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Transcendence Problems in Several Variables

By Michel WALDSCHMIDT
Université de Paris VI

(written by Isao WAKABAYASHI)

Abstract

We explain Gel'fond-Schneider method in several variables,
showing at the Same time that methods in transcendence number
theory give a proof of Siegel's theorem on Diophantine equa-
tions. Then we give a new proof of Baker's theorem, and show
that this new idea gives a result in the direction of the

4-exponentials problem.

§1. Siegel's theorem and transcendence method.
We have the following result of C.L.Siegel [14] which is
fundamental for the theory ovaiophantine equations, as shown

by S.Lang in [6] and [8].

THEOREM 1 (Siegel). Let K be a number field, and let a
and a' be fixed numbers in K. Then there are only finitely
many units u and u' in K satisfying the equation

au + a'u' = 1. (1)



129

In the following, we explain the transcendence methods
which derive such a result. There are several possible proofs,
and the proof which we explain was initiated by A.0.Gel'fond
[5]. But Gel'fond did not give an upper bound for the absolute
values of the solutions, so it was an ineffective proof, and

A.Baker [1, 2] made it effective.

PROOF. Let €qr° " rEL be a basis of the group of units of

K modulo torsion, which means that we can write

m m_ m{ mé
U =geq e, u' = ¢ €1 "€ (2)

where ¢ and ¢' are some roots of unity and m1,--~,mr,m{,---,m;
are rational integers. We need some information on the m, . So
we first notice that, without loss of generality, we can choose
an embedding of K into C such that
[u] 2 max |u®], lu|] z max |u
o o

where |u| is the absolute value of u corresponding to the
embedding, and ¢ runs over the conjugates of K. Note that, in
the second inequality, it is u and not u', and so this is not
an equality in general.

Now it is not difficult to see, by just looking at the
inequalities of norm and using properties of basis of units,

that

A
IA

Cy log |ul, max lmil

c, log |u],
1sisr 1sisr

with a constant CO which can be explicitly given. As our aim
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is to prove the finiteness of solutions u and u' of (1), which
is equivalent to the finiteness of m, and m'i, we may assume
that u is large.

Now starting from the equation (1), we write it as
a'u' 1
V-5 au
which is small, and we express this by (2) as
m.) -m m'-m
_oza'g! vt r r 1
| 1 ( at €4 £ ) |
So this can be written as

[1 - « L | s exp (- C, max |b,]|), (3)
1 1 . i
1sisn
' - _ - oo_a't! - m' -
where n = r + 1, a;, = €y (1 =1 s r), a, = ac ' by = m m,
(1 =1 = 1r), bn = 1, and C1 is an explicit constant. Thus we

have such an inequality where aivare fixed algebraic numbers

and b, are integers. Noting that max |m, - m!| is large
* lsisr * *

since u is large, we may assume that max [bil is large.
T=isn

Now what we need is a lower bound of the value of the
left-hand side of (3). It is possible to give a lower bound by
using the Liouville arguments, but the lower bound will be
essentially of the same quality and we shall not get any thing.
So the main problem is to get a lower bound which is better

than (3), and which gives a contradiction if max Ibil is
i

large.

Let B = max |b;|, and let
i
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b1 | bn
(*) = |1 - oy e o .

- Then the following results are obtained.

Lower bound by Gel'fond [5]: For any positive € there

exists a positive constant BO(E) such that for all B > BO(E)

we have

(*) > exp(- €B).

If we take g < C1, then together with (3), we get a

contradiction and the Siegel theorem is proved.

But Gel'fond used the Roth theorem, so BO was not effecti-
ve. Therefore, even though the finiteness of solutions u  and
u' of (1) was proved, we could not obtain an upper bound for

the absolute values of solutions u and u'. -And Baker succeeded

to give an effective result.

Lower bound by Baker (see the references in [2]): There

exist two effective constants C and K such that for all B > 1
we have

(*) > exp(- C(log B)“).

After that, N.I.Fel'dman obtained a better estimate which

is in fact the best possible in terms of B.
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Lower bound by Fel'dman [4]: There exists an effective

constant C such that for all B > 1 we have

(*) > B™C,

The last two lower bounds enable us therefore to find all
the solutions of (1).

One explicit lower bound in a slightly different situation
is given by Y. Morita in these proceedings.

These results are obtained in the following manner.

To get a lower bound for (*) is essentially equivalent to
the problem to get a lower bound for the value

b1 log Qg + o0 4 bn log a, + 2kmi,

and the method comes in fact from Baker's solution of the

following problem of transcendence.

