<table>
<thead>
<tr>
<th>Title</th>
<th>Topologically Extremal Real Surfaces in $\mathbb{P}^2 \times \mathbb{P}^1$ and $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ISHIKAWA, Goo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1986), 595: 39-58</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1986-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/99529</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Topologically Extremal Real Surfaces in
$\mathbb{P}^2 \times \mathbb{P}^1$ and $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$.

by Goo ISHIKAWA (石川 剛郎).

Department of Mathematics, Faculty of Sciences, Nara Women's University, Nara 630, Japan.

From a general viewpoint we illustrate a method of construction of surfaces in $\mathbb{P}^2 \times \mathbb{P}^1$ and $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ defined over \mathbb{R} having topologically extremal properties. Precisely we show that for each d, e and r there exists an M-surface A in $\mathbb{P}^2 \times \mathbb{P}^1$ (resp. $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$) of degree (d,r) (resp. (d,e,r)) such that the projection $A \rightarrow \mathbb{P}^1$ has the maximal number of real critical points. The construction of M-surfaces in \mathbb{P}^3 by O.Ya.Viro is also made more clear.

0. Introduction.

Harnack [H] pointed out that the number of components in the real locus of a curve in \mathbb{P}^2 of degree d defined over \mathbb{R} does not exceed $1 + (1/2)(d-1)(d-2)$ and, for each d, there exists a non-singular curve in \mathbb{P}^2 of degree d defined over \mathbb{R}, the real locus of which has exactly $1 + (1/2)(d-1)(d-2)$ components.

Hilbert in his 16th problem proposed to investigate -1-
topological restrictions for hypersurfaces in \mathbb{P}^n of fixed degree defined over \mathbb{R}.

One may regard an real algebraic function as an one-parameter family of hypersurfaces defined over \mathbb{R}, and it is natural to investigate topological restrictions for hypersurfaces in $\mathbb{P}^n \times \mathbb{P}^1$ of fixed degree defined over \mathbb{R}.

Let $A \subset \mathbb{P}^n \times \mathbb{P}^1$ be a real hypersurface of degree (d, r), that is, the zero-locus of a polynomial $\sum_{0 \leq i \leq r} F_i (x_0, \ldots, x_n) \lambda^{-1} \mu^i$, where $F_i (0 \leq i \leq r)$ is a real homogeneous polynomial of degree d. Consider the projection $\varphi: A \rightarrow \mathbb{P}^1$. Our main object is the topology of real locus $A_\mathbb{R}$ of A and singularities of the restriction $\varphi_\mathbb{R}: A_\mathbb{R} \rightarrow \mathbb{RP}^1$ of φ to $A_\mathbb{R}$.

We denote by $P_t(X, K)$ the Poincaré series of a space X over a field K with indeterminate t, and by $s(f)$ the number of critical points of a function $f: X \rightarrow \mathbb{R}$ from a n-dimensional manifold to an one-dimensional manifold.

If $A \subset \mathbb{P}^n \times \mathbb{P}^1$ is non-singular, then the diffeomorphism type of A is determined by (d, r). For example,

$$P_t(A, K) = \begin{cases} \chi(A) & \text{(n:even)}, \\ 2(n+1) - \chi(A) & \text{(n:odd)}, \end{cases}$$

for any K,

$$\chi(A) = (n+1)(1-d)^n r + 2((1-d)^{n+1} - 1 + n+1),$$

(cf. 1.6).

We call A generic if A is non-singular and $\varphi: A \rightarrow \mathbb{P}^1$ has only non-degenerate critical points.
If A is generic, then $s(\varphi) = (n+1)(d-1)^n r$ (cf. 1.6).

By Harnack-Thom's inequality ([G]), we have an uniform estimate:

\[
\begin{align*}
P_1(A_{\mathbb{R}}; \mathbb{Z}/2) & \leq P_1(A; \mathbb{Z}/2), \\
(s(\varphi_{\mathbb{R}})) & \leq s(\varphi).
\end{align*}
\]

(0.0)

In this note from a general viewpoint we show the following

Theorem 0.1. For $n = 1, 2$ and for each (d,r), the estimate (0.0) is sharp, that is, there exists a generic real hypersurface of $\mathbb{P}^n \times \mathbb{P}^1$ of degree (d,r) attaining both equalities in (0.0).

Notice that in the case $r = 1$ Theorem 0.1 is proved in [I]. A finer result is obtained in the case $n = 1$. For $A \subset \mathbb{P}^1 \times \mathbb{P}^1$, we denote by $\pi: A \rightarrow \mathbb{P}^1$ the projection to the first component.

