Examples of Algebraic Surfaces with q=0 and $p_{g} \leq 1$ which are Locally Hypersurfaces

Mutsuo Oka

Department of Mathematics Faculty of Sciences, Tokyo Institute of Technology Oh-Okayama, Meguro-ku, Tokyo 152

§ 1. Introduction

Algebraic surfaces with q = p_g = 0 have been studied through pluri-canonical mappings in various papers ([3, 5, 10, 11, 9, 12, 1, 2]). The purpose of this note is to give examples of algebraic surfaces with q = 0 and $p_g \le 1$ from the viewpoint of the singularity theory.

Let \overline{M} be a compactification of an affine surface M which is defined by

(1.1)
$$g(\mathbf{w}) = w_1^a w_3^b + w_2^c w_3^d + w_3^e + 1 = 0$$

where a > b , c > d and

$$(1.2)$$
 $a + b \ge c + d \ge e > 0.$

This simple class of algebraic surfaces contains many

interesting algebraic surfaces. The the fundamental group $\pi_1(\overline{\mathbb{M}})$ is always a finite cyclic group ([7]). In particular, the irregularity $q(\overline{\mathbb{M}})$ is zero for such $\overline{\mathbb{M}}$. In our previous paper [8], we have studied rational or K3-surfaces which are exceptional divisors of the resolutions of three dimensional Brieskorn singularities. In this paper we give five minimal surfaces of the above type with $p_g \leq 1$ which are not either rational or K3-surfaces. Though most of them are known surfaces, our method gives a different approach to them.

In § 2, we study a canonical way of the compactification $\overline{\mathbf{M}}$ of \mathbf{M} through the toroidal embedding theory.

In § 3, we study three algebraic surfaces \overline{M}_1 , \overline{M}_2 and \overline{M}_3 with $q=p_g=0$. \overline{M}_1 and \overline{M}_3 are known as an Enriques surface and a Godeaux surface. \overline{M}_2 is a minimal surface with $\pi_1(\overline{M}_2)=\mathbf{Z}/3\mathbf{Z}$, e=12 and $\mathbf{K}^2=0$ where \mathbf{K} is a canonical divisor and e is the Euler characteristic.

In § 4, we study two minimal surfaces \overline{M}_4 and \overline{M}_5 with q=0 and $p_g=1$. \overline{M}_4 satisfies that $K^2=2$, q=22 and $\pi_1(\overline{M}_4)=\mathbf{Z}/2\mathbf{Z}$. \overline{M}_5 is a simply connected surface with $K^2=1$ and q=23. \overline{M}_3 , \overline{M}_4 and \overline{M}_5 are surfaces of general type. There are systematical studies by Todorov for \overline{M}_4 and \overline{M}_5 ([11, 12]).

§2. Compactification

Unless otherwise stated, we use the same notations as in [7, 8] throughout this paper. Let $f_{\Xi}(z) = \sum_{i=1}^{4} z_1^{a_{i1}} \cdots z_4^{a_{i4}}$ a homogeneous polynomial. We assume $A_i = (a_{i1}, \dots, a_{i4})$ (i = 1,..., 4) spin a three-simplex Ξ . Let $f(z) = f_{\Xi}(z) + \sum_{i=1}^{4} z_i^N$ for a sufficiently large N and let $V = f^{-1}(0)$. Then V has an isolated singular point at the origin and the Newton boundary F(f) is non-degenerate. Let $\Gamma^{\star}(f)$ be the dual Newton diagram and let Σ^{\star} be a simplicial. subdivision. Let π : $\widetilde{V} \rightarrow V$ be the associated resolution of For each strictly positive vertex Q of Σ^{*} with $\dim \Delta(Q) \ge 1$, there is a corresponding exceptional divisor E(Q) of the above resolution ([7]). Let $P = {}^{t}(1,1,1,1)$. Then $\Delta(P) = \Xi$ and E(P) is the surface in which we are interested. The birational class of E(P) does not depend on either the choice of N or on Σ^* but depends only on $f_{\pi}(z)$. Let P_1, \ldots, P_4 be the vertices of Σ^* which are adjacent to Pand dim $\Delta(P_i) \ge 2$. We assume that $\Delta(P_i) \cap \Xi$ is the triangle with vertices A_j for $j \neq i$. We also assume that Σ^* is canonical around P on each triangle $T(P,P_i,P_i)$ in the sense of [7]. The fundamental group $\pi_1(E(P))$ is a finite cyclic group by Theorem (7.3) of [7].

