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Vorticity and viscosity
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This is a resume of my joint work with T. Miyakawa and H.

Osada [36].

We consider the Navier-Stokes system
3u - -
(1 Y vAu + (u-V)u + Vp = 0, Veu = 0
on the whole plane Rz, where u and p repreéents unknown

velocity and pressure, respectively and v > 0 1is the kinematic

viscosity. Since the space dimension is two, the vorticity v =

VXu-= 8u2/8x1 - aul/ax2 is scalar. Moreover, v solves
(2a) §% - VAV + (u-V)v = 0

[e¥)

(2b) w(x, t) = ” ) VE(x-y)v(x, t)dx
R



where V! = (—8/8x2, a/axl) and E(x) = (2n)—110g |x|. These
equations are formally obtained by taking Vx of (1) and using
the condition V-u = 0. As is well known the vorticity equation

(2a)(2b) is formally equivalent to the Navier-Stokes system

provided that u is assumed to decay to zero at space infinity.
We consider the initial value preblem for (1) or (2a)(2b)

assuming only that initial vorticity v(x,0) is a finite Radon

measure. A typical example is N-point sources of votex, i.e.,

(3) vix,0) = I e 80x-z ).

Here zj is a point on which j-th point socurce is located and aj
is a real number describing the strength of the source; & is a
Dirac measure supported at zero. One naive gquestion is whether
such point sources of vortex are smoothed out because of
visécsity. In other words do so}utions for (1) or (2a),(2b)
exist globally-in-time and smooth for t > 0 even if v(x,0) is a
finite measure? When initial vorticity consists only one point
source carried at zero (i.e. N =1, z, = 0), we know an exact

1
solution of (2a),(2b)

o 2
v(x,t) = 1 exp [_lél_ )

4mvt 4vt

which is a constant multiple of the fundamental solution of the
heat equation. For a general initial data we claim that a smooth
solution exists globally in time. As anticipated, the viscosity

smoothes singular vorticities.



Theorem ([36]). Suppose that v(x,0) is a finite Radon

measure on Rz‘ ‘Ihen there is a global solution v(x,t), u(x,t)

o (2a),(2b) or (1) such that v and u are smooth for t > O

and v(x,t) converges t v(x,0) under the weak topology of

measures as t tends to zero.

In [3] Benfatto, Esposito and Pulvirenti prove similar
results under more siringent assumptions. They assume v(x,0) is
expressed by (3) and !aji is small compared with V. Our results
need no assumptions on particular forms or smallness of initial
vorticity.

The main mathematical difficulty is that the initial energy

on D

IIDIu<x,o>!2 dx

is not necessarily finite even if D 1is a bounded domain. If
the initial energy is finite, it is classical that there is a
global classical solutions to (1) (cf. [16,17,301).

To construct such a solution we approximate initial
vorticity by smooth functions and solve (2a),(2b) with
approximate initial data. It is not difficult to construct a
global solution for smooth data. We expect that solutions with
approximate initial data converge to a true solution for the
original problem. To carry out this process we need a priori

estimates.

Lemma ([361). Suppose that v(x,0) is smooth and




a fundamental solution‘

IJ 2|v(x,0)|dx £ m. Let T (x,t;y,s) is
R u

to (2a), regarding u 4is a known function. Then,

- . - - 2 - — — 2
c(t-s) lexp[—%%;§£7] ST (x,t;y,8) S C(t-s) leXP[ Cft—s)]

Estimates of fundamental solutions independent of the
regularity of coefficients are obtained by Aronson [1] for linear
parabolic equations of divergence form (sée also [2]). Osada
[25] extends the estimate for non-divengence form which includes
(2a) as a typical example. The‘above a priori estimates enable

us to carry out our original idea.

For uniqueness of the solution we do not know much. We show
the uniqueness when v(x,0) is small. In particular, if v(x,0)
is absolutely continuous with respect to Lebesgue measure, we can
assert the uniqueness.

Our references include those of thé paper [361 for the

reader's convenience.
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