Proposition 0.2. For non-singular real curves $A \subset \mathbb{P}^1 \times \mathbb{P}^1$ of degree (d,e) such that both φ, π have only non-degenerate critical points, there exists the sharp estimate:

\[
\begin{align*}
P_1(A_{\mathbb{R}}; \mathbb{Z}/2) & \leq 2 + 2(d-1)(e-1), \\
s(\varphi_{\mathbb{R}}) & \leq 2(d-1)e, \\
s(\pi_{\mathbb{R}}) & \leq 2d(e-1).
\end{align*}
\]

Now let us formulate a general theorem which implies Theorem 0.1.
Let S be a real complex surface (cf. 2.1), $C \subset S$ be a real curve possibly with singularities. A non-singular component E of $C_R^* \subset S_R^*$ is an oval (resp. an empty oval) if there exists an embedding $i : D^2 \rightarrow S_R^*$ such that $i(\overline{D^2}) = E$ (and that $i(\text{int } D^2) \cap C_R^*$ is empty).

Let S be compact, L a real holomorphic line bundle (cf. 2.6), s_0, s_1 M-sections of L (cf. 2.7).

Consider the following condition (*):

(*1) The zero-loci $(s_0)_0$ and $(s_1)_0$ are both connected and of genus g.

(*ii) $(s_0)_0$ and $(s_1)_0$ intersect in $\langle c_1(L)^2, [S] \rangle$ points in S_R^*.

(*iii) The real locus of $(s_0 s_1)_0 = (s_0)_0 \cup (s_1)_0$ has $2g$ empty ovals.

We denote by \mathbb{P}^1_L the real complex curve (\mathbb{P}^1, τ_1), where τ_1 is the complex conjugation (cf. 2.3). Fix a pair of M-sections λ, μ of $\mathcal{O}_{\mathbb{P}^1_L}(1)$ such that $(\lambda)_0 \neq (\mu)_0$.

Denote by $\psi : S \times \mathbb{P}^1_L \rightarrow \mathbb{P}^1_L$, $\chi : S \times \mathbb{P}^1_L \rightarrow S$ the projections. For a transverse section s of $\mathfrak{Z}^* L \otimes \mathcal{O}_{\mathbb{P}^1_L}(r)$ (cf. 1.3), denote by $\varphi : (s)_0 \rightarrow \mathbb{P}^1_L$, $\kappa : (s)_0 \rightarrow S$ the restrictions of projections. Then, associated to s, there is a natural section of $\text{Hom}(T(s)_0, \mathcal{O}_{\mathbb{P}^1_L})$ defined by the tangent map of φ.

-4-
Theorem 0.4. Let \(S \) be an \(M \)-surface with connected real part \(S_{\mathbb{R}} \), \(L \) be a real holomorphic line bundle with a pair \(s_0, s_1 \) of \(M \)-sections of \(L \) satisfying the condition (*)).

Then, for any \(r \), there exists an \(M \)-section \(s \) of \(\mathcal{I}^*L \otimes \mathcal{F}^*\mathcal{O}_{\mathbb{P}_1}^1(r) \) over \(S \times \mathbb{P}_1^1 \) near \(s_0 \otimes \lambda^r \), which associates an \(M \)-section of \(\text{Hom}(T(s), \mathcal{F}^*\mathcal{O}_{\mathbb{P}_1}^1) \) defined by the projection \(\varphi: (s)_0 \longrightarrow \mathbb{P}_1^1 \).

Explicitly, \(s \) can be taken in a form

\[
\sum_{0 \leq i \leq r} \xi_i s_1^i / \lambda^{r-i},
\]
where \(s_1 = s_0 \) (\(i \): even), \(s_1 = s_1 \) (\(i \): odd) and \(\xi_0, \xi_1, \ldots, \xi_r \) are real numbers with \(1 = \xi_0 \gg |\xi_1| \gg \cdots \gg |\xi_r| > 0 \).

Remark 0.5. A sufficient condition for the existence of a pair of \(M \)-sections satisfying (*) is given in section 4. Theorem 0.4 with this sufficient condition implies immediately Theorem 0.1 in the case \(n = 2 \).