Let M be the affine algebraic surface in $\,\mathbf{c}^{\,3}\,$ which is defined by

(2.1)
$$g(\mathbf{w}) = w_1^a w_3^b + w_2^c w_3^d + w_3^e + 1 = 0$$

where a > b and c > d and

(2.2)
$$a + b \ge c + d \ge e > 0$$
.

As the homogeneous polynomial $f_{\Xi}(z)$, we take

(2.3)
$$f_{\Xi}(z) = z_1^a z_3^b + z_2^c z_3^d z_4^h + z_3^e z_4^i + z_4^{a+b}$$

where

$$(2.4) a + b = c + d + h = e + i.$$

We will show the following.

Theorem (2.5). The exceptional divisor E(P) is a smooth compactification of M.

Proof. To prove the assertion, it suffices to show that there exists a three dimensional simplex $\sigma = (P, Q_1, Q_2, Q_3)$ in Σ^* such that the defining equation of E(P) in $\mathbf{C}_{\sigma}^3 = \{ y_{\sigma 0} = 0 \} \cap \mathbf{C}_{\sigma}^4$ is equal to $g(y_{\sigma 1}, y_{\sigma 2}, y_{\sigma 3}) = 0$. Let P_1, \ldots, P_4 be the vertices of Σ which are adjacent to P and $\dim \Delta(P_i) \geq 2$ as before. It is easy to see that $P_1 \equiv {}^t(1,0,0,0)$ and $P_2 \equiv {}^t(0,1,0,0)$ modulo $\mathbf{Z} < P >$. We assume that $P_3 \equiv {}^t(0,\alpha,\beta,\gamma)$ modulo $\mathbf{Z} < P >$. By the definition, P_3 satisfies the following.

(2.6)
$$b\beta = c\alpha + d\beta + h\gamma = (a + b)\gamma < e\beta + i\gamma$$
.

Note that

(2.7)
$$\det(P,P_1,P_2) = 1$$

and

(2.8)
$$\det (P, P_1, P_2, P_3) = \beta - \gamma$$
.

Here $\beta - \gamma$ is strictly positive by the inequality of (2.6) and (2.4). Thus we can take $Q_1 = P_1$, $Q_2 = P_2$ and

$$(2.9) Q_3 = (P_3 + \delta P_1 + \varepsilon P_2 + \theta P) / (\beta - \gamma)$$

where δ , ε and θ are integers such that $0 \le \delta$, ε , $\theta < (\beta - \gamma)$ as in Lemma (3.8) of [7]. If we replace P_i by P_i ' = P_i + $n_i P$ for some integer n_i , δ and ε do not change but only θ changes in (2.9). Thus the defining equation of E(Q) in C^3_σ does not change. See also the argument below. Thus we may assume that P_1 = t(1,0,0,0) and P_2 = t(0,1,0,0) and $t(0,\alpha,\beta,\gamma)$. Then the integrity of $t(0,\alpha,\beta,\gamma)$ implies that

(2.10)
$$\delta + \theta \equiv \varepsilon + \alpha + \theta \equiv \beta + \theta \equiv 0$$
 modulo $\beta - \gamma$.

