)Z + h(X,Y,W) = 0, where g and h are homogeneqgus
. of degree 4 and 6 respectively.

is a triple covering af P branching along a degree 12 curve.

The discriminant := h - g is homogenous of degree 12.
(1,1,1:5) equation f(X,Y,Z,W) = 0, where f is homogenous of degree 5.
P (X )=4andH (X, (K)) [I,x/w.y/w,z/w] for this case. The cannonical map
(xtyiziw): X ==> P defines an embedding of X as a quintic surface in P .

7!
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[
§5 Wweighted homogenous singufarity of dimension two

(5.1) This § is a review on the weigﬁted homogeneous singuléritiés of dimension
two, stuaied by V.I.Dolgachev, E.Lopijengé, P.Orlik, H.Pinkham, P.Wagreich, J. Wahl
and the éuther. We descaibe uniformization, resolution, comapctification of Miinor
fibers for mainly’hypersurface cases in connectiﬁﬁ with regufar system of weights

to fix notations for %§°s 2,3 and 4. Many of the results are Qell-known or elementary

sa that we give only references aor sketchy proafs,

(5.2) Cvclic extensiaons of PSL(2,R) and their action on [H{.

In the following, we present a weighted homogeneous singularity Xg as a quotieni
variety by a splitting factor for a cyclic extention of a Fuchsian group (5.4.1),
This is a reformutatiaon of a presentatian of a quasi-homognecus singutarity by a
use of automorphic forms by Dolgachev [7], Wagreich [351],

i) Let | := (zeC : Im(z) > 0) be the comiex upper half plane. As usual Aut(H) is
isomarphic to PSL(2,R)=SL(2,R)/{+1) by g(z):=(az+b)/(cz+d) for z¢H and g=[%g}mod(t}).

it) Since FKPSL(Q,R)) = 2, the universal covering map defines a cyclic extension.
. ~
(5.2.:1) | —> Z — PSL(2,R) ——> PSL(2,R) —> | - ‘(exact).

. ~
An element Q’of PSL(2,R) is represented by a pair (g9,9(z)) of an elment g of
PSL(2,R) and a branch @®(z) of the function Iog((cz+d)‘)/2m/-l on H. The product is

given by geN = (gah,$(2)+9(h(z))) for g = (g,9(z)) and N = (h,¥(z)).

la >4 .
PSL(2,R) acts on the infinite cyclic covering (Hy, of the cannonical C*x-bundie of H.

(5.2.2) F(z.2) = (g(z), *+(z))  for  (2,X)€ HeT Hxe
and § = (g,4(z)) € PSL(2,R).

Pii) For a positive integer d, (5.2.1) induces a finite cyclic extention,
(5.2.3) | — 2/3d — EEL(2;R)/Zd —> PSL(2,R) —> 1 (exact).

~/ .
An element § of PSL(2,R)/Zd is represented by a pair (g,9(z)) af an
element é of PSL(2,R) and a branch ¥(z) of the function (cz+d§d on H.
The product is goh = (goh,¥(z)P(h(z))) for 3 = (g,9(z)) andig = (h,¥(z2)).

The group PSL(2,R)/Zd acts on the Cx-bundie Hy:@= M, /Zd aver H

&o
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(z,v) = (g(z),vy(z)) for (z,v)eHy ¥ HeCx
: B B -and g = (g, ¢(z))e PSLC2,R)/Zd.
The action of PSL(2,R)/Zd on M does not have a fixed point. ( Lf (z,,v) were a
fixed point of (g,%(z)), then z,is an elliptic fixed point of g such that ¢(z,)=1.)
-2
Note. Recalling the fact dg(z)/dz = (cz+d) , it is easy to see that the

d-th bower of the C*-bundlelHd over H is the cannonical C*-bundle of H.

(5.3) A splitting factor for -a finite cyctic extension of -&@ Fuchsian group.
Let Mc PSL(2.R) be a co-compact Fuchsian group of the first kind.

Let T; be the inverse image of I’ in PSL(2,R)/Zd by the map (5.2.3) so that

(3.3.1) | — 2/7d — TQ —_— [ — (exact).

A splitting factor of the sequence (5.3.1) is a subgroup [7* of PSL(2,R)/Z%d which
is bijective to its image I' ., The projection map from 5=(g,?(z))e}’*377 1o its
second factor ¥(Z) define’s an automorphic factor, discussed in [81,035,(3.1.2)1].

Note 1. The sequence (5.3.1) does not split in general. Even it does split.’the

splitting is not unique, but depends on d-torsions of the Picard variety of IHQ".