Putting \(S = \mathbb{P}_1^1 \times \mathbb{P}_1^1 \) (\(= \mathbb{P}_1^1 \times \mathbb{P}_1^1 \)) and \(L = \mathcal{O}_{\mathbb{P}_1^1}(d) \otimes \mathcal{O}_{\mathbb{P}_1^1}(r) \) over \(S \), we have

Corollary 0.6. For non-singular real surface \(A \subset \mathbb{P}_1^1 \times \mathbb{P}_1^1 \times \mathbb{P}_1^1 \) of degree \((d,e,r) \) such that \(\varphi: A \longrightarrow \mathbb{P}_1^1 \) has only non-degenerate critical points, there exists the sharp estimate:

\[
\begin{align*}
P_1(A; \mathbb{Z}/2) & \leq 6de-4de-4er-4rd+4d+4e+4r, \\
s(\varphi) & \leq (6de-4d-4e+4)r.
\end{align*}
\]
From Theorem 0.4, it naturally arises the following general problem:

Problem 0.7. Let E be a real holomorphic vector bundle over a real complex manifold. Give a criterion for the existence or the non-existence of M-sections of E.

Lastly we intend to clarify the construction of M-surfaces in \mathbb{P}^3 by Viro [V].

Theorem 0.8. (Viro) For non-singular real surfaces A in \mathbb{P}^3 of degree d, there exists the sharp estimate:

$$P_1(A_\mathbb{R}; 3/2) \leq d^3 - 4d^2 + 6d.$$

Let X_0, X_1, X_2, X_3 be homogeneous coordinates of \mathbb{P}^3. Put $\mathbb{P}^2 = \{X_3 = 0\}$, $\mathbb{P}^1 = \{X_3 = X_3 = 0\}$ and $\mathfrak{l} = \{X_0 = X_1 = 0\}$.

Let $\phi: \mathbb{P}^3 - \mathfrak{l} \rightarrow \mathbb{P}^1$ be a projection. Fix a tubular neighborhood U of \mathfrak{l} in \mathbb{P}^3 such that $\overline{U} \cap \mathbb{P}^1$ is empty.

Observe that for each d there exist M-sections s_0, \ldots, s_d of $O_{\mathbb{P}^2}(0), \ldots, O_{\mathbb{P}^2}(d)$ near X_2^0, \ldots, X_2^d respectively such that $(s_{i+1})_0$ and $(s_{i+1})_0$ intersect in $i(i+1)$ points in \mathbb{RP}^2, the real locus of $(s_{i+1})_0$ has $(1/2)(i-1)(i-2) + (1/2)i(i-1)$ empty ovals ($0 \leq i \leq d-1$) and $\phi((s_{i+1})_0$ has $(i-1)i$ real critical points ($0 \leq i \leq d$). Naturally each s_i is extended to a section \tilde{s}_1 of $O_{\mathbb{P}^3}(1)$ ($0 \leq i \leq d$).
Put \(s = \sum_{0 \leq i \leq d} \xi_i x_2^i x_1^{d-i} \in H^0(\mathcal{O}^3, \mathcal{O}_3(d))_{\mathbb{R}}, \) and \(A = (s)_0. \)

Take real numbers \(\xi_0, \ldots, \xi_d \) to be \(1 = \xi_0 \gg |\xi_1| \gg \cdots \gg |\xi_d| > 0 \)

and of appropriate signs.

\(\varphi_{\mathcal{R}}: A_{\mathbb{R}} \to \mathbb{R}^1 \) defines a vector field \(\mathfrak{j}' \) over \(A_{\mathbb{R}} \). \(\mathfrak{j}' \) is extended to a vector field \(\mathfrak{j} \) over \(A_{\mathbb{R}} \) with finite singularities.

Denote by \(s^+(\mathfrak{j}) \) (resp. \(s^-(\mathfrak{j}) \)) the sum of positive (resp. negative) indices of singular points of \(\mathfrak{j} \), and put

\[t_1 = \dim H_1(A_{\mathbb{R}}; \mathbb{Z}/2) \quad (i=1,2,3). \]

Then we see

\[
s^+(\mathfrak{j}) \geq d + (1/3)d(d-1)(d-2),
\]

\[
s^-(\mathfrak{j}) \geq (1/3)(d+1)d(d-1) + (1/3)d(d-1)(d-2).
\]

Thus \(\chi(A_{\mathbb{R}}) = s^+(\mathfrak{j}) - s^-(\mathfrak{j}) \geq d - (1/3)(d+1)d(d-1) \). On the other hand \(t_0 + t_1 \geq 2 + (1/3)(d-1)(d-2)(d-3) \). Hence we have

\[
P_1(A_{\mathbb{R}}; \mathbb{Z}/2) = t_0 + t_1 + t_2
\]

\[
= 2(t_0 + t_2) - \chi(A_{\mathbb{R}})
\]

\[
\geq d^3 - 4d^2 + 6d \quad (= p_1(A; \mathbb{Z}/2)).
\]

By Harnack-Thom's inequality, all equalities are hold.