Let

$$h(y_{\sigma}) = y_{\sigma 1}^{a'} y_{\sigma 3}^{b'} + y_{\sigma 2}^{c'} y_{\sigma 3}^{d'} + y_{\sigma 3}^{e'} + 1 = 0$$

be the defining equation of E(P) in \mathbf{c}_{σ}^3 . Then we have

$$a' = P_{1}(A_{1}) - d(P_{1}) = a,$$

$$b' = Q_{3}(A_{1}) - d(Q_{3}) = \delta a / (\beta - \gamma),$$

$$c' = P_{2}(A_{2}) - d(P_{2}) = c,$$

$$d' = Q_{3}(A_{2}) - d(Q_{3}) = \varepsilon c / (\beta - \gamma),$$

$$e' = Q_{3}(A_{3}) - d(Q_{3}) = (P_{3}(A_{3}) - d(P_{3})) / (\beta - \gamma).$$

By (2.4) and (2.6), we have the following equalities.

$$(2.11) b(\beta-r) = ar and$$

$$c(\gamma-\alpha) = d(\beta-\gamma).$$

Therefore we have

$$b' = \delta a / (\beta - \gamma)$$

$$\equiv \beta a / (\beta - \gamma) \mod a \quad by (2.10)$$

$$\equiv \gamma a / (\beta - \gamma) \mod a$$

$$\equiv b \mod a \quad by (2.11).$$

As $0 \le b' < a$ and b < a by the definition, this implies b' = b. Similarly we have

$$d'' = \varepsilon c / (\beta - \gamma)$$

$$\equiv (\beta - \alpha) c / (\beta - \gamma) \mod c \text{ by } (2.10)$$

$$\equiv (\gamma - \alpha) c / (\beta - \gamma) \mod c$$

$$\equiv d \mod c \text{ by } (2.12).$$

As $0 \le d' < c$ and d < c, we have that d' = d. Finally

$$e' = (P_3(A_3) - d(P_3)) / (\beta - \gamma) = e.$$

Thus we have shown that $h(\mathbf{w}) = g(\mathbf{w})$, which completes the proof.

Hereafter we denote E(P) by $\overline{\text{M}}_{\text{.}}$ In §3 and §4, we study

algebraic surfaces \overline{M} with $p_g \le 1$. The details of the calculation for K^2 , $e(\overline{M})$ and $\pi_1(\overline{M})$, we refer to [7] and [8].

Remark (2.13). Let E' be the simplex in R^3 with vertices (a,0,b), (0,c,d), (0,0,e) and (0,0,0). Let ν^1,\ldots,ν^k be the other possible integral points in E'. Let

$$g_t(\mathbf{w}) = g(\mathbf{w}) + \sum_{i=1}^k t_i \mathbf{w}^{i}$$

and let M_t be defined by $g_t(w) = 0$. Let U be the Zariski open set which is defined by the union of $t \in \mathbf{C}^k$ such that $g_t(w)$ is globally non-degenerate in the sense of [6]. Then $\{M_t\}$ (teU) can be compactified simultaneously with $M = M_0$ and the complex manifold M which is the union U \overline{M}_t gives a teU k-dimensional deformation of \overline{M} . We call $\{w^{V}\}$ the embedded monomials of g(w). All the numerical calculations for \overline{M} which follow in §3 and §4 remain true for \overline{M}_t .

\S 3. Surfaces with $q = p_q = 0$.

In this section, we will study three minimal algebraic surfaces \overline{M}_1 , \overline{M}_2 and \overline{M}_3 with $q=p_g=0$. \overline{M}_1 is known as an Enriques surface and \overline{M}_3 is a Godeaux surface. \overline{M}_2 is a minimal surface with $\pi_1(\overline{M}_2)\cong \mathbf{Z}/3\mathbf{Z}$, $e(\overline{M}_2)=12$ and $K^2=0$. Here K is a canonical divisor and $e(\overline{M}_2)$ is the Euler characteristic.

