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ABSTRACT
This paper provides normal forms of continuous piecewise
linear vector fields in Rn under linear conjugacy. It is
proved that linearly conjugate classes are uniquely
determined by eigenvalues of linear vector field in each

region if the piecewise linear vector fields are proper.

0. Introduction.

Since a strange attractor has been studied by E.Lorenz[l] in 1963,
it has been well known that nonlinear autonomous ordinary differential
equations on Rn (n §>3) have generally many kinds of strange
attractors. In [3] and [4], for example, a lot of equations with
strange attractors are reported from physics, chemistry, ecology,
electrical engineering and other fields, including the four prototype
equations proposed by O.E.Rossler[2]. These equations are
non-integrable systems including smooth nonlinear terms, as xz,xy or
x2y, and they are mainly studied by the method of numerical or
experimental.

In 1981, O.E.Rossler has studied in [5] an equation with nonlinear

term described by a piecewise linear function, and shown that it has a

strange attractor as same as in the case of smooth nonlinear term. The
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piecewise linear system is considered as a system glued two linear
systems each other, thus the solution is explicitly written by
analytical form even though partially. B.Uehleke and O.E.Rossler have
derived in [6] and [7] an analytical expresion of Poincare half-return
map for a feedback system with a piecewise linear feedback function,
and have asserted that piecewise linear systems are typical systems to
investigate strange attractors analytically. C.Sparrow has studied in
(8] bifurcation problem of strange attractors of a piecewise linear
system by one-dimensional approximation of Poincaré map .

L.0.Chua, T.Matsumoto and the auther study in (9] a piecewise
linear system derived from an electric circuit, and prove rigorously
that the system has a Shilnikov homoclinic orbit at some parameter
values. This means that the system includes countable many periodic
orbits and uncountable many non-periodic orbits by Shilnikov's theorem,
thus, in this sense, the system is chaotic. Differently from usual
method which has studied an individual piecewise linear system, they
consider a wide class of 3-dimensional piecewise linear vector fields
(the class of continuous proper 3-region systems with point symmetry;
see section 5 for definition) which includes the objective system, and
prove that for this class,

(1) linearly conjugate class is uniquely determined by eigenvalues
in each linear. region;

(2) Poincaré half-return map is explicitly expressed by the
parametric equation with the half-return time as a parameter.

The existance of Shilnikov's homoclinic orbit is proved from the above
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statements, and this method is véiid to various piecewise linear
systems. So it is important for the future study

(i) to extend this result to more general class of piecewise
linear vector fields (of n—dimensional, with maﬁy regions ),

(ii) to investigate strange attractors in piecewise linear system
in a viewpoint of géometric structure, statistic prqperty or
bifurcations, and

(iii) to clarify the relation between the strange attractors in
piecewise linear systems and the one in smooth nonlinear systems.

In this paper we will give an normal form for linearly conjugate
class of n-dimensional 2-region systems, which are the most fundamental
piecewise linear vecfor fields. More generai‘piecewise linear systems
are considered aé combinations of 2-region systems. Indeed, as
example, we will derive a normal form of 3-dimensional proper system
having 3 regions and point symmetry,‘and having 4 regions and axial

symmetry.

1. Definition of piecewise linear vector fields and the continuous

condition.

Suppose n-1 dimensional hyperplanes Ul’U"""Uk in Rn, which

R.. A mapping.f:Rn——+ R" is a

divide Rn into the regions Rl""’ 1

R, if f is

piecewise linear mapping with linear regions Rl""’ 1

differentiable at all points which does not belong the set B = U, ...

U and if the derivative Df is constant in the interior of Rj for

k,

each j=1,...,1, i.e.
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Df(x) = Mj if x € int Rj (j=1,...,1)
where Mj is nxn matrix. A piecewise linear map f may be discontinuous
at points belonging to B. If f is continuous at each point on B, thus
at all points in Rn, it is called a continuous piecewise linear
mapping.

If f:Rn——* Rn is continuous piecewise linear, a vector field Xf on

Rn defined by an ordinary differential equation

g% - £(x) (x € ’Y) (1.1)
i.e. xf:R”—~+ rR" ; Xo(x) = £(x) (x € R" ) (1.2)

is called a continuous piecewise linear vector field, or simply a

PL-system. Two PL-systems X

£ and Xg are linearly conjugate if there is

a nonsingular affine transformation h:Rn——* Rn ; h(x) =Hx + p (H €
n .
GL(n,R), p € R ) which satisfies
HX,(x) = X (h(x)) (x € R") (1.3)
where GL(n,R) denotes the set of all nonsingular nxn real matrices.
Suppose a hyperplane U defined by
n
U= {X€R : <o,x>=181}
where a € Rn, B € R, and < , > denotes the usual inner product, and

suppose two regions;

R" = { x € R": <a,x> -8 >0}

B n (1.4b)

R = {x€&R: <a,x>-8¢<201}

. . + - n
We define a 2-region PL-map f:R' U R --+ R by

f(X) = f(x;A,B,quqB,a,B)

Ax + a, (x € R")
_ _ (1.5)

Bx + ag (x €R )
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where A,B € M(n,R) (the set of all nxn real matrices) and q,:9g e r".