THEOREM 2 (Baker [1,2]). Let ag,°**,0 be algebraic

n
numbers different from O. Choose log a1,"',log A and
suppose they are linearly independent over Q. Then, 1,

log a1,'-',log a, are linearly independent over the field Q of

algebraic numbers.
This is the transcendence theorem which Baker proves, and
the same proof essentially gives the above lower bound.

Now this theorem has the following corollaries.

COROLLARY 1 (Hermite-Lindemann theorem). If o is a non-
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zero algebraic number and log o is non-zero, then log o is a

transcendental number.
PROOF. Apply the theorem for n = 1.

COROLLARY 2 (Gel'fond-Schneider theorem). If a; and a,
are non-zero algebraic numbers and log a1/log 05 is not a

rational number, then log a1/log o, is a transcendental

- number.

i}
N
[ ]

PROOF. Apply the theorem for n

§ 2. Method of Gel'fond-Schneider in one variable.

The method of Baker is a development of the method of
Gel'fond, so here we recall the two methods of Gel'fond and
Schneider in one variable, and in §3 we explain their,exténsion
to several variables.

We want to prove Gel'fond-Schneider theorem (Corollary 2).

So we suppose the following.
ASSUMPTION 1. Let Ay, Oy be non-zero algebraic numbers
and let B be an irrational algebraic number. We suppose

log 0y = B ldg Oq e

From this assuption we want to get a contradiction. We
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explain first the method of Schneider, and next the method of

Gel'fond.

1° Method of Schneider.

. "z log Qg
Starting point. The two functions z and ay = e

are entire functions with moderate growth, and they are algeb-
raically independent, that is, for any non-zero polynomial P in
Q[X,Y], the function P(z,a?) is not identically zero. And
they take algebraic values simultaneously at a lot of points,
namely, at all the points of Z + ZB. Under Assumption 1,
these facts will give a contradiction, by allowing us to
construct a polynomial P with P(z,u?) = 0. The proof will be
divided in two steps.

Step 1. Construction of P, Let S be a sufficiently large
integer. We construct a polynomial P in Z[X,Y] such that the
function F(z) = P(z,a?) has many zeros, that is, it satisfies
F(h1+h08) = 0 for all integers h1'h0 with 0 = hj s S.

In fact this is possible because the condition is defined
by (S + 1)2 linear homogeneous equations whose unknowns are
the coefficients of P, and if we choose the degree of P suffi-
ciently large in such a way that the number of coefficients of
P is greater than (S + 1)2, then just by linear algebra we can
find a solution. In addition, it is possible by the well-known
Siegel lemma, to bound the absolute values of the coefficients

of P if we allow the degree of P to be sufficiently large.
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Step 2. Vanishing of F. 1In order to prove that F(z) is

identically zero, we prove the following two properties (AS.)

and (Bs.) by induction on S' which is any integer with
s' 2z S.
- ‘gt
(AS.) F(h1 + hOB) =0 for 1= hj <'s'.
(Bg1) sup  |F(z)] <« exp(—S'Z) with c =1 + [B8].

z]écS'

The proof is as follows.
i) (AS) is true by the construction of P. So the induction
hypothesis holds.

ii) (BS.) = (AS.). By (B the function F is small on the

SI)I
disk (|z| = cS8'), so the value F(h,+h,B) is small for

1

A

hj < S'. Furthermore this value is an algebraic number by
Assumption 1. Then, by the arithmetic fact that, 1like an
rational integer, an algebraic number can not be too small if
it is not zero (Liouville inequality), we can easily prove that
F(h1+h05) = 0.

iii) (AS.) =%_(BS.+1)} This is a consequence of the classical
Schwarz lemma for one variable which says that if a fuﬁction
with moderate growth has a lot of zeros, then its wvalue is
small in some disks.

Thus by i),ii),iii), the properties (AS.) and (B hold

gr)
for all S' z S. Especially the fact that (BS.)vholds for all

S' 2z S, implies that F(z) is identically zero. But this is a
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contradiction. So Assumption 1 was false, and the Gel'fond-

Schneider theorem is proved.

2° Method of Gel'fond.

The structure of Gel'fond's proof is essentially the same.
The difference is at the starting point, and the derivatives of
the functions are also used.

-Starting point. The two functions e” and eBZ are
entire, and they are algebraically independent over Q, since B
is irrational. They take algebraic values at Zlog a, . So we
have less values than in Schneider's proof, that is, we have
only a Z-module of rank 1. But since B 1is algebraic,’these‘
functions satisfy differential equations with algebraic coeffi-
cients, which was not the case for Schneider's proof.

