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§ 1. Introduction

Algebraic surfaces with g = P, = 0 have been studied
through pluri-canonical mappings in various papers

(L3, 5, 10, 11, 9, 12, 1, 21 ). The purpose cof this note is
to give examples of algebraic surfaces with g = 0 and pq £ 1
from the viewpoint of the singularity theory,.

Let M be a compactification of an affine surface M

which is defined by

- ,a.b c d e _
(1.1 | glw) = w1w3 + w2w3 + wa + 1 =0
where a > b , ¢ > d and
(1.2 a+b2c+dze>0,

This simple <class o0f algebraic surfaces contains many
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interesting algebraic surfaces. The the fundamental group

ml(%> ig alwaves a finite cyclic group ([72 V., In particu-
lar, the irreqularity q(¥) iz zern for such M. In our nrevi-
ove paper (81, we have =studied rational or Ki-surfaces
which are enceptional divisors of the rezoluftiong nf thrae
dimensional Brieskorn singularitiez In thiz paper we give

five minimal csurfaces of the above type with p_ £ 1 which
are not either rational or K3-surfares, Though most of thenm
are known surfacesg, our method giveg a differaent approzach t9

them,

—
3

[Zep)
(3]

, we study a canonical way of the compactifica-

tion M of M through the toroidal embedding theorv.

In § 3, we study three alé_braic surfaces Ei’ EE and
ﬁ3 with g = pg = 0. ﬁl and §3 ares known as an Enrigues sur-
face anﬁ a Godeaux surface.-ﬁz iz a minimal surface with
ﬂl(ﬁz) = 2/3Z, e = 12 and K2 = 0 where K is a caneonical
divisor and e is the Euler characteristic,

In § 4, we study two minimal surfaces,§4 and FS with ¢
= 0 and p_ =1. M, satisfies that K- = 2, e = 22 and

’

g 4

— ’ — 7
nl(M4) = 7/27. MS is a simply connected surface with K° = 1

and e = 23, M., 54 and ES are surfaces of general type.
There are systematical studies by Todorov for M and M

(011, 121 ),

§2. Compactification
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Unless otherwise gctated, we use the same notations as
’

4 a,., 2y

in [7, 81 ‘throughout this paper. Let £.72) = ¢ :1“‘--:4‘
— i:.l L

he a homogeneous polynomial, We assume that

By = Caggormriay ) (1= 01, 4) zpin a three-simplex E,

4 N
Let £(z) = £.(z) + ¢ zi for a gufficiently large N and let
- i=1

-1 s , ,

v = f *(0), Then V has an isolated singular peoint at the

origin and the Newton boundary T(f) is non-degenerata Let

dim A{QY 2 1, there is a corresponding exceptional diviscr
ECQ) of the above resoclution ([7] ), Let P = t(1 1.1,17

Then A(P) = Z and E(P) is the surface in which we are
interested. The bhirational class cof E(P) does not depend on
either the choice of N or on Z*”but dependes only on f_(z)
Let Pl""' P4 be the vertices of E* which are adjacent to P
and dim A(Pi) 2 2, We assume that A(Pi) N % is the triangle
with vertices Aj for J # 1. We' also assume that E* is
canonical around P on each triangle T(P,Pi}pj) in the =sense
of [71,. The fundamental agroup n1(E(P)) is a finite cyclic

group by Theocrem (7.3) of [71.

2
Let M be the affine algebraic surface in C° which 1is

defined by

+ WawW

2 () = & b c
(2.1 gl(w) wlw3

[SS Fe R

3%

where a > b and ¢ > d and
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(2.2) ' a+b2c+d2e>0.

