Title	Large-time behavior of solutions for the equations of a viscous gas
Author(s)	KAWASHIMA, Shuichi
Citation	数理解析研究所講究録 (1986), 601: 19-31
Issue Date	1986-12
URL	http://hdl.handle.net/2433/99623
Type	Departmental Bulletin Paper
Textversion	publisher

Kyoto University
Large-time behavior of solutions for
the equations of a viscous gas

Shuichi KAWASHIMA (川島秀一)
Department of Mathematics, Nara Women's University

1. Introduction

We consider one-dimensional flow of a compressible fluid. In the
Lagrange mass coordinate \((t,x)\), the motion of the fluid is described by
the following equations.

\[
\begin{align*}
&v_t - u_x = 0 , \\
&u_t + p_x = (\mu u_x/v)_x , \\
&\left(e + u^2/2 \right)_t + (pu)_x = (\kappa \theta_x/v + \mu uu_x/v)_x .
\end{align*}
\]

Here \(v > 0\) is the specific volume, \(u\) the velocity, \(\theta > 0\) the absolute
temperature, \(e\) the internal energy, \(\mu\) the coefficient of viscosity and \(\kappa\)
the coefficient of heat-conductivity. Let us denote the entropy by \(s\). It
is known that among five thermodynamic variables \(v, \theta, p, e \) and \(s \), only
two of them are independent. In fact they may all be considered as smooth
functions of \((v, \theta), (v, s), (v, e)\) or \((p, s)\). We write \(p = p(v, \theta) =
\hat{p}(v, s)\) and \(e = e(v, \theta)\) and assume that

\[
\begin{align*}
&(1.2)_1 \quad \partial p(v, \theta)/\partial v < 0 , \quad \partial p(v, \theta)/\partial \theta > 0 , \quad \partial e(v, \theta)/\partial \theta > 0 , \\
&(1.2)_2 \quad \partial^2 \hat{p}(v, s)/\partial v^2 > 0 .
\end{align*}
\]
Notice that these conditions are satisfied for the case of an ideal polytropic gas:

\begin{equation}
(1.3) \quad p = R \varrho / v = \hat{R} v^{(\gamma - 1)} s / R, \quad e = R \varrho / (\gamma - 1) + \text{constant},
\end{equation}

where \(R > 0 \) is the gas constant, \(\gamma > 1 \) is the adiabatic exponent and \(\hat{R} \) is a positive constant. We also assume that \(\mu \) and \(\kappa \) are smooth functions of two independent thermodynamic variables and satisfy one of the following two conditions.

\begin{align}
(1.4)_1 & \quad \mu > 0, \quad \kappa > 0 \quad (\text{viscous heat-conductive fluid}), \\
(1.4)_2 & \quad \mu \equiv 0, \quad \kappa > 0 \quad (\text{inviscid heat-conductive fluid}).
\end{align}

We shall study the large-time behavior of solutions to the initial value problem for (1.1). Our main result is as follows: If the initial data are close to a given constant state, then a unique smooth solution of (1.1) exists for all time \(t \geq 0 \) and approaches the superposition of the nonlinear and linear diffusion waves constructed in terms of the self-similar solutions of the Burgers equation and the linear heat equation as \(t \to \infty \).

We remark that the same asymptotic result has been obtained in [5] for a wide class of systems including (1.1).

\textbf{Notations}

We introduce several function spaces. Let \(p \in [1, \infty], \beta \in \mathbb{R} \) and \(s \geq 0 \). \(L^p \) denotes the usual Lebesgue space on \(\mathbb{R} \), with the norm \(\| \cdot \|_p \). \(L^p_\beta \) denotes the space of functions \(f = f(x) \) such that \((1 + |x|)^\beta f \in L^p \), with the norm \(\| \cdot \|_{p, \beta} \). \(H^s \) denotes the space of functions \(f = f(x) \) such that \(\partial_x^\ell f \in L^2 \) for \(0 \leq \ell \leq s \), with the norm \(\| \cdot \|_s \). Note that \(H^0 = L^2 \)
and \(\| \cdot \|_0 = | \cdot |_2 \). \(C^0([0,\infty); H^5) \) is the space of continuous functions on \([0,\infty)\) with values in \(H^5 \).