Note 2. [f d=2, the sequence (5.2.3) and the C*-bundle ma are rewritten as,
(5.3.2) I — (£1) —> SL(2,R) ——> PSL(2,R) —> 1  (exact),
(5.3.3) M, % Hacx X i=C (u,ve & tmlusv) > 0 )

(z,v) F—— (zv,Vv)

~/
so that the linear action of SL(2,R) on{H induces the action (5.2,4).,. Hence the

splitting facter is nothing but a co-compact subgroup [’ of SL(2,R) such thatf7$(tJ .

(5.4) The Gorenstein singular point with good C¥-action -([81,[211,0341),
Let P*x¢ PSL(2,IR)/%Zd be a splitting factor of (5.3.1), which acts onlH proper

and fixed point free so that iHy /* ié a complex two manifold. 'By adding a‘point, put
(5.4.1) C Xg P= 0V MG/ TR,

i, Xg has naturally a structure of affine algebraic variety with an

isolated normal singular point at 0 such that

*/
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i) -XO admitts a good C¥-action (ie 0 \g is _in the closure of every orbit [i91.)

i) Xp is normal Gorenstein variety so that there is no-where vanishing

holomorphic 2-farm w oOn X0-<0) such that the Cx-action induces,
(5.4.2) tx(w ) = t W, for te €-¢0),

2. Conversely if Xg is a two dimentional variety with an isolated singular

point 0 satisfying the above i), ii) and d > 0, then it is expressed as (5.4.1)

for a suitable Fuchsian group f  and its splitting factor 7=,

Proof. i) Let " be a finite index normal subgroup of I’ , which has no fixed
point on jH (cf (31,[10]) and let [7'*% be the corresponding subgroup of T’*.Thenin/p'*
is a Cx-bundle over H/[" ' whose assaciated line bundle UH/p')UHHd/r’*) is negative,
since its d-th power is the cannonical bundle of the curvelH/p’ (cf (5.2) Note.).
Hence the zéro-section H/7’ ot the bundle can be blow down to a point 0, to obtain
an affine variety (0O)UHy/p’*, on which still the finite group F/p’=”*4ﬁ'* acts in a
natural manner where 6 is the only fixed point of the action. Thus (O)LHHJ/IT*
= (<0)U|Hd/p’*)/(l’/r’) naturally obtains a structure of an affine variety with
an isolated singular point at 0, which is normal by definition.

ce
ii) The C*;action on the bundle Hy/[* * naturally induces tﬁ?[f;{action on X, .
iii) The holomorphic two form on Hd of the following form:

(5.4.3) wi=  dzdv/vd

is invariant by the action of 531(2.m)/2d (5.2.4), Hence it induces a nowhere
vanishing holomorphic two form on X,-(0) = |H{/7 %, denoted again by W, Since the
singularity X, is normal two dimensional, it is Macaulay. These imply that X, is
Garenstein, The (5.4.2) follows, since the form (5.4,3) satisfies the same formula.
The fact that eprnent -d in (5.4.3) is =< 1 implies that'XocanAOt be smooth.

2. Due to Pinkham [21] (compaire also [4],[lf]), there exists a finite covering

X; of X;ramifying only at 0, s.t. X; is obtained by blowing down of the zerc section
section of a negative |ine bundle over a curve C. &' is still Gorenstein and the
existgnce of a non-vanishing haolomorphic two form implies that a power of the line
bundle is the cannonical bundle of the curve C([8,Prop.11, [23,(5. )1). That d > 0

implies that Euler number of C < 0. Uniformizing the curve C by |H gives the proof.
3.e.d,

g2



(5.5) Hypersurface case.

t. i) The germ of X,(5.4.1) near at 0 can be analytically embedded in @% iff X,

is globally embeded in 63 as a hypersurface for a weighted homogeneous polynomial f.

(5.5.1) e 1= (xayazde €0 f(x,y,z) =0 ),
(5.5.2) Fix,y,2) =24 c;;‘x‘y’ ko,
ai+bj*cﬂ=h

Here weights a.b,c and h are positive integers such that

(5.5.3) 0 < a,b,c £ h/72 , GCD(a,b,c,h) = 1 and d = h-a-b-c .

ii) Up to a constant factor, the form ( (5.4.3) is identified with the form,

(53.5.4) W = Resldxdydz/f(x,y,z)]

2. For given weights (a,b,cih), there exist at least one polynomial (5.5.2) having

an isolated critical point at 0, iff the following rational function X(T), may have

pales only at T=0, I[ts Laurent expantion at T=0 has non-negative coefficients [231].