As the homogeneous polynomial f_(z), we take

(2.3 = ,a,b c_d_h e_i ,a+h
) £z (2 123 ¥ 222324 * 2324 * 2y
where
(2.4 a+b=c+d+h=e+bi‘
We will show the following.
Theorem (2.5), The exceptional divisor E(P) iz a
smooth compactification of M.
Proof. To prove the assertion, it suffices to show
that there = exists - a three dimensional simplex

0 = (P,Q,,0,,0,) in I such that the defining equation of

, 2
ECP)  in c’ = {yyp=02%ncs is  equal to
g(Ycl,yoz,yoj) = 0. Let P, ..., Py be the wvertices of =
which are adjacent to P and dim A(Pi) 2 2 as before. It is

easy to see that Pl's t(1,0,0,0) and P, = t(U,l,0,0) modulo

m

Z <P>. We assume that Py = “(0,a,8,7) modulo Z <P>. By the

definition, P3 satisfies the following,

(2.6) b = ca + d8 + hr = (a + bl)r < ef + ir.
Note that

( =

2.7) det (PP, P)) = 1

and




(2.8) det (P,Pl,pz,p3) =8 -7

Here B8 - v 1is strictly positive by the ineguality of (2.%?
and (Z.45. Thus we can take Q, = P,, Q, = P, and

(2.9 \ Qy = (P4 + 3P, +£P2+9P) /(8 =72

where 5, £ and 8 ars integers - such that
0 £8, ¢, 8 < (8 -17) as in Lemma (2.8) of [7]. I1f we
replace Pi by Pi’ = Pi + niP for some integer n.. d and ¢ do

not change but only € changes in (2.,9), Thus the defining

equation of E(Q) in Cg does not change. See also the argu-

ment below. Thus we may assume that P, = t(l,D,U,O) and

1
+-
P, = "(0,1,0,00 and Py = “(0,a,8,7r). Then the integrity of

Oj implies that

(2.10) 8 + 68 = ¢ + a + 8

n
™

+ 8 = 0 modulc B8 - r.

Let

_ a’. b’ ¢’ d’ e’ )
h(Y ) = ¥oq¥53 * Yoo¥s3 * Vo3 + 1 =0

23
be the defining equation of E(P) in Cg. Then we have

a =p1(A1) —d(Pl) = a,

o
1

Q4(Ry) - d<Q3> =3a / (B - 1),
c’ = chAz) - d(Pz) = c,
d’” = Q3(A2) - d(Q3) = ¢c / (B - 1),

’

e’ = QB(Aa) —.d(Q3) = (P3(A3) - dCP3)) / (B - 7).
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By (2.4) and (2.6), we have the following equalities.
(2.11) b(B-r) = ar and
(2.12) clr-a) = d(8-7r).
Therefore we have
b” =%a /7 (8 - 7)
= Ba / (8 - r) modulo a by (2.10)
= ra / (B - r) modulo a
= b modulo a by (2.11).
As 0 £ b" < a and b < a by the definiticon, this implies
b” = b, Similarly we have
d” = ec / (B - 7)
= (8 -a)c / (B - 7v) modulo ¢ by (2.10°
= (y ~a) c / (B8 - r) modulo c
= d modulo ¢ by (2.12).
As 0 £ d" < c and d < ¢, we have that d° = d. Finally
e’ = (PB(AS) —,d(P3)) / (B - 7r) = e,
Thus we have shown that h(w) = g(w), which completes the
p?oof.
Hereafter we denote E(P) by M.

In §3 and §4, we study



algebraic surfaces M with p_ € 1., The details of the calcu-
jation for K2, e(¥) and n1(§> we refer to [71 and [8].