The author would like to thank J.J. Risler for helpful suggestions, Takashi Matsuoka for informing the existence of \([P]\) and M-h Saito for valuable comments.
1. Preliminary: Complex Topology.

(1.0) Let X be a complex manifold, $\pi: E \longrightarrow X$ a holomorphic vector bundle and $s: X \longrightarrow E$ a holomorphic section. Put $(s)_0 = \{x \in X \mid s(x) = 0\}$.

We call s transverse if s is transverse to the zero section $\mathcal{Z} \subset E$, that is, for any $s \in (s)_0$, $s^* T_X \otimes T_s(x) \cong T_s(x)^\perp$.

If s is transverse, then $(s)_0$ is a complex submanifold of X.

Denote by H the complex vector space $H^0(X, E)$ of totality of holomorphic sections of E over X, and by PH the projectification of H.

Put $Z = \{(x, [s]) \in X \times PH \mid s(x) = 0\}$ and consider the projection $\bar{\Phi}: Z \longrightarrow PH$. Then s is transverse if and only if Z is non-singular along $\bar{\Phi}^{-1}[s]$ and $\bar{\Phi}$ is submersive over $[s]$.

In particular, for transverse sections $s, s' \in H$, $(s)_0$ and $(s')_0$ are diffeomorphic.

(1.1) Let $s \in H^0(X, E)$ be transverse. Put $Z = (s)_0$. Then we have an exact sequence

$$0 \longrightarrow TZ \longrightarrow TX|_Z \longrightarrow E|_Z \longrightarrow 0,$$

of complex vector bundles. Therefore $c_t(TX|_Z) = c_t(TZ)c_t(E|_Z)$ for Chern polynomials. The Chern classes of TZ are calculated by the formula $c_t(TZ) = \frac{c_t(TX|_Z)}{c_t(E|_Z)}$ (cf. [F]).
(1.2) Let L be a holomorphic line bundle over a complex manifold V of dimension n. Let Z be the zero-locus of a transverse section of L. Then by (1.1),

$$\chi(Z) = \langle \sum_{1+j=n+1} (-1)^j c_1(TV)(c_1(L))^j + 1, [V] \rangle.$$

For example, if $\dim V = 2$, then

$$\chi(Z) = \langle c_1(TV)c_1(L) - c_1(L)^2, [V] \rangle.$$

Furthermore, if Z is connected, then

$$\chi(Z) = 1 + (1/2)\langle c_1(L)^2 - c_1(L)c_1(TV), [V] \rangle.$$

(1.3) Let R be a non-singular curve of genus g. Denote by $\pi: V \times R \to V$ and $\psi: V \times R \to R$ the projections. Put $L' = \pi^*L \otimes \psi^*O_R(r)$ over $V \times R$ for each r. Let $A \subset V \times R$ be the zero-locus of a transverse section of L'.

Then $\chi(A) = \langle \psi, [V] \rangle$, where

$$\psi = r c_n(TV) + \sum_{1+j=n, j>0} ((j+1)r+2g-2)c_1(TV)(-c_1(L))^j,$$

as an element of $H^{2n}(V; \mathbb{Z})$.

For example, if $\dim V = 2$, then

$$\chi(A) = \langle rc_2(TV) - (2r+2g-2)c_1(TV)c_1(L) + (3r+2g-2)c_1(L)^2, [V] \rangle.$$

(1.4) Example. Let C, C' and C'' be non-singular curves.
of genus g, g' and g'' respectively. Put $X = C \times C' \times C''$, and denote projections by p_1, p_2 and p_3 to C, C' and C'' respectively. Let $A \subset X$ be the zero-locus of a transverse section of $L' = p_1^*C_1(d) \oplus p_2^*C_1(d) \oplus p_3^*C_1(d'')$. Then $\chi(A)$ is equal to $6(d-1)(d'-1)(d''-1) + (2+4g')(d-1)(d'-1) + (2+4g)(d''-1) + (2+4g')(d''-1)(d-1) + (2+4g'g')(d''-1) + 6 - 4(g+g'+g'') + 4(gg'+g''+g')$.

(1.5) In (1.3), denote by $\varphi: A \longrightarrow \mathbb{P}$ the projection to \mathbb{P}. Put $\tilde{\varphi} = \text{Hom}(TA, \varphi^*T\mathbb{P})$. Then $\langle c_n(\tilde{\varphi}), [A] \rangle = \langle \gamma, [V] \rangle$, where

$$\gamma = (-1)^n r \sum_{1+j=n} (j+1)c_1(TV)(-c_1(L))^j,$$

as an element of $H^{2n}(V; \mathbb{Z})$.