b T AT T

(5.5.5) (T) :=
x e

SLERTRTE LASIDYS CEN Y

Prcof. 1., Suppose the germ (Xg»0) is given by the hypersurface g=0 for a ge€(x,y,z).
The existence of a Cx-action on X; implies that ¢ belongs to the idea! (394x.,39/9y,
39/9z) in €{x,y.z). Then there exists a local coordinate change, which brings g to a
potynomiat of the form (5.5.2) ({251). The local isomorphism of the surface X,
(5.4.1) and the hypersurface (5.5.1) extends to a global isomorphism since

both surfaces admit unique good C* actions. Since Xy is normal, the proportion
Res[dxdydz/f(x,y,z)]/u;, which is holomorphic nowhere vanishing on X, -(07,

extends to a unit function on X;. Hence atbtc+d-h = 0.

Note. For a fixed (a,b,cih), the set of polynomials having isolated critical

point at 0 is Zariski gpen in the set of all polynomials of the form (5.5.2).

Definition [231 1, A system of positive integers (a,b,cih) with max(a,b,c) £ h

is called regular if the function A(T) (5.5.5) may have poles at most at T = O.

It is called reduced if gcd(a,b,c,h) = | except for the type A'(cf {24, .5)1).

2. Let us develop X(T) in the finite Laurent series of the faorm,

%2
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M, . Mu )
(5.5.6) AT =T+ TRe v T 20 g 1"
) "
we call m,...,m, the exponents for (a,b,cih) and a, the multiplicity of the
exponent m . we have u = z Apy v The smallest exponent (= a+tb+c-h ) is dencted
e — M D —
by €. In case § < 0, we shall also use a naotation d:i= -€ = h-a-b-c (cf (5.5) 1. i),

Let (a,b,c;h) be anv reduced regular system of weights. Then there exists always
an exponent either egual to 1 or =1 [24]. Hence if £%21, we have an innequality

(5.3.7) d+ 1 %2 minta,b,c).

(5.6) Resolutions af the singlarity.
The minimal good resolutionﬁt§;~9 X,0f X,at 0 is described as foltows{61,[191,[21]

i) Let['and ['* be the Fuchsian group and the splitt{ng factor for Xo(5.3). There is
a natural map from the guotient variety §02=UHulHd)/F* = iHf U iHg /p* to Xy = COMYHg /7%,
which is the weighted blowing up of X, at 0 and H/7 is its exceptional set.Then ?ahas
a cyclic quotient singularity of type (p,d*) at deAvcgo,where x is a fixed point of [’
by an isaotropy subgroup of arder p and d is an integer s.t. d*= d mod(p) and O(d*<o.
By resolving such cyclic quotient singularities on 2 mininially, we obtain the minimal
good resolution ?; of Xé. The strict transform of H/f in ?; is denoted by E, and
called the central curve. Let A:=<p,,...,pk> be the set of the orders af isatropy

subgroups. Then the duai . graph of the resoilution (defined in [191) is as follows.

Obviousiy the graph is branching at the fixed points‘oan/p £ Eo'

B B
(5.6.1) E, (FO- - O
SRR
b, -~ —

L 1]

r- branches

i
— (continued fraction), (=1},

1
bil - bl"s...' - b;“

(5.6.2) p; /dy r,

’

In case X, is a hypersurface for the weights (a,b,cih), Eo is identified with
the curve in |P(a,b,c) defined by the equation f = 0 and the branching points set is
a subset of the intersection of E, with the coordinate axis of \P(a,b,c). Then,
(5.6.3) Q(EO) = a5 (Here 9(E, ) means ;he genus of Eo.)’

(5.6}4) - %;% = a -a tl, (Here EJEO means the Self—interseétion number of Euf)

(5,6.5) A = (eela,b,c): elh YU (dcd(e, f)*(N(e, f)-1): (e,flela,b,c)-diaganal subset)

Here 1 3 h ]
N(e,f)i= —(—) ————E————~—— and s*%t = t-copies of s.
he dr -5 a-tH | o1=0

2
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(Exactly the set A (5.6.5) presents the set of orders of isotropy groups at the point

of Ey,n(coordinate axis of P(a,b,c)?. Hence 1 must be deleted from A if it appears.)

The Vol( P )/ag:= 2(g(Ey)-1) + §3(1-1/p;) of the fundamental domain for [ is given by
1=l ’ :
(5.6.6) Vol ([ d/yi= d —%
S-b. 27" abC ‘ .