Step 1. Construction of P. We construct a polynomial P
in Z([X,Y] such that the function F(z) = P(ez,eBZ) has many
zeros of high order, that is, for large S we have

Bo

d -
B F(h1log a1) =0 for 0 £ h. = S.

J
dz 0

This is possible by the same argument as above, since the
values to be considered, namely, all the derivatives of F(z) at
Zlog a, are algebraic.

Step 2. Vanishing of F. The proof of the vanishing of F
is the same as above in principle. We use arithmetical proper-
ties of algebraic numbers, and Schwarz's lemma. And we get

again a contradiction.
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§ 3. Gel'fond—Schneider method in several variables.

We explain the' proof of Baker's theorem (Theorem 1).
Baker wuses functions of several variables by generalizing
Gel'fond's method.

For the sake of simplicity, we shall prove Baker's theorem
in a slightly weaker form. So we suppose the following, and we

want to get a contradiction.

ASSUMPTION 2. Let QqrotcrQ g be non-zero algebraic
numbers such that 1log a1,---,log N are linearly indepen-
dent over Q, and let 81,--°,Bn be algebraic numbers. We
suppose

B1log PR SRR Bnlog a, = log ®e1e (4)

1° Generalization of Gel'fond's method.

29

Starting point. The n+1 functions of n variables e ,---,

%n B1Z1+”'+ann n
e and e are analytic on €, and they  are
algebraically independent over Q. They take simultaneously

algebraic values at Z(log a1,-'-,log an) by (4). Further
these functions satisfy partial differential equations with
algebraic coefficients.

Step 1. Construction of P. We construct a polynomial P
in Z[X1,---,Xn+1] such that the function of n variables

z z B.z.+***+B 2z
171
F(zy,°*+,z) = Ple ,=++,e "e non)
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has zeros of high order at many points of the form
(h log a,, =++,h log a ).

Step 2. Vanishing of F. In order to prove that
F(z1,---,zn) is identically zero, we use arithmetical arguments
and Schwarz's lemma. But the difficulty is with Schwarz's
lemma. We have now a function of several variables, and in
this caée, even if we know that it has a lot of zeros in some
disk, it does not give an upper bound for its values. Baker's
idea is to consider a complex line passing the origin, and he
succeeded to use the Schwarz lemma only for functions of one
variable. 1In fact, he succeeded by considering the function of
one variable defined by

d(z) = F(r log Aqr®ec sl log un).

2° Generalization of Schneider's method.

z z
. . . 1
Starting point. The n+1 functions Zyytccsz and oy ccca

n
are analytic on Cn, and they are algebraically independent over
Q. They take simultaneously algebraic values at
2% + Z(By, +-,B,) (CC).

Step 1. Construction of P. We construct a polynomial P in

Z[X1,~--,Xn+1] such that the function of n variables

z z_

n . .

F(Z1,"‘,Zn) = P(Z1,"',Zn,a1 teeop ) vanishes at many points
of the form (h1+hOB1,---,hn+hOBn).

Step 2. Vanishing of F. As in Gel'fond's method, the

difficulty is with Schwarz's lemma. But for Schneider's

- 11 -
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method, we succeeded to prove a Schwarz lemma for several
variables which is applicable to this situation [15]. See also
[11]. However, we had to assume that the B's are real numbers,
which is a 1little bit undesirable. Admitting this restriction,

we can thus prove Baker's theorem.

But what is more unpleasant, is that in the proof of our
. Schwarz lehma for several variables, we had to use the results
of W.M.Schmidt on the simultaneous approximation of algebraic
numbers. Because of it, our proof of Baker's theorem was not
effective, which is really undesirable for the applications.
So we want to give andther proof of Baker's theorem which works

in both cases, and which gives some further resuits.

§ 4. New proof of Baker's theorem.

We explain it for Schneider's method in several variables,
but it is the same for Gel'fond's method.

Starting point. The same as §3,2°.

Step 1. Construction of P. We construct a polyﬁomial P

in Z[X1,~--,Xn+1] such that the function

Z.I Zn
F(Z1,---,Zn) =P(Z1,--olzn’a1 .-.anv)

(5)
has small‘derivatives at the origin, that is, for sufficiently

small ¢ and sufficiently large T, it satisfies

- 12 -
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for 0 g1, =T and 1 £ i £ n. Moreover, the degree of P can
be bounded from above by some explicit constant depending on
T.