2. Preliminaries

We first choose \(v \) and \(\theta \) as independent thermodynamic variables and write \(p = p(v,\theta) \), \(e = e(v,\theta) \) and \(s = s(v,\theta) \). The thermodynamic law \(\text{de} = \partial s \text{ds} - p \text{dv} \) gives

\[
(2.1) \quad e_v = -(p - \theta p_\theta), \quad s_v = p_\theta, \quad s_\theta = e_\theta/\theta,
\]

where we used abbreviations such as \(e_v = \partial e(v,\theta)/\partial v \). When \(v \) and \(s \) are regarded as independent variables, we write \(\theta = \hat{\theta}(v,s) \), \(p = \hat{p}(v,s) \) and \(e = \hat{e}(v,s) \). Using (2.1), we obtain

\[
(2.2) \quad \hat{\theta}_v = \theta/p_\theta/e_\theta, \quad \hat{p}_v = p_v - \theta p^2_\theta/e_\theta, \quad \hat{e}_v = -p,
\]

\[
\hat{\theta}_s = \theta/e_\theta, \quad \hat{p}_s = \theta p_\theta/e_\theta, \quad \hat{e}_s = \theta,
\]

where \(\hat{\theta}_v = \partial \hat{\theta}(v,s)/\partial v \), etc. In particular, we have \(\hat{p}_v < 0 \) by (1.2). Similarly, choosing \(v \) and \(e \) as independent variables and writing \(\theta = \tilde{\theta}(v,e) \), \(p = \tilde{p}(v,e) \) and \(s = \tilde{s}(v,e) \), we obtain

\[
(2.3) \quad \tilde{\theta}_v = (p - \theta p_\theta)/e_\theta, \quad \tilde{p}_v = (p_v - \theta p^2_\theta/e_\theta) + p p_\theta/e_\theta, \quad \tilde{s}_v = p/\theta,
\]

\[
\tilde{e}_v = 1/e_\theta, \quad \tilde{p}_e = p_\theta/e_\theta, \quad \tilde{s}_e = 1/\theta,
\]

where \(\tilde{\theta}_v = \partial \tilde{\theta}(v,e)/\partial v \), etc. In particular, we have \(\tilde{p}_v - \tilde{p}_e = \hat{p}_v \).

3. Vector form of the system

Put \(E = e + u^2/2 \). Then (1.1) is regarded as a system for \((v,u,E)\)
and is rewritten in the vector form

\[(3.1) \quad w_t + f(w)_x = (G(w)w)_x,\]

where \(w = (v,u,E)^T, f(w) = (-u,p,pu)^T, \) and \(G(w) \) is the matrix given by (3.3) below. We denote by \(A(w) \) the Jacobian of \(f(w) \) with respect to \(w \). Then (3.1) is equivalent to

\[(3.1') \quad w_t + A(w)w_x = (G(w)w)_x.\]

\(A(w) \) and \(G(w) \) are given explicitly as follows.

\[
(3.2) \quad A(w) = \begin{pmatrix}
0 & -1 & 0 \\
\tilde{p}_v & -u\tilde{p}_e & \tilde{p}_e \\
u\tilde{p}_v & p - u^2\tilde{p}_e & u\tilde{p}_e
\end{pmatrix},
\]

\[
(3.3) \quad G(w) = \begin{pmatrix}
0 & 0 & 0 \\
0 & \mu/v & 0 \\
k\tilde{\theta}_v/v & \mu u/v - ku\tilde{\theta}_e/v & k\tilde{\theta}_e/v
\end{pmatrix}.
\]

By straightforward calculations, using (2.2) and (2.3), we know that the eigenvalues of \(A(w) \) are given by

\[
(3.4) \quad \lambda_1(w) = -(-\hat{p}_v)^{1/2}, \quad \lambda_2(w) = 0, \quad \lambda_3(w) = (-\hat{p}_v)^{1/2}.
\]

These are all real and distinct since \(\hat{p}_v < 0 \) by (1.2)1. This means that the inviscid system \(w_t + f(w)_x = 0 \) is strictly hyperbolic. The corresponding right and left eigenvectors, \(r_j(w) \) and \(l_j(w) \), are

\[
(3.5) \quad r_j(w) = a_j(1, -\lambda_j, -u\lambda_j - p)^T, \quad j = 1, 3,
\]

\[
(3.5) \quad r_2(w) = a_2(\tilde{p}_e, 0, -\tilde{p}_v)^T,
\]