-

7

]
Remark (2.13), Let Z’ be the simplex in R with ver-

1 k

0 08,

P}

tices (a,0.b), (0,c.d), (0,0,e) and (0,0,0). Let v

be the other possible integral points in 7. Leat
gt(w) =g(w) + 5 t. w

and let My be defined by g (w) = 0. Let U be the Zariski
open set which is defined by the union of % e Ck such that
gt(w) is globally non-degenerate in the sense of [61l. Then
{Mt} (ter can be compactified simultaneously with M = MO
and the complex manifold f which is the union U M, gives a

- i
k-dimensional deformation of M, We call {u" )} the embedded

monomials of gf(w). All the numerical calculations for M

which follow in §3 and §4 remain true for Et'

§ 3. Surfaces with g = pq = 0,

In this section, we will study three minimal algebraic

surfaces Ei’ M, and Ej with g = pg = 0. Hl is known as an
Enriques surface and Ea iz a Godeaux surface. §2’ is a
minimal surface with nl(ﬁz) > 7/37 , e(ﬁz) = 12 and K2 =0,

Here K is a canonical divisor and e(ﬁz) is the Euler charac-

teristic.

(I) Let Ml = { gl(w) = 0 } where
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_ .43 4 2
gi(w) Wow3 t WoWg t oW F 1
: = 4 3 —14-,'2—' ed —v6 —v7 ] g o sa i
Then fA(z) = 2424 * ZoZ3Z, tozZgz, + zy is the corr_fpondlng
homogeneous polvnomial We may take P, = t(0,1,7 3) and
P, = Y0,-1,-6,-2). As det (P,P,,P,) = det (P,P,,P,) = 2,
4 ’ ’ ’ 1 3 L 4
we need two vertices T = (p+pP, + P,Y/ 2 on T(P,P,,P)
13 1 3 173

and T04 = (P2 + Py / 2 on T(P,P9,P4) respectively. Here we
& o
. . . ¥ . .
are only considering vertices of T which are adjacent to P,

We denote the divisor E(P) N E(Pi) in B(P)Y by CI(P.) efc.

Let o = (P'Pl'PZ'R) be the fixed three-simplex of T where
R= (3, +P, +Py+P)/ 4="1,1,2,1). Let w be the
meromorphic two form on El = E(P) which is defined bv

dysq A AYgp A dygy /7 dgy(yd
on Cg and K = (w), By § 9 of [71, we get
(3.1) K = 2C(P4) + C(T24) - 2C(P3) - C(T13)'

(3.2) K2 = 0, e(f,) = 12 and n(¥,) ¢ /21,

Let p : ﬁl > El be the universal covering and let 234

be the rational function on Ei which is defined by

n*(z4 231). Then we have that
(3.4) (¢34) = 2K

Thus there is a rational function ¥ on ﬁl such that
¢2 = p*¢34. Then it is easy to see that w_1 p*w is a nowhere
vanishing two-form on ﬁl‘ This implies that §1 is a K3-

surface and ﬁl ig called an Enriques surface. (See Griffiths
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(41, P.541 for the standard way of the congtructicon of a
Enriques surface.)

vi i
g,(w) has 6 embedded monomials w wvhere {v~} (i=1,....5%)

are (0,1,1), ¢0,2,1), ¢1,0,1),¢1,2,2), (2,0,2) and (2,1,2).,

(I1) Let M2 = { gz(w) = 0 } ¢ C” where

' _ 9.6 3,2
(3.5) gz(w) = wiws 4 WhHw3 + wg + 1
_ 9.6 . _3.2.10 14 . 15
Then EA(z) = zy2, + 25252, + 2374 + Zy and
f.
P, = “(0,0,5,2) and P, = T(0,-2,-14,-5), e

det (P,Pl,P4) = 3, we need a vertex T,, = (P, + P, + 2P) / 3
T

on (P_Pl,P4). Let G = (P,Pl,Pz,D) where
R = (P3 +‘2P1 + 2P2 + P) / 3, Then we have
. . - =
(3.6) K 7C(P4) + 2C(T14) 2C(P3), K 0,
(™ = M ~
(3.7) e.MZ) 12 and nl(Mz) s Z/37Z.

As (w34) = 9C(P4) - 3C(P3) + 3C(T14), 3K is linearly

equivalent to 3C(P,). This easily proves that EZ is
minimal.