For example, if $\dim V = 2$, then

$$\langle c_2(\tilde{\varphi}), [A] \rangle = r \langle c_2(TV) - 2c_1(TV)c_1(L) + 3c_1(L)^2, [V] \rangle.$$

(1.6) Let A be a non-singular hypersurface of $\mathbb{P}^n \times \mathbb{P}^1$ of degree (d, r). Then $\chi(A) = \langle c_n(TA), [A] \rangle$ is equal to

$$(n+1)(1-d)^n r + 2 \left(\frac{(1-d)^{n+1}-1}{d} + n+1 \right).$$

If $\varphi: A \longrightarrow \mathbb{P}^1$ has only isolated critical points, then $s(\varphi) = \langle c_n(\text{Hom}(TA, \ast T\mathbb{P}^1)), [A] \rangle$ is equal to $(n+1)(d-1)^n r$.

(1.7) Let A be a non-singular irreducible projective variety of dimension n. Then $H_i(A; \mathbb{Z})$ is torsion free for all i, and rank $H_i(A; \mathbb{Z})$ is equal to

0 (if n, i: odd), 1 (if n, i: even), $n+1$- $\chi(A)$ (if n, n: odd), $\chi(A)-n$ (if n, n: even).
(1.8) If A is a simply connected compact complex surface, then $P_t(A;K) = P_{-t}(A;K)$, and $P_1(A;K) = P_{-1}(A;K) = \chi(A)$ for any field K.

2. Preliminary: Real Topology.

(2.1) A real structure on a complex manifold X is an anti-holomorphic involution $\tau: X \to X$. The pair (X, τ) is called a real complex manifold. Two real complex manifolds (X, τ), (X', τ') are isomorphic if there is an isomorphism $\sigma: X \to X'$ of complex manifolds satisfying $\sigma \circ \tau = \tau' \circ \sigma$ (cf. [S]).

(2.2) Let (X, τ) be a real complex manifold. We denote by X^τ the space of fixed points of τ in X, and call it the real locus of X (with respect to τ).

(X, τ) is a M-manifold if $P_1(X^\tau; \mathbb{Z}/2) = P_1(X; \mathbb{Z}/2)$ (cf. [G]). A M-manifold (X, τ) of dimension 1 (resp. 2) is called a M-curve (resp. M-surface).

(2.3) Example. The number of equivalence classes of real structures on \mathbb{P}^n is one if n is even and two if n is odd (cf. [F], p. 240).

The anti-holomorphic involution $\tau': \mathbb{P}^{2m+1} \to \mathbb{P}^{2m+1}$ defined by $\tau'[X_0:X_1:...:X_{2i}:X_{2i+1}:...:X_{2m}:X_{2m+1}] = [-X_1:X_0:...:-X_{2i+1}:X_{2i}:...:-X_{2m+1}:X_{2m}]$ gives a real structure not equivalent to the usual real structure defined by the complex conjugation $(\mathbb{P}^{2m+1}, \tau_{2m+1})$. We often denote by $\mathbb{P}^{2m+1}_0 = (\mathbb{P}^{2m+1}, \tau')$, $\mathbb{P}^{2m+1}_1 = (\mathbb{P}^{2m+1}, \tau_{2m+1})$.

Then \(\mathbb{P}^{2m} \) and \(\mathbb{P}^{2m+1} \) are M-manifolds, but \(\mathbb{P}^{2m+1} \) is not a M-manifold.

(2.4) From properties of Poicaré series, we see

Lemma. Let \((X, \mathcal{U}), (X', \mathcal{U}')\) be M-manifolds. Then \((X \perp X', \mathcal{U} \perp \mathcal{U}')\) and \((X \times X', \mathcal{U} \times \mathcal{U}')\) are also M-manifolds.

(2.5) **Lemma.** Let \((X, \mathcal{U})\) be a M-surface with \(H_1(X; \mathbb{Z}/2) = 0\) and \(H_0(X^R; \mathbb{Z}/2) \cong \mathbb{Z}/2\). Then \(X(X) + X(X^R) = 4\).