- 4 -
\[\ell_j^2(w) = b_j(-\tilde{p}_v, -\lambda_j + \omega \tilde{p}_e, -\tilde{p}_e), \quad j = 1, 3, \]
\[\ell_2^2(w) = b_2(p, -u, 1), \]
where \(a_j b_j \not= 0, j = 1, 2, 3 \). We choose \(a_j \) and \(b_j \) such that \(2a_j b_j = 1/(-\tilde{p}_v), j = 1, 3, \) and \(a_2 b_2 = 1/(-\tilde{p}_v) \). In this case we have
\[\langle \ell_j^2(w), r_k^2(w) \rangle = \delta_{jk}, \quad j, k = 1, 2, 3, \]
where \(\langle , \rangle \) denotes the standard inner product of \(\mathbb{R}^3 \). When (1.2)2 is assumed, we determine \(a_j \) such that \(a_j = -2\lambda_j \tilde{p}_{vv}, j = 1, 3, \) and \(a_2 = \partial(\tilde{p}_v), \) where \(\tilde{p}_{vv} = \partial^2 p(v, s)/\partial v^2 \). Then we have
\[\langle \nabla \lambda_j^2(w), r_j^2(w) \rangle = 1, \quad j = 1, 3, \]
\[\langle \nabla s(w), r_2^2(w) \rangle = 1. \]
Here the gradient \(\nabla \) is with respect to \(w \), and \(s = s(w) \) is the entropy. Since \(\langle \nabla \lambda_j^2(w), r_j^2(w) \rangle \not= 0, j = 1, 3, \) the first and the third characteristic fields are genuinely nonlinear in the sense of Lax [7]. While the second field is linearly degenerate ([7]) because we have \(\langle \nabla \lambda_2^2(w), r_2^2(w) \rangle = 0 \) by \(\lambda_2^2(w) = 0 \).

4. Global existence and decay of solution

We consider (3.1) with the initial condition
\[w(0, x) = w_0(x), \]
where \(w_0 = (v_0, u_0, E_0)^T \) with \(E_0 = e_0 + u_0^2/2 \). We seek a solution of (3.1), (4.1) in a neighborhood of a constant state \(\bar{w} = (\bar{v}, \bar{u}, \bar{E})^T \), where \(\bar{v} > 0, \bar{u} \in \mathbb{R}, \) and \(\bar{E} = \bar{e} + \bar{u}^2/2 \) with \(\bar{e} = \bar{e}(\bar{v}, \bar{e}) > 0 \). We have the following
global existence result.

Theorem 4.1. ([6], see also [4]) Assume (1.2)$_1$, and (1.4)$_1$ or (1.4)$_2$. If $w_0(x) - \bar{w}$ is small in H^S, $s \geq 2$, then the initial value problem (3.1),(4.1) has a unique global solution $w(t,x)$ in an appropriate function space. In particular, we have $w - \bar{w} \in C^0([0,\infty); H^S)$ and $\|w(t) - \bar{w}\|_S \leq C \|w_0 - \bar{w}\|_S$ for $t \in [0,\infty)$, where C is a constant.

Moreover, the solution $w(t,x)$ converges to the constant state \bar{w} uniformly in $x \in \mathbb{R}$ as $t \to \infty$.

This result is proved by an energy method which makes use of the following properties: The system (3.1) has an entropy function and is transformed into a symmetric system of hyperbolic-parabolic type which satisfies the stability condition. We refer the reader to [4],[5] for the details. See also [1],[2].

Next we study a decay rate of the difference $w(t,x) - \bar{w}$ for $t \to \infty$. The linearized system of (3.1) around the constant state \bar{w} is

$$w_t^l + A(\bar{w})w_x^l = G(\bar{w})w_{xx}^l.$$ \hspace{1cm} (4.2)

Denote by e^{tR} the semigroup of (4.2). We have

$$|a_x^l(e^{tR}f)|_2 \leq Ce^{-ct}|a_x^Sf|_2 + C(1+t)^{-1/2} |a_x^k|_1,$$ \hspace{1cm} (4.3)

where $0 \leq k \leq l$, C and c are positive constants, and $f = f(x)$ is a function such that the norms on the right hand side of (4.3) are finite (see [9]). Making use of (4.3), we obtain the following

Theorem 4.2. ([4]) Assume (1.2)$_1$, and (1.4)$_1$ or (1.4)$_2$. If $w_0(x) - \bar{w}$ is small in $H^S \cap L^1$, $s \geq 3$, then the solution $w(t,x)$ of (3.1) constructed in Theorem 4.1 satisfies
(4.4) \[|a_x^*(w(t) - \overline{w})|_2 \leq CN_s (1+t)^{-1/2 + \beta}/2, \quad t \in [0, \infty), \]

where \(\beta \geq 0, 3\beta \leq s - 2, C \) is a constant and \(N_s = \|w_0 - \overline{w}\|_s + \|w_0 - \overline{w}\|_1. \)