(I) Let
$$M_1 = \{ g_1(w) = 0 \}$$
 where

$$g_1(\mathbf{w}) = w_1^4 w_3^3 + w_2^4 w_3^2 + w_3 + 1.$$

Then $f_{\Delta}(z)=z_1^4z_3^3+z_2^4z_3^2z_4+z_3z_4^6+z_4^7$ is the corresponding homogeneous polynomial. We may take $P_3={}^t(0,1,7,3)$ and $P_4={}^t(0,-1,-6,-2)$. As $\det(P,P_1,P_3)=\det(P,P_2,P_4)=2$, we need two vertices $T_{13}=(P+P_1+P_3)/2$ on $T(P,P_1,P_3)$ and $T_{24}=(P_2+P_4)/2$ on $T(P,P_2,P_4)$ respectively. Here we are only considering vertices of Σ^* which are adjacent to P. We denote the divisor $E(P)\cap E(P_1)$ in E(P) by $C(P_1)$ etc. Let $\sigma=(P,P_1,P_2,R)$ be the fixed three-simplex of Σ^* where $P=(3P_1+P_2+P_3+P)/4={}^t(1,1,2,1)$. Let $P=(3P_1+P_2+P_3+P)/4={}^t(1,1,2,1)$. Let $P=(3P_1+P_2+P_3+P)/4={}^t(1,1,2,1)$. Let $P=(3P_1+P_2+P_3+P)/4={}^t(1,1,2,1)$. Let $P=(3P_1+P_2+P_3+P)/4={}^t(1,1,2,1)$ be the fixed three-simplex of $P=(3P_1+P_2+P_3+P)/4={}^t(1,1,2,1)$.

$$dy_{\sigma 1} \wedge dy_{\sigma 2} \wedge dy_{\sigma 3} / dg_1(y_{\sigma})$$

on \mathbf{C}_{σ}^3 and $\mathbf{K} = (\omega)$. By § 9 of [7], we get

(3.1)
$$K = 2C(P_4) + C(T_{24}) - 2C(P_3) - C(T_{13}),$$

(3.2)
$$K^2 = 0$$
, $e(\overline{M}_1) = 12$ and $\pi(\overline{M}_1) \cong \mathbb{Z}/2\mathbb{Z}$.

Let p: $\widetilde{M}_1 \to \overline{M}_1$ be the universal covering and let φ_{34} be the rational function on \overline{M}_1 which is defined by $\pi^*(z_4\ z_3^{-1})$. Then we have that

$$(3.4) \qquad (\varphi_{34}) = 2K$$

Thus there is a rational function ψ on $\widetilde{\mathrm{M}}_1$ such that $\psi^2 = \mathrm{p}^* \varphi_{34}$. Then it is easy to see that $\psi^{-1} \ \mathrm{p}^* \omega$ is a nowhere vanishing two-form on $\widetilde{\mathrm{M}}_1$. This implies that $\widetilde{\mathrm{M}}_1$ is a K3-surface and $\overline{\mathrm{M}}_1$ is called an Enriques surface. (See Griffiths

[4], P.541 for the standard way of the construction of a Enriques surface.)

 $g_1(w)$ has 6 embedded monomials w^{i} where $\{v^i\}$ (i=1,...6) are (0,1,1), (0,2,1), (1,0,1),(1,2,2), (2,0,2) and (2,1,2).

(II) Let
$$M_2 = \{ g_2(w) = 0 \} \subset C^3 \text{ where}$$

$$(3.5) g_2(\mathbf{w}) = w_1^9 w_3^6 + w_2^3 w_3^2 + w_3 + 1$$

Then $f_{\Delta}(z) = z_1^9 z_3^6 + z_2^3 z_3^2 z_4^{10} + z_3 z_4^{14} + z_4^{15} \qquad \text{and} \qquad P_3 = {}^t(0,0,5,2) \qquad \text{and} \qquad P_4 = {}^t(0,-2,-14,-5). \qquad \text{As} \qquad \text{det } (P,P_1,P_4) = 3, \text{ we need a vertex } T_{14} = (P_4 + P_1 + 2P) / 3 \qquad \text{on} \qquad T(P,P_1,P_4). \qquad \text{Let} \qquad \sigma = (P,P_1,P_2,R) \qquad \text{where} \qquad R = (P_3 + 2P_1 + 2P_2 + P) / 3. \quad \text{Then we have}$