Proof.
\[P_1(X; \mathbb{Z}/2) = P_1(X; \mathbb{Z}/2) = P_1(X^R; \mathbb{Z}/2).\]
\[P_1(X^R; \mathbb{Z}/2) + P_1(X; \mathbb{Z}/2) = 2(\dim H_0(X^R; \mathbb{Z}/2) + \dim H_2(X^R; \mathbb{Z}/2)) = 4.\]

(2.6) Let \(\Pi: E \to X\) be a holomorphic vector bundle over a real complex manifold \((X, \mathcal{U})\). A real structure of \(\pi\) is a real structure \(\Pi: E \to E\) of \(E\) as a complex manifold (cf. 2.1) such that \(\Pi \circ T = \tau \circ \Pi\) and the restriction \(T_x: E_x \to E_{\tau(x)}\) to each fiber \((x \in X)\) is conjugate linear.

We call the triple \((\Pi, T, \tau)\) a **real holomorphic vector bundle** (cf. [A]). Notice that the restriction \(\Pi^R_x: E^R_x \to X^R_x\) to the real locus of \(\Pi\) is a real vector bundle.

A holomorphic section \(s \in H^0(X, E)\) of \(E\) is **real** if \(T \circ s \circ \tau^{-1} = s\), that is, \(s \in H^0(X, E)^R\) with respect to the anti-holomorphic involution \(s \mapsto T \circ s \circ \tau^{-1}\).
(2.7) **Definition.** A holomorphic section s of a real holomorphic vector bundle over a real complex manifold (X, \mathcal{L}) is a **M-section** if s is transverse, real and the zero-locus $(s)_0 \subset X$ with restricted \mathcal{L} is a M-manifold.

(2.8) **Remark.** Two real holomorphic vector bundles are isomorphic as real holomorphic vector bundles if and only if they are isomorphic as holomorphic vector bundles.

On \mathbb{R}^n, any holomorphic line bundle has a structure of real holomorphic line bundle.

(2.9) **Poincaré-Hopf-Pugh formula (cf. [P]).**

Let M be a compact C^∞ manifold of dimension n with boundary ∂M.

A tangent vector ξ to M at a point x_0 of M is **external** if $df_{x_0}(\xi)$ is positive for some C^∞ function f defined in a neighborhood U of x_0 such that $f^{-1}(0) = \partial M \cap U$, f takes negative values in $(M - \partial M) \cap U$ and $df|_{\partial M \cap U}$ does not vanish (figure 1):

![Diagram](image)

external

Let $v: \partial M \to TM|\partial M$ be a C^∞ section over ∂M to the tangent bundle TM.

-13-
Assume that (a): for each $x_0 \in \partial M$, $\nu(x_0) \neq 0$.

First put $M_0 = M$. Next put

$$M_1' = \{x \in \partial M \mid \nu(x)\text{ is external}\},$$

and put $M_1 = \overline{M_1'}$, and $\partial M_1 = M_1 - M_1'$.

Inductively, if M_k is a C^∞ manifold with boundary ∂M_k ($k \geq 0$), then put

$$M_{k+1}' = \{x \in \partial M_k \mid (v/\partial M_k)(x)\text{ is external w.r.t. } M_k\},$$

$M_{k+1} = \overline{M_{k+1}'}$ and $\partial M_{k+1} = M_{k+1} - M_{k+1}'$.

Assume that (b): M_k is a C^∞ manifold with boundary ∂M_k, $(k = 1, 2, \ldots, n-1)$.

Lemma. Let ν satisfy two assumptions (a), (b) stated above. Then for any C^∞ extension $w: M \to TM$ with isolated singularities, we have

(c): \[\text{ind } w = \sum_{i=0}^{n} (-1)^i \chi(M_i). \]

Remark. (0) We adopt the following definition of index of a vector field: Let $x_0 \in M$ be an isolated singular point of w. Take a system of coordinates x_1, \ldots, x_n centered at x_0, and write locally

$$w(x) = a_1(x)(\partial/\partial x_1) + \ldots + a_n(x)(\partial/\partial x_n).$$

Define $\text{ind}_{x_0} w = \deg_0 (-a)$, where $a = (a_1, \ldots, a_n)$.

-14-
Then put \(\text{ind } w = \sum \text{ind}_{x_0} w \), where the sum runs over isolated singular points \(x_0 \) of \(w \).

(1) If \(\emptyset M \) is empty, then (c) is the Poincaré-Hopf's formula.

(2) For a \(C^\infty \) vector field \(w \) over \(M \) with only isolated singular points, there exists a non-negative \(C^\infty \) function \(f: U \to \mathbb{R} \) with the following properties:

(i) \(f^{-1}(0) = \emptyset M \). (ii) For any sufficiently small \(\varepsilon > 0 \), \(w \mid f^{-1}(\varepsilon) \) satisfies two assumptions (a), (b).

3. Non-linear systems of real sections.

In this section we prove Theorem 0.4.