5. Approximation by uniformly parabolic system

We first note that the matrix \(A(w) \) has the spectral resolution \(A(w) = \sum \lambda_j(w) P_j(w), \) where \(P_j(w) = r_j(w) l_j(w) \) and the summation is taken over all \(j = 1, 2, 3. \) We then define the matrix \(D(w) \) by

(5.1) \[D(w) = \sum_{j=1}^{3} \kappa_j(w) P_j(w), \]

where \(\kappa_j(w) = \langle l_j(w), G(w) r_j(w) \rangle \) with \(G(w) \) given by (3.3). By straightforward calculations we have

(5.2) \[
\kappa_j(w) = (-\mu p_v + \kappa p_s^2/\theta)/(-2vp_v), \quad j = 1, 3, \\
\kappa_2(w) = (-\kappa p_v)/(-vp_v).
\]

Note that these coefficients are all positive by (1.2)_1, and (1.4)_1 or (1.4)_2.

Now we consider the system

(5.3) \[z_t + f(z)_x = D(w)z_{xx}, \]

with the initial condition \(z(0,x) = w_0(x). \) The system (5.3) is semilinear and uniformly parabolic, and hence has a unique global solution \(z(t,x), \) provided that \(w_0(x) - \overline{w} \) is small in \(H^s, s \geq 1. \) The linearized system of (5.3) around the constant state \(\overline{w} \) is

(5.4) \[z_t^i + A(\overline{w}) z_{xx}^i = D(\overline{w})z_{xx}^i. \]

Denote by \(e^{tS} \) the semigroup of (5.4). We easily obtain the estimate
(5.5) \[|\partial_x^k(e^{tS}f)|_2 \leq Ce^{-ct}|\partial_x^k f|_2 + C(1+t)^{-\frac{1}{2} + \frac{\kappa}{2} - k/2}|\partial_x^k f|_1, \]

where \(0 \leq k \leq \kappa, C \) and \(c \) are positive constants. Making use of (5.5), we know that if \(w_0(x) - \bar{w} \) is small in \(H^s \cap L^1, s \geq 1\), then the solution \(z(t,x)\) of (5.3) satisfies

(5.6) \[|\partial_x^\kappa(z(t) - \bar{w})|_2 \leq CN_s(1+t)^{-\frac{1}{2} + \frac{\kappa}{2}}/2, \quad t \in [0,\infty), \]

where \(0 \leq \kappa \leq s\) and \(C\) is a constant.

Furthermore, we can show that for \(t \to \infty\), the solution \(w(t,x)\) of (3.1) is well approximated by the solution \(z(t,x)\) of (5.3). More precisely, we have the following

Theorem 5.1. (\([5]\)) Assume (1.2)_1 and (1.4)_1 or (1.4)_2. If \(w_0(x) - \bar{w} \) is small in \(H^s \cap L^1, s \geq 5\), then we have

(5.7) \[|\partial_x^\kappa(w(t) - z(t))|_2 \leq CN_s(1+t)^{-\frac{3}{2} + \frac{\kappa}{2}} + \alpha, \quad t \in [0,\infty), \]

where \(\kappa \geq 0, 3\kappa \leq s - 5, C\) is a constant, and \(\alpha > 0\) is a small fixed constant.

This approximation result is based on the following better decay estimate for the difference between the semigroups \(e^{tR}\) and \(e^{tS}\).

(5.8) \[|\partial_x^\kappa(e^{tR} - e^{tS})f|_2 \leq Ce^{-ct}|\partial_x^\kappa f|_2 + C(1+t)^{-\frac{3}{2} + \frac{\kappa}{2} - k/2}|\partial_x^\kappa f|_1, \]

where \(0 \leq k \leq \kappa, C \) and \(c \) are positive constants.