Here we just ask inequalities, and the important thing is
that we do not use the B's. In the proof we neither use the
fact that the o's are algebraic. So it is not at all arithmet-
ic, and we do not use Siegel's lemma. However, it is easy to
solve this system of linear inequalities by using thé Dirichlet
box principle like in the proof of Siegel's lemma and by the
same arguments (see [16]).

Step 2. Upper bound for F. Corresponding to (BS), we
prove that for some small €' and some large R,

sup |F(z)]| < ¢',
z| =R

where 2z = (z1,--°,zn).

We note that R is much greater than the ¢S which we had
before.

For the proof, we use Schwarz's lemma for one variable.
To obtain an upper bound for IF(EO)I with IEOI s R, we
consider the function ¢(z) = F(;~go) of one variable. We

look at its Taylor expansion at the origin

T
o(z) = ¥ ac"+ ¥ ac™.
m=0 m m>T m

The first term of the right-hand side is small for |g| = 1

- 13 -
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because for m = T, a are small by the construction iﬁ Step 1.
The second term has a zero of high order at the origin, so for
|z] = 1, we can get a small upper bound for its value by
Schwarz's lemma.

Step 3. Vanishing of F’at many points. Corresponding to
(AS), we prove that for some large H,

F(h1+hOB1,---,hn+hOBn) = 0,
if 0 = h. = H.

For the proof, we use the same arguments as in the proof
of the implication (Bgr) = (Agy).

We note that H is in fact rather large, and so F vanishes
at much more points than can be attained by use of Siegel's
lemma. And this will imply a contradiction as is shown in the
next step.

Step 4. Use of a zero estimate. In order to get a
contradiction, we use a so called zero estimate which is the
main difficulty of the proof. Roughly speaking, a zero esti-
mate is a lower bound for the degrees of the polynomiéls which

vanish at given points. One of the typical zero estimates is

as follows.

Zero estimate by D.W.Masser [9]. Let Yyrtote¥y be fixed
vectors of C' which are linearly independent over Q. For each
positive integer H we .set

Y(H) = {hyy; + =+ + hyy, e € | 0 shy s H hy ez},

Then there exist positive constants c1, 02 and U such that

- 14 -
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c,H¥ < min deg P = ¢ H“,

1 p 2
where P runs over all poynomials 1in C[X1,---,Xn] satisfying

P(y) = 0 for all y of Y(H). Further c, and u are explicit

constants.

Zero estimates have been developed by Gel'fond fS],
R.Tijdeman and others for exponential‘ polynomials in one
variable, namely, for functions defined by polynomials of z or
exponential functions. After that, zero estimates for several
variables have been developed by Masser, Yu.V.Nesterenko,
W.D.Brownawell, G.Wustholz, P.Philippon in a very general
context of commutative algebraic groups. Masser [10] and

D.Bertrand {3] give surveys on this subject.

In our situation, the =zero estimates show that, if a
function of the form (5) vanishes at all the points
(h1+h

«+,h_+h with 0 = h. = H, then the degree of P
n J

0Bqr 08n’
is bounded from below by some explicit constant depending on H.
This constant becomes greater than the degree of our polynomial

P if T is sufficiently large, which gives a contradiction.

Thus Baker's theorem is proved.

§ 5. The five exponentials theorem.

As an application of our method, we get new results by



143

mixing Gel'fond's method and Schneider's method. Let us recall

the 6 exponentials theorem [6, 12].

THEOREM 3 (Six eXponentials theorem). Let X X be

17 2
complex numbers linearly independent over Q, and let Yir Yor Y3
be complex numbers linearly independent over Q. Then, one of

X. .
i¥3 1 s

the 6 numbers e R i2, 153 s 3, is transcenden-

tal.

CONJECTURE (Four exponentials conjecture [7, 12, 131]).
Let X1 %Xy be complex numbers linearly independent over Q, and

let Yir ¥y be complex numbers linearly independent over Q.

XY
Then one of the 4 numbers e J, 1 =

transcendental.

This conjecture is not yet solved. The result we got in
this direction is as follows. We quote it as 5 exponentials

theorem.

THEOREM 4 (Five exponentials theorem). Let x X be

17 2

complex numbers linearly independent over Q, and let Yir Y, be
complex numbers linearly independent over Q. Then, one of the

X.Y. - - x2/x1

i .
5 numbers e ],' 1 = and e is

[
A
[\
-~
N
A
(-
IA
N
-

transcendental.



144

This is only a special case. In fact, we get a general
result [17] on algebraic groups which contains this, and which
contains also the result of Baker, the result of Wustholz [3]
and some other results [16] related with Schneider's method in

several variables.
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