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A Quantitave Version

of the Schneider-Lang Theorem

By Noriko HIRATA (SEH BF)

Ochanomizu Univ.

§1. Introduction

We begin with the result of Hermite and Lindemann which
implies the transcendence of e and 7. Secondly, we refer to
the Gel'fond-Schneider theorem, that is the solution of the
seventh problem of Hilbert, settled in 1934. Next, we state
the Schneider-Lang theorem, and we show how this result con-
tains the Hermite-Lindemann theorem and the Gel'fond-Schneider
theorem. Finally, here, we give a quantitative version of the

theorem of Schneider and Lang.

Let us recall the above theorems.

Theorem (Hermite-Lindemann). Let o be a non-zero algebra-

. [¢
ic number, then e  1is a transcendental number.

Theorem (Gel'fond-Schneider). Let o and B be algebraic

numbers. Assume that o # 0, o # 1, and that B is not rational.
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Let log o be any determination of the logarithm of a. Then

B

a- = exp(B log a) is a transcendental number.

Important examples of numbers whose transcendence follows

from these theorems are e" and 2/2. Gel'fond's proof was based
on the following ideas. If we suppose 1log a, = B log 04 with

an irrational algebraic number B8 and algebraic numbers 0qr0

2
., . 2 log a1' .
(£ 0, 1), then the two functions a; = e and 0, =
z log a, zB log ay :
e = e take algebraic values at all integer
points. Moreover, their derivatives with respect to the
. : 14 . :

derivation operator Tog o az at all 1nteger points are also

algebraic.

We can construct a non-zero polynomial P ¢ Z[X1,X2] such that
the function F(z) = P(u?,ag) vanishes at several integer
points with a high order, and after that we show that F has
more and more zeroes, finally, F = 0, which is a contadiction
to the algebraic independence of the two functions u? and ag

because B is not rational.
We now mention the following general result.
Theorem (Schneider-Lang). Let K be a number field _and

let f1,---,fh be meromorphic functions. We assume that f1 and

f2 are algebraically independent over Q, and of order at most
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p1,p2 respectively. We assume further that the ring
K[f,,-++,f,] is stable under the derivation %E' Then the set
of complex numbers W, which are not poles of f1,';',fh and such
that fj(W) € K for V' = j = h is finite with at most

(01 + pz)[K:Q] elements.

The order of an entire function f is

log log [flR
log R

lim sup
Row

and if a meromorphic function can be written as quotient of two

entire functions of order = p, then it is called a function of

order £ p.

We obtain the theorem of Hermite-Lindemann as a corollary

to this theorem by setting K = Q(a,ea), h 2, f1(z) = z, f2(z)

= e, P = 0, Py = 1. Secondly, when K Q(u1,a2,8), h = 2,

£(2) = €%, f£y(2) = &P, oy =0y = 1,

we deduce Gel'fond-
Schneider theorem from this theorem immediately.

This upper bound (p1 + p2)[K:Q] is sometimes the Dbest
possible (the functions 2z and exp(z(z-1)---(z-k+1)) take

integer values at k points).

The Gel'fond-Schneider theorem shows that if we take any :
distinct complex numbers Wyptt oW with m > (p1 + pz)[K:Q]
then at least one value fi(wu) (1sish, 1susm) doesn't belong to

K. We deduce from fhis pfoperty that the sum
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h m
f.(w - Q.
121 u£1 £5.00) n
is not zero where uiu are any algebraic numbers in K. Here, we
give a lower estimate to this sum in terms of heights H(aiu) of
Otlu-

§2. Statement of result

Theorem. Let K be a number field and let f1,"',fh be
meromorphic functions. We assume that f1 and f2 are algebrai-
cally independent over Q, and of order at most P+, respec-
tively. We assume further that the ring K[f1,"°,fh] is stable

d
under the derivation az- We take any distinct complex numbers

Wir**yW, which are not -poles of f?'.'.’fh with m >
(pq + py)[k:Q] and w; = 0. Suppose also that f,(0) € K
(1sish). We denote by d the maximum of the total degrees of A;
where g; fi = Ai(f1,---,fh), A, € K[X1,---,Xh] for 1 s i = h.