6. Diffusion waves

Following Liu [8], we shall construct the diffusion waves. First we determine the coefficients \(\delta_j(w), j=1,2,3\), by
\[
(6.1) \quad \int_{-\infty}^{\infty} (w_0(x) - \bar{w}) \, dx = \frac{3}{4} \delta_j(w) r_j(\bar{w}) .
\]

Put \(\delta(w) = (\delta_1(w), \delta_2(w), \delta_3(w)) \) and assume that \(\delta(w) \neq 0 \). Next we introduce the Riemann invariant. A function of \(w \) which are constant in the direction of \(r_j(w) \) is called \(j \)-Riemann invariant. For each \(j \), we have two independent \(j \)-Riemann invariants given below.

\[
(6.2) \quad s \text{ and } u + \int_{s_0}^{s} \lambda_j(v,s)dv \quad \text{ for } j=1,3, \\
p \text{ and } u \quad \text{ for } j=2.
\]

Here the eigenvalue \(\lambda_j(w) \) is regarded as a function of \(v \) and \(s \).

Now, for the genuinely nonlinear field \(\lambda_j(w) \), \(j=1 \) or \(j=3 \), we define \(j \)-diffusion wave \(W_j(t,x) \), \(W_j = (v_j, u_j, E_j)^T \) with \(E_j = e_j + u_j^2/2 \), by

\[
(6.3) \quad \\
\lambda_j(v_j(t,x), \bar{s}) - \lambda_j(\bar{v}, \bar{s}) = Y(t+1, x - \lambda_j(\bar{v}, \bar{s})(t+1); \kappa_j(w), \delta_j(w)) .
\]

Here \(\bar{s} = \bar{s}(\bar{v}, \bar{e}), \kappa_j(w) \) and \(\delta_j(w) \) are given by (5.2) and (6.1), respectively, and

\[
(6.4) \quad Y(t,x; \kappa, \delta) = \sqrt{\kappa} t^{-1/2} \frac{(e^{\delta/2\kappa} - 1)e^{-\xi^2}}{\sqrt{\pi} + (e^{\delta/2\kappa} - 1)\int_{\xi}^{\infty} \frac{e^{-\eta^2}}{\eta} d\eta} , \quad \xi = x/\sqrt{4\kappa t} .
\]

The function \(Y \) in (6.4) is the self-similar solution of the Burgers equation \(y_t + yy_x = \kappa y_{xx} \) and satisfies

\[
(6.5) \quad \int_{-\infty}^{\infty} Y(t,x; \kappa, \delta) \, dx = \delta , \quad t \in (0, \infty).
\]

See [3],[8]. Note that \(W_j(t,x) \) lies on the curve \(R_j(w) \) defined by \(dw/dt = r_j(w) \) and \(w = \bar{w} \) at \(t = 0 \). Since \(\lambda_j(w) \) is monotone along \(R_j(w) \) by (3.8), the relations in (6.3) uniquely determine \(v_j(t,x) \) and...
and therefore all other thermodynamic variables.

For the linearly degenerate field $\lambda_2(w) = 0$, we define 2-diffusion wave $W_2(t,x)$, $W_2 = (v_2, u_2, E_2)^T$ with $E_2 = e_2 + u_2^2/2$, by

$$
\begin{align*}
& p_2(t,x) = \bar{p}, \quad u_2(t,x) = \bar{u}, \\
& s_2(t,x) - \bar{s} = Y(t+1, x; \kappa_2(w), \delta_2(w)),
\end{align*}
$$

(6.3)

where $\bar{p} = \hat{p}(\bar{v}, \bar{e})$, etc., and

$$
Y(t,x; \kappa, \delta) = \delta(4\pi kt)^{-1/2} e^{-\xi^2}, \quad \xi = x/\sqrt{4\pi t}.
$$

(6.4)

This Y is the self-similar solution of the linear heat equation $\partial_t y = \kappa \partial_{xx} y$ and satisfies (6.5). Notice that $W_2(t,x)$ lies on the curve $\mathcal{R}_2(w)$. The relations in (6.3) define $p_2(t,x)$ and $s_2(t,x)$ and therefore all other thermodynamic variables.

Finally, we define $W(t,x)$, the superposition of the diffusion waves, by

$$
W(t,x) - \bar{w} = \sum_{j=1}^3 (W_j(t,x) - \bar{w}).
$$

(6.6)

By straightforward calculations, using (6.3)$_{1,2}$ and (6.4)$_{1,2}$, we have

$$
W_t + f(W)_x = D(w)W_{xx} + r_x(t,x) - q(t,x),
$$

(6.7)

where $r(t,x)$ and $q(t,x)$ are known functions such that

$$
\begin{align*}
|\partial_x^\varphi r(t,x)| &\leq C|\delta(w)| e^{-c(t+|x|)}, \\
|\partial_x^\varphi q(t,x)| &\leq C|\delta(w)|^2 (1+t)^{-1} e^{-c\xi_j^2},
\end{align*}
$$