(The formula is shown similarly “to the case d = x1 [231.)

ii) Let the cannonical divisor K, on X, of the singularity 0€X, be defined as.
(5.6.7) Kg:= div(T*(w)) = the zeros minus poles of the lifted 2-form Jw*(w) on Xo‘

In fact 7*(w) does not have zeros for a minimal good resoclution so that -K, is

effective (Tomari, unpublished). The coefficients of E, in K, is equal to &~ 1.

(5.7) The universal unfolding for f(x,y.,z) and the Milnor fiber.

i) The universal unfolding of fix,y.z) (Thom { 1) is defined as a polynomial

(5.7.1) F(x.y.z,tl,tz....,t#>

‘ : 3F(X,¥,2,0,....0)
such that f(x,y,z) = F(x,y,z,0,...,0) and the partial derivatives 3Jt;

(i=1,...,) form a C-bases of the Jacobi ring CIx,y,z1/(3f/3x,9f/3y,df/3z).
Since the Jacobi ring is graded ring, whose Poincare polynomial is equal to
T’%(T), we may assume that F is a weighted homogeneous polynomial of degree h
with respect to deg(x)=a, dgg(y)=b, deg(z)=c and deg(t£)=ma+£ Ciz 1,o0, M),

Denote by m_,m, and my the number 'of parameters t whose degree is

negative, zero, and positive respectively, - By definition,
(5.7.2) m_ = Z: ap » m, = a_g » m, =37, am and M=m_+m +m, .
m<-g m>-¢

The equation F = 0 defines a family of affine algebraic surfaces

(5.7.3) Ngi= € (x,y,2)EC3: Flx,y.x.1) = 0 ) for ti=(t,,....t1,00€e",

[ M
. m ) N
Particularty (Xt,O) for tétm’ x C°X0 defines a family of equisingularities. The
. . m meo . - - '
family Xt for teOXC °x €' is studied by many authers since the surfaces are naturally
completed by adding a divisor at infinity as we see in (5,8).
M

. m
i) Let us denote by S (resp. Sf) the Zariski open subset of 0X( cx E—+ consisting

of points t s.t. Xt has at most finite number of (resp. rational) singularities.

&s
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te
A smoath fiber Xt owe%jg is called a Mitnor fiber, whose middle homology Hz(XL’Z)
is a free abelian group of rank i with the intersection form I of sign (U . e M),
(5.7.4) Me= 2T a, = 27 ay, Me= 2a,= 2a, , M= ag.
N mo " MR m . ° * o<m<h m

m, : )
iii) The geometic genus pg(Xt.O) of )(.C at 0 for xec”Lxc‘&o is defined as H(f%,qtg for

a resclution Yi —_— xc of the singular point 0. Then, we have a formula ([27]1,[91),

(5.7.5) Pg(ig:0) = (U FMe/2 = 33 2y

m<l
iv) a) Xt is rational.;;? pg(Xt,O) = 0 <=> All exponents are positive.<=> €= 1,

b) X (X¢,0) = 1 <=> £ is the only non-positive exponent.

t is minimally elliptic.<=> p
def.

3

(5.8) The family of compact surfaces over S .
i) Define the weighted homogneous polynomial G(x,y,z,w) of weights (a,b,c.1),

and the compact hypersurface Kt in P(a,b,c,1) with parameter teS .

Zow, )= wh &,y rwb, 2uC |
(5.8.1) Gxay,zyw, 1222 Wl FUx/why/w?,2/w 5050000000 L e )

(5.8.2)  Xi= ((xiyiziw)eP(a.b,c,1) : G(X,y.z.,w.t) = 0 ) for t€S .

Xy is a Cx equivariant comactification of Xy such that the complement E’:= Yl-xt
is a curve isomorphic to E,. The surface Y% has cyclic quotient singularities
of type (p ,p -dy) for peg along E’. The family (5.8.2) is analytically trivial
near £’ so that the singularities can be resolved simultaneously for t € S .
ii) Denote by ?% the smooth surface obtained by resolving the singular
points of Yt minimally., Let us decompose ﬁt as,
(5.8.3) X, = Xy UDg -
Here &% is the minimal resolution of the affine variety Xt and Dw:= %%'Yt’ called
the divisor at infinity. The strict transform of E' in i; will be denaoted by E,
and calied the central curve of Dg.

The dual graph of the diviser D is as follaows,

(5.8.4) r - branches O_ Ew

& O
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(5.8.3) B /(p.-d¥) = ¢y - —  — —  (continued fraction). {i={ ;)
9

3 - 2 = - -
(3,.8.6) Ew r a‘+ a, 1

tii) The cannonical diviser Kx of it is calculated as follows.