(3.6)
$$K = 7C(P_A) + 2C(T_{1A}) - 2C(P_3), K^2 = 0,$$

(3.7)
$$e(\overline{M}_2) = 12$$
 and $\pi_1(\overline{M}_2) \cong \mathbb{Z}/3\mathbb{Z}$.

As $(\varphi_{34}) = 9C(P_4) - 3C(P_3) + 3C(T_{14})$, 3K is linearly equivalent to $3C(P_4)$. This easily proves that \overline{M}_2 is minimal.

 $g_2(\mathbf{w})$ has 10 embedded monomials \mathbf{w}^{ν} where $\{\nu^i\}$ ($i=1,\ldots,10$) are (1,0,1), (2,0,2), (3,0,2), (4,0,3), (6,0,4), (0,1,1), (2,1,2), (3,1,3), (5,1,4) and (1,2,2).

(III) Let
$$M_3 = \{g_3(w) = 0\}$$
 where

(3.8)
$$g_3(w) = w_1^5 w_3^3 + w_2^5 w_3^2 + w_3 + 1.$$

Then $f_{\Delta}(z) = z_1^5 z_3^3 + z_2^5 z_3^2 z_4 + z_3 z_4^7 + z_4^8$ and $P_3 = {}^{t}(0.1.8.3)$ and $P_4 = {}^{t}(0.1.7.7.2)$. Let $\sigma = (P, P_1, P_2, R)$ where $R = (P_3 + 3P_1 + 2P_2 + 2P) / 5$. Then we have

(3.9)
$$K = 2C(P_4) - C(P_3), K^2 = 1,$$

(3.10)
$$e(\overline{M}_3) = 11 \text{ and } \pi_1(\overline{M}_3) \cong \mathbb{Z}/5\mathbb{Z}.$$

As $3K \sim C(P_4) + 2C(P_3)$, \overline{M}_3 is minimal by Lemma (4.23) of [8]. \overline{M}_3 is a Godeaux surface. See [10, 5]. \overline{M}_3 is isomorphic to the surface in Example (7.12) of [7].

 $g_3(\mathbf{w})$ has 8 embedded monomials \mathbf{w}^{ν} where $\{\nu^i\}$ (i=1,...,8) are (1,0,1), (3,0,2), (0,1,1), (1,1,1), (2,1,2), (0,2,1), (2,2,2) and (1,3,2). As 8 is the dimension of the moduli space of the Godeaux surface ([5]), it is possible that our deformation is complete. We do not discuss this in this paper.

§4. Surfaces with q = 0 and $p_q = 1$

In this section, we will study three minimal surfaces \overline{M}_4 , \overline{M}_5 and \overline{M}_6 with q = 0 and p_q = 1.

(IV) Let
$$M_4 = \{ g_4(w) = 0 \}$$
 where

$$(4.1) g_4(\mathbf{w}) = w_1^8 w_3^3 + w_2^4 w_3^2 + w_3 + 1.$$

Then $f_{\Delta}(z) = z_1^8 z_3^3 + z_2^4 z_3^2 z_4^5 + z_3 z_4^{10} + z_4^{11} \qquad \text{and}$ $P_3 = {}^t(0,-1,11,3) \text{ and } P_4 = {}^t(0,0,-5,-1). \quad \text{We need three vertices} \qquad T_{13}^1, \quad T_{13}^2 \qquad \text{and} \qquad T_{13}^3 \qquad \text{on} \qquad T(P,P_1,P_3) \qquad \text{where}$ $T_{13}^1 = (P_3 + 3P_1 + P) \ / \ 4 \text{ and etc.. Let } \sigma = (P,P_1,P_2,R) \text{ where}$

 $R = (P_3 + 3P_1 + 4P_2 + 5P) / 8$. Then we have

$$(4.2)$$
 $K = C(P_4), K^2 = 2,$

(4.3)
$$e(\overline{M}_4) = 22$$
 and $\pi_1(\overline{M}_4) \cong \mathbb{Z}/2\mathbb{Z}$.