(6.8)

where $\xi_j = (x - \lambda_j(w)(t+1))/\sqrt{t+1}$, and C and c are positive constants. For the details, see [5],[8].
7. Large-time behavior

We shall show that $W(t,x)$ defined by (6.6) is an asymptotic solution for $t \to \infty$ of the uniformly parabolic system (5.3). To this end we construct the linear hyperbolic wave $\zeta(t,x)$ as the solution of

$$
(7.1) \quad \zeta_t + A(\overline{w})\zeta_x = q(t,x),
$$

with the following condition: $\zeta(t,x) \to 0$ uniformly in $x \in \mathbb{R}$ as $t \to \infty$. Here $q(t,x)$ is the function in (6.7). By the characteristic method, we have a unique smooth solution $\zeta(t,x)$ satisfying

$$
(7.2) \quad |\partial_x^\ell \zeta(t,x)| \leq C |\delta(\overline{w})|^2 \sum_{j=1}^{3} \left\{ \frac{(t+1+|x-\lambda_j(\overline{w})(t+1)|)^{-(2+\ell)/2} + (t+1+|x-\lambda_j(\overline{w})(t+1)|)^{-(3+\ell)/2}}{\sum_{j=1}^{3} \delta_j(\overline{w}) r_j(\overline{w})} \right\},
$$

where $\ell \geq 0$ and C is a constant. Also, it is shown that for $t \in [0,\infty)$,

$$
(7.3) \quad \int_{-\infty}^{\infty} (W(t,x) - \overline{w} + \zeta(t,x)) dx = \sum_{j=1}^{3} \delta_j(\overline{w}) r_j(\overline{w}).
$$

From (6.1) and (7.3) we know that $w_0(x) - W(t,x) - \zeta(t,x)$ has zero integral for each $t \in [0,\infty)$. By virtue of this property, we have a desired conclusion.

Theorem 7.1. ([5]) Assume (1.2)$_{1,2}$ and (1.4)$_{1}$ or (1.4)$_{2}$. Suppose that $w_0(x) - \overline{w}$ is small in $H^s \cap L^1_B$, $s > 1$ and $B \geq 1/2$. Let $z(t,x)$ be the solution of (5.3) and let $W(t,x)$ be the superposition of the diffusion waves defined by (6.6). Then we have

$$
(7.4) \quad |\partial_x^\ell (z(t) - W(t))|_2 \leq CM_s (1+t)^{-(1+\ell)/2 + \alpha}, \quad t \in [0,\infty),
$$

where $0 \leq \ell \leq s$, C is a constant, $M_s = \|w_0 - \overline{w}\|_s + |w_0 - \overline{w}|_{1,1/2}$, and $\alpha > 0$ is a small fixed constant.
In the proof of this theorem, the following estimate for the semigroup e^{tS} plays an essential role: If $f \in L^1_{\beta}$, $\beta \in [0,1]$, and $f(x)$ has zero integral, then we have

$$
|a_x^\beta(e^{tS}f)|_p \leq Ct^{-(1-1/p+\beta+\varepsilon)/2}|f|_{1,\beta}, \quad t \in (0,\infty),
$$

where $\varepsilon \geq 0$, $p \in [1,\infty]$ and C is a constant.

We remark that (7.4) is a meaningful asymptotic relation for $t \to \infty$, because for large t, the L^2-norm of $a_x^\beta(W(t,x) - \overline{W})$ is bounded from below by $c|\delta(W)|^{-(1/2+\varepsilon)/2}$ with a positive constant c.

A combination of Theorems 5.1 and 7.1 gives the main result of this paper.

Theorem 7.2. ([5]) We assume the conditions of Theorem 7.1 with $s \geq 1$ replaced by $s \geq 5$. Then the solution $w(t,x)$ of (3.1) satisfies

$$
|a_x^\beta(w(t) - W(t))|_2 \leq CM_\delta(1+t)^{-(1+\varepsilon)/2+\alpha}, \quad t \in [0,\infty),
$$

where $\varepsilon \geq 0$, $3\varepsilon \leq s-5$ and C is a constant; M_δ and α are the same as those in Theorem 7.1.

This theorem means that the superposition of the diffusion waves defined by (6.6) is also an asymptotic solution for $t \to \infty$ of the system (3.1).

References