In the situation of Theorem 0.4, put \(Z = (s_r)_0 \overset{\sim}{=}(s_1)_0 \) (0 \(\leq i \leq r \)), \(s(r) = \sum_{0 \leq i \leq r} \varepsilon_i s_i \lambda_i^{1/\mu-1} \) and \(A(r) = (s(r))_0 \). Denote by \(s_1^{(r)} \) (resp. \(t_1^{(r)} \)) (1 = 0, 1, 2) the number of real critical points of \(\varphi = \psi \mid A(r) \) of index 1 (resp. \(\dim H_1(A^{(r)}_\mathbb{R}; \mathbb{Z}/2) \)).

Identify \(H^4(S; \mathbb{Z}) \) with \(\mathbb{Z} \) by the fundamental class \([S]\).

(3.1) Proof of Theorem 0.4. By (1.2), \(g(Z) \) is equal to \(1 + (1/2)(c_1(L)^2 - c_1(L)c_1(TS)) \).

Let \(N \) be \(S_\mathbb{R} \) minus the interiors of 2g(Z) empty ovals. Put \(M = \{ (x; \lambda, \mu) \in A^{(r)}_\mathbb{R} \mid |s^{(r-1)}(x; \lambda, \mu)| \geq \delta, x \in N \} \) for a positive number \(\delta \) with \(|\varepsilon_{r-1}| \gg \delta \gg |\varepsilon_r| > 0 \). Then \(M \) is a \(C^\infty \).
manifold with boundary such that $\chi(M) = \chi(S_R) - 2g(Z)$.

Set $w = \text{grad} \varphi | M$. Then, with respect to w, $\chi(M_1)$ is equal to $c_1(L)^2$ (cf. 2.9) and M_2 is empty. Thus we see

\[\text{index } w = \chi(M) - \chi(M_1) = \chi(S_R) - 2g(Z) - c_1(L)^2. \]

Therefore on M, the number of critical point of φ_R of index 1 is not less than $-\text{index } w = c_1(L)^2 + 2g(Z) - \chi(S_R)$.

Thus we have

\[s_1(r) - s_1(r-1) \geq 2c_1(L)^2 - c_1(L)c_1(TS) - \chi(S_R) + 2, \]

\[s_0(r) + s_2(r) - (s_0(r-1) + s_2(r-1)) \geq 2g(Z) = c_1(L)^2 - c_1(L)c_1(TS) + 2, \]

\[s_0(0) = s_1(0) = s_2(0) = 0. \]

So we have

\[s_1(r) \geq r(2c_1(L)^2 - c_1(L)c_1(TS) - \chi(S_R) + 2) \quad \ldots \quad (1), \]

\[s_0(r) + s_2(r) \geq r(c_1(L)^2 - c_1(L)c_1(TS) + 2) \quad \ldots \quad (2). \]

By (2.5), $\chi(S) + \chi(S_R) = 4$. Hence we have

\[s(\varphi_R) = s^{(r)} + s_1(r) + s_2(r) \]

\[\geq r(3c_1(L)^2 - 2c_1(L)c_1(TS) + c_2(TS)) \quad \ldots \quad (3). \]

By (1.5), equalities in (1), (2) and (3) hold. Thus we have

\[\chi(A_R) = s_0^{(r)} - s_1^{(r)} + s_2^{(r)} \]

-16-
\[= r(-c_1(L)^2 - c_2(TS) + 4) \quad \ldots \ (4).\]

On the other hand, because of the existence of ovals, we have

\[t_0(r) + t_2(r) - (t_0(r-1) + t_2(r-1)) \geq 2g(Z),\]
\[t_0(1) + t_2(1) \geq 2.\]

Thus we have

\[t_0(r) + t_2(r) \geq 2g(Z)(r-1) + 2 \quad \ldots \ (5).\]

Therefore, by (4), (5) and (1.3), we have

\[P_1(A_R; \mathbb{Z}/2) = t_0(r) + t_1(r) + t_2(r)\]
\[= 2(t_0(r) + t_2(r)) - \chi(A_R)\]
\[\geq (3r-2)c_1(L)^2 - (2r-2)c_1(L)c_1(TS) + rc_2(TS)\]
\[= P_1(A; \mathbb{Z}/2) \quad \ldots \ (6).\]

By Harnack-Thom's inequality \(P_1(A_R; \mathbb{Z}/2) \leq P_1(A; \mathbb{Z}/2)\).

Hence equalities in (5) and (6) hold. This completes the proof of Theorem 0.4.