Thus $p_g=1$ and \overline{M}_4 is minimal. It is known that there is an algebraic surface S with $q=p_g=0$ and $\pi_1(S)\cong Z/4Z$ ([10]). We do not know whether our surface \overline{M}_4 is the double cover of such a surface S or not.

 $g_4(\mathbf{w})$ has 11 embedded monomials \mathbf{w}^{ν^1} where $\{\nu^i\}$ ($i=1,\ldots,11$) are (1,0,1), (2,0,1), (4,0,2), (5,0,2), (0,1,1), (3,1,2), (4,1,2),(0,2,1), (2,2,2) and (1,3,2).

(V) Let
$$M_5 = \{ g_5(w) = 0 \}$$
 where

$$(4.7) g_5(\mathbf{w}) = w_1^6 w_3^4 + w_2^3 + w_3^2 + 1.$$

Then $f_{\Delta}(z) = z_1^6 z_3^4 + z_2^3 z_4^7 + z_3^2 z_4^8 + z_4^{10}$ and $P_3 = {}^t(0,2,5,2)$ and $P_4 = {}^t(0,-3,-4,-1)$. We need two vertices T_{13}^1 and T_{13}^2 on $T(P,P_1,P_3)$ where $T_{13}^1 = (P_3 + 2P_1 + P) / 3$. We take $\sigma = (P,P_1,P_2,T_{13}^1)$ and by an easy calculation, we have

$$(4.8)$$
 $K = C(P_4), K^2 = 1,$

(4.9)
$$e(\overline{M}_5) = 23 \text{ and } \pi_1(\overline{M}_5) = \{1\}.$$

 $g_5(\mathbf{w})$ has 14 embedded monomials which correspond to (0,0,1), (1,0,1), (1,0,2), (2,0,2), (3,0,2), (3,0,3), (4,0,3), (0,1,0), (0,1,1), (1,1,1), (2,1,2), (3,1,2), (0,2,0) and (1,2,1). There are beautiful studies by Todorov for $\overline{\mathbf{M}}_4$ and

 \overline{M}_5 in [11, 12].

References

- [1] R. Barlow, Some new surfaces with $p_g = 0$, Duke Math. J., **51** (1984), 889-903.
- [2] R. Barlow, A simply connected surface of general type with $p_q = 0$, Inventiones Math., 79 (1985), 293-301.
- [3] F. Bombieri, Canonical models of surfaces of general type, Publ. Math IHES, 42 (1973), 171-219.
- [4] P. Griffiths and J. Harris, Principles of Algebraic Geometry, A Wiley-Interscience Publication, New York-Chichester-Brisbane-Tronto, 1973.
- [5] Y. Miyaoka, Tricanonical Maps of Numerical Godeaux Surfaces, Inventiones Math., 34 (1976), 99-111.
- [6] M. Oka, On the topology of the Newton boundary II, J. Math. Soc. Japan, 32 (1980), 65-92.
- [7] M. Oka, On the Resolution of Hypersurface Singularities, to appear in Proceeding of US-Japan Singularity Seminar, 1984.

- [8] M. Oka, On the resolution of three dimensional Brieskorn singularities, to appear in Proceeding of US-Japan Singularity Seminar, 1984.
- [9] F. Oort and C. Peters, A Campedelli surface with torsion group Z/2, Nederl. Akad. Wesensche Indag. Math., 43 (1981), 399-407.