1 i
gz(w) has 10 embedded monomials w’ where (v~} i1 =

1,...,10 ) are (1,0,1), (2,0,2), (3,0,2), (4.0.3), (6,0,4),

(0,1,1), 2,1,2), (3,1,3), (5,1,4) and (1,2,2).

(IID) Let M, = {g3(w)’= 0 } where

(3~8) : g3(W) = W
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9 t
Then £, (2) —}z?zg + 232524 + 2322 + zi and Py = "(0.1,8,3)
and P, = (0, -1,-7,-2) Let ¢ = (P,P, P, R) where

R = CP3 + 3P1 + 2P2 + 2P) / 5. Then we have

(3.9) K = 2C(P,) - C(P.,), K% =1,

n

(3.10) e(M.) = 11 and ni(ﬁ ) 7/5%7.

As 3K ~ C(P,) + 2C(P,), §3 is minimal by Lemma (4.23) of
£81. ﬁ3 is a Godeaux surface. See [10, 517, M, is iso-

morphic to the surface in Example (7.12) of (71,

1 .
g3(w),has 8 embedded monomials w’ where v (i=1,...,8&>

are (1,0,1), (3,0,2), (0,1.1), ¢(1.,1.,1), €2,1,2), (0,2,1),

< Z ’

(2,2,2) and (1,3,2). As 8 is the dimension of the moduli

space of the Godeaux surface ([51 ), it is possible that ocur

’

deformation is complete. We do not discuses this in this

paper.
§4, Surfaces with g = 0 and pg =1

In this section, we will study three minimal surfaces

H, , Mg and M, with q = 0 and p, = 1.

(IV) Let M4 = { g4(w) = 0 } where

- 8.3 4 2
(4.1) Fylw) = W W3+ Wouy + g + 1.
: _ 8.3, _4.2.5 _ _ .10 , _11
Then fA(z) = zq23 % 52@324 tzazy 2y and
Py = %(0,-1,11,3) and P, = ©(0,0,-5,-1). We need three ver-
C 1 2 3 -
tices T13, T13 and T13 on T(P,Pl,P3) where

T%g = (P3 + 3P1 + P) / 4 and etc.. Let ¢ =‘(P,P1,P2,R) where
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R = (P3 + 3P1 + 4P2 + 5P) / 8. Then we have

(4.2) K = C(P, K° =2,

) (M,) = 22 , M,) = z
(4.3 e.M4) and nl(M4) ~ 7/2%.
Thus pq = 1 and §4 is minimal. It is known that there is an
algebraic surface S with g = p_ = 0 and 1,(S) = /42 ([10]
)., We do not know whether our surface E4 is the double
cover 0of surh a surface S aor not,

vi i

g4(w) has 11 embedded monomials w where (v~} C i = 1, ...,

I3

11 ) are (1,0,1), (2,0,1), (4.0,2), (5,0,2), (0,1,1),

(3,1,2), (4,1,2),¢0,2,1), €(2,2,2) and (1,3,2).

’

(V) Let MS = { gglw) = 0 } where
£4,7) 95<V) = w?wg + wg + w%_+ 1.
T - 6.4 3,7 2.8 . 10 _t AN
Then fA(z) = zqz3 + zhzy *ozhz, tozy and Py = (0,2,5,22
and P, = t(O,—3,—4,—1). We need two vertices T1 and 'I‘2 on

4 ~ 13 13
T(P,Py,Py)  whers Ty = (Py+ 2P+ P) /3.  We  take
o = (P,Pl,Pz,T%3) and by an easy calculation, we have

- 2

(4.8) K = C(P4), K™ =1,
(4.9) elMg) = 23 and (M) = (1},

gs(w) has 14 embedded monomials which correspond to (0,0,1),
(1,0,1), (1,0,2), (2,0,2), (3,0,2), ¢3,0,3>, (4,0,3),
(0,1,0), ¢(0,1,1>, ¢1,1,1>, «(2,1,2>, «(3,1,2>), (0,2,0) and

(1,2,1). There are beautiful studies by Todorov for ﬁ4 and
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