Put & = [K:Q] and

2"(a-1)(8-1) (o, +p,)
K =

Then for all K > Kor there exists an explicit number H0 such

that if we take any algebraic numbers aiu (12ish, 12pusm) in K,

then we have
h

m
21 'fi(wu) - a0z exp (-H")
u:

i=1

where H = max (H(aiu), HO).
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Remark. We deduce from this theorem the following result
which is mentioned by D.W.Masser in [M]: For any ¢ > 0 there
exists a number mo(s) such that for all m » mo(g) we have

h

m
DL IEi0e) —ag ] = exn(-).
u:

|

v

i=1 1u
The above theorem gives to Masser's mo(g) an explicit wvalue,

namely

2"(d-1)(8-1) (p,+p,,)

mo(s) = + 6(p1 + pz).

€
§3. Outline of the proof
We assume
h m <
(1) Y lf(w ) - a. | < exp(-H")
i=1 u=1 1M 1H

and we shall get a contradiction. Let 2 be a sufficiently
large integer. Without loss of generality we may assume H >>
H0 where H0 is sufficiently large with respect to ¢.

Put

h 0,/ (p4+p5) o4/ (pg+p5)
U =8, T =g/2 , Ly = AT 2 L, = &T LA

Step 1. Construction of algebraic numbers a(A1,A2,t,U)

We can write
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- f e o f '
e A1,Az,t( RARREESY,

where Q is a polynomial with coefficients in K (0z),<L.,
}\1'}\2,t 1 1

0§A2<L2, 0=t), using the differential equations of fi (1=zizh).
Define |

@O rhgrtaund =0y eyttt o)

Then for 0st<T we get

: 1
t A A -5U
d 1 2 2

by the hypothesis (1).
Step 2. Construction of an auxiliary function‘F

We consider the linear system

for 0 = X, < L

1 0

IA
IIA
A

t < T, 1 u m. of Tm

equations in L1L2 unknowns Py .- This system has coefficients
172

in K and we get a non-trivial solution by the choice of L1 and
L,. Siegel's lemma gives that

< 1 T log T + O(T).

max log |p |
0,4 <L MAzn &
.0§X2<L2
Put
A A
1 2
F=173 ) px A f1 f2 (z).
A1 A2 172
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Step 3. Upper bound of the order of zeroes at the origin

Liouville's theorem implies that fi(O) = a4 for all 1 = 1
< h because fi(O) is algebraic. From this, we have
t

d :
4 r0) =37 T p a(A,  hq,t,1) = 0
azt oo Mo LR

for 0 £ t < T, that means ordZ=O Fz T,
Let T1 be the smallest integer such that there exists 1 = My =

m with

Z Z p)\ A a()\»‘l)\er—]:UO) 9é 0.
X1 AZ 172

By the algebraic independence of f1 and f2, we can deduce from
the theorem of Brownawell and Masser ([B-M])

h-1
F s (aglm?

so we have

Step 4. Contradiction

We can estimate the derivatives of F:

t -

1
3U

F(w. )

t u < -

log

dz
for 0 = t <« T1, T 2 u 2 m.
Then using the residue formula, we have

1
log |F|. s (§ - 5 2)T1 log T, + O(T,)

pq+P
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for r = 1 + max |w
1susm

Put

Y =1 1 P,

which is not zero. As above we can estimate the T1th deriva-

1)\2 0L(>\1I>\2!T1IUO)

tive of f:

T
! 1
lo F(w - < - 3zU.
R T 3
dz
Then we get
g g
[y| = 7= Flw )| + 7o Flw ) -y
1 Ho 1 Ho
dz dz
T, -lu
= T, IFIr + e ,
hence we obtain
log |y] s (1 + + - =B )7 1og T, + O(T,)
Y= L P1+0, 1 1 1°°

However we get by the size inequality

h
1 2°(d-1)
K )T1

log |y| 2z - (6 - 1)(1 + 7 log T, + O(T;)
then we arrive at the contradiction:
2" (d-1)(8-1) (o, +p,)
K 2 Ko = m-§(p,+p,) :
(Q.E.D.)
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