(5.8.7) Ky= Kp+ 2 Ky o
Xe 2€X,
where a) K. is the cannonical divisor of the singularity x of the affine surface Xf.

b) Ka)is the diviser having the support on qp, whose coefficients of Eoois d-1

satisfying the adjunction relation: 2g(E)-2 = Ka7E + E for the curves E on qn.

(5.3) 1)
Particularlty for teS;. the second term vanishes so that we obtain,
A )

(5.8.8) = kg for  tes.

Ko~
X}
fa 4
(Proof of iii). A cannonical divisor K§ of Xt is given by the zeros and poles of
t

(axdydz + bydzdx + czdxdy)dw + wdxdydz

a two from on ;} induced from Res
- t+&
xt w G(X,y,2Z,wW,s 1)

. which is regular and non-zero on Xtand is zero of order d-1 along E;:')

(5.9) Middle homology groups of Xy and X; .

Let {t be any smooth surface obtained by blowing down sOme exceptional
curves contained in Dy and let us denote by 6‘ the blow down image of Dm in ?}.
1. The surface ?f for te$+ is simply connected. Hence the first Betti number

b, and the irregularity qg:= dim H'(ff,CEO of the surface are zero.
t

2. The natural incltution th.xt induces an isomorphism of tattices,

(5.9. 1) HL(YE,Z)/rad(I) C= (zID ])J, Aﬁr te S .
Here rad(i:= ( eeHl(il,l) ¢ l(e,x) = 0 for xe&L(gi.Z)) ,
¥ ¥
#LD 1 = the submoduie of H, (Xy,Z) generated by the homology

classes {Ez] for irreducible components EE of i) o

~ .
3. Homology classes for irreducible components of 3 are linearly independent.

+

L
(5.9.2) disc 200 1 = & disc W, (. D)/rad(D)

(5.9.3) rank H, (X, .2)

Ji-fiy + wirreducible components of D J.,

7
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Proof. 1. Due to a theorem of Brieskorn [2], the resolution ?; of rational double
paint is homeomorphic to a smcoth fiber, say Xy' Hence we have only to prove for the
case when X, is a smooth Milnor fiber. Since §'= ?;- Xy has real codiménsion 2 in ?;.
gne has an epimorphism %(xt) -——97E(§;). The Milnar fiber X;is simply connected.
2..3. We have onity to consider the case ?; = %} due to the follwing:

Let S be a smooth surface with an exceptional curve E of the first kind.

Put § = S/E. Then we have isomorphisms H,(S,2) = (Z[E1)J" of lattices.

X

The natural inclution map xtc. . x{u'om induces a homomorphism,

(5.9.4) Hy (X4 2) = Hy (5, D)

, which is a part of the following long exact sequence,

0=ﬂ3<& ’Z),_—9 Ha(Xt.Xt.Z) — ﬁl(xf.l) —> H (X, 7} — Hl(Xt.Xt,Z) — H{X$0 2) =0.

~

"y

Here HJ(Yt VX 1)

! . <, L] -
H'(Dgp»2) = HUCEL, 7Y and Hy (X,5Xy,2) = HE(D,,2) = 2(Dy).

The map H (E,Z) = H (E ,Z) — Hl(Xt.D) is obtained by associating to

a cycle ceH (E ,Z) the total space of a S'-bundle 1(c) over ¢ ( = the
boundary of the normal disc-bundle of ¢ in it ).
The map H, (%, .7) —> H%(Dy,.Z) = Z[pJis obtained by taking the cap products

with the homology classes CEi] of the irreducible components E; of D. Hehce
the kernel of the map is (Z[DWJTL. The surjectivity of the map implies the
linear independence of irreducible components of D, and hence‘rank(Z[Dw])L
rank H2<§;,Z) - ﬁ‘irreducibie components of Do
Since the map (5.9.4) is metric preserving so that its kernel Hi(E 2) is
contained in rad(l), Thus we obtain a surjection, (Z[DW])L =>> H,(Xy,Z)/rad(l])

The Eufer number Qz(ff) of the compact surface ft is calculated. as

n

c&(gi) Euler number of xt + Euler number of Dy

= 1+ M )+ (2 - 29(Ey,) + n{ifreducible components of D, - Ew}
Recalling cl(i;) ; 2 + the second‘Betti number 0% %} and‘é(Ew) = g(E,), we get an
equal ity rankH,(Xy,Z)/rad(l) = rank(Z[DW])f which'implies the isomorphism (5.9.1).qed

_ Note. The above calculation shows also the bijection of the modules,

(5.9.5) rad([) = HI(EW.Z)
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