(3.2) Example. Let us consider the case \(S = \mathbb{P}^2\). Let \(A\) be a non-singular surface of \(\mathbb{P}^2 \times \mathbb{P}^1\) of degree \((d,r)\). Then

\[\chi(A) = P_1(A; \mathbb{Z}/2) = 3 + d^2 + 3(d-1)^2(r-1).\]

If \(\varphi: A \to \mathbb{P}^1\) has only isolated critical points, then

\[s(\varphi) = \sum_{x \in A} \mu_x(\varphi) = 3(d-1)^2r,\]

where \(\mu_x(\varphi)\) is the Milnor number of \(\varphi\) at \(x\).
Proposition. Let \(A \subset \mathbb{P}^2 \times \mathbb{P}^1 \) be a non-singular real surface of degree \((d,r)\) such that \(\varphi: A \rightarrow \mathbb{P}^1 \) has only isolated critical points. Then we have the sharp estimate

\[
P(A_R; \mathbb{P}^2/2) \leq 3 + d^2 + 3(d-1)^2(r-1),
\]

\[
(A_R) \leq 3(d-1)^2 r.
\]

Example. Let \(A = \left\{ [\lambda \mathcal{F} + \mu \mathcal{G}] / [\lambda ; \mu] \in \mathbb{P}^1 \right\} \) be a pencil of real plane curves in \(\mathbb{P}^2 \) of degree \(d \).

\(A = (\lambda \mathcal{F} + \mu \mathcal{G})_0 \subset \mathbb{P}^2 \times \mathbb{P}^1 \) is non-singular if and only if \((\mathcal{F})_0 \) and \((\mathcal{G})_0 \) intersect transversely in \(\mathbb{P}^2 \). If \(A \) is non-singular, then \(A \sim \mathbb{P}^2 - \mathbb{P}^2 - \cdots - \mathbb{P}^2 \). In this case, if \((\mathcal{F})_0 \) and \((\mathcal{G})_0 \) intersect in \(k \) points \((0 \leq k \leq d^2, k \equiv d \mod 2)\), then \(A_R \sim \# \mathbb{RP}^2 \). Thus \(A \) is an \(M \)-surface if and only if \(k = d^2 \).

Let \(S \) be a compact real complex surface, \(L, L' \) real holomorphic line bundles, \(s, s' \) \(M \)-sections of \(L, L' \) respectively.

Put \(C = (s)_0 \) and \(C' = (s')_0 \). Assume that \(C \) and \(C' \) are both rational and \(CC' = \langle c_1(L)c_1(L'), [S] \rangle \geq 0 \). (This assumption for \(S \) is rather restrictive (cf. [BPV], Proposition V.4.3)).

Consider the following condition:
(**) For any effective divisor α on C of degree CC' with $\text{supp} \alpha \subseteq C_{\mathbb{R}}$, there exists a real section $s'' \in H^0(S, L')_{\mathbb{R}}$ such that $(s'')_0|C = \alpha$.

Theorem 4.0. Under the condition (**), for any natural numbers d and e, $L^d \otimes L^e$ has an M-section near $s^d \otimes s^e$ in $H^0(S, L^d \otimes L^e)_{\mathbb{R}}$. Furthermore, if CC' is positive, then $L^d \otimes L^e$ has a pair of M-sections near $s^d \otimes s^e$ satisfying (*) (cf. Introduction).

Corollary 4.1. If $C^2 \geq 0$, then under the condition (**), for $C' = C$, for any natural number d, L^d has an M-section near s^d. Furthermore, if C^2 is positive, then L^d has a pair of M-sections near s^d satisfying (*).

(4.2) Example. (1) $S = \mathbb{P}^2$, $L = L' = \mathcal{O}_{\mathbb{P}^2}(1)$ (This corresponds to the Harnack's method).

(2) $S = \mathbb{P}^2$, $L = L' = \mathcal{O}_{\mathbb{P}^2}(2)$, $C = C'$: a real ellipse with $C_{\mathbb{R}} \neq \emptyset$ (This corresponds to the Hilbert's method).

(3) $S = \mathbb{P}^1 \times \mathbb{P}^1$, $L = L' = p_1^* \mathcal{O}_{\mathbb{P}^1}(1) \otimes p_2^* \mathcal{O}_{\mathbb{P}^1}(1)$.

(4) $S = \mathbb{P}^1 \times \mathbb{P}^1$, $L = p_1^* \mathcal{O}_{\mathbb{P}^1}(1)$, $L' = p_2^* \mathcal{O}_{\mathbb{P}^1}(1)$ (This is used to show Proposition 0.2 and Corollary 0.6).
References:

(March.24.1986).