Theorem 1 (Continuous Condition) The 2-~region PL-map f(x) = f(x;

A,B,qA,qB,a,B) defined above can be extended to Rrl as a continuous map,
if and only if there exists an m € R with <m,0> = 1 which satisfies
T
B-A=(B-A)m «a (1.6a)
Qg ~ 9y = -B(B. - A) m (1.6b)
where m, a & Rn are column vectors and Ta denotes the transposition of

a.

Corollary 1.1. Let f(x) = f(x; A,B,qA,qB,a,B) defined by (1.5)

be continuous , and assume that ag # 0 and B # 0. Then f is expressed
by the form
1 n
f(x) = Bx—§§ g{<a,x> - B + 1<a,x>-B1} (x ER)
where q = 9, & Rn, and 1*l denotes the absolute value.

From now on, we will consider only continuous piesewise linear

vector fields, unless otherwise stated.

2. Normal Forms of Linear Vector Fields with Section. -

Suppose a linear vector field

X, R - B 5 X, (x) = Ax (x € M)

where A € M(n,R), and an n-1 dimensional hyperplane (called a section)
U=U(a,B) = {x ER" : <a,x> =8 }

where a € Rn and B € R. The pair,(XA, U) is called a linear vector

field with a section. Two linear vector fields with a section, (XA,UA)

and (XB,UB), are linearly conjugate if there exists G € GL(n,R) such

that for any x € R*

GXA(x) = XB(Gx) and G(UA) = UB .
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A section U = U(a,B) is regular if U does not pass through the origin,
i.e. B # 0. To state normal forms for linearly conjugate class of
linear vector fields with a section, we prepare notation of real Jordan
normal forms for matrices.

Definition 2.1 (Real Jordan Matrices)

Real Jordan blocks are denoted by

J(x;k) = ¢ M(k,R),

J(a,b;k) = € M(2k,R)

0 " &%
where A = [E _Z] , I = [é 2] , and A,a,b € R (b £ 0), and k > 1 is an

integer. Real Jordan matrix is denoted as a direct sum of real Jordan

blocks by

where Ji = J(Ai;ki), J(ai,bi;ki) (i=1,2,...). Any linear vector field
XA is transformed by suitable linear transformation G:R%———, R" (G €

GL(n,R)) into a vector field X_ defined by a real Jordan matrix J;

J

Therefore, in order to consider normal form of a linear vector field

. with a section, (XA,U), we may assume that A is a real Jordan matrix
without loss of generality. We wili identify a linear transformation
and an element of GL(n,R) with respect to a natural basis of Rn, if
there is no confusion.

Theorem 2 (Normal Forms of Linear Vector Fields with a Section)
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Let XJ be a linear vector field defined by a real Jordan matrix J

€ M(n,R);
v T s
= X . .

LN (O TP SR (YR IR (2.1)
and U a regular section defined by

U=1{xeR : <0x>=8} (B £ 0).
For the linear vector field with a section, (XJ,U), there exists a
linear transformation G € GL(n,R) which satisfies the following (1) -
(5);

(1) JG =G J

n 1
(2) GU) = {x€e€R: < x> =11
(3) o' € R" in (2) has following form;

T
] -—
o' = (ul,...,ur,vl,...,vs) £0 (2.3)

1.k, 1.21.

X X
where ui € R l, vj € R J are column vectors.

1>k,
(4) each u; € R * in (3) is one of the following;

u; = (1,0,...,0), (0,1,0,...,0),....,
(0,...,0,1), (0,....,0) (2.4)

1*21,
(5) each v‘j €R J in (3) is one of the following;

VJ- = (},97"'19); (9;}_’91'0'a9)1""!
(0,+--,0,1), (0,...,0) (2.5)

where 9

(0,0) and 1= (1,0).

Moreover, for a linearly conjugate class of (XJ,U), the
representation of o' which satisfies (3) - (5)‘is uniquly determind
except change of u, or vj corresponding  to chgnge of real Jordan

blocks.

Definition 2.2. A vector a' € r® having the form (2.3) in
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Theorem 2 is called a canonical normal vector corresponding to a real
Jordan matrix (2.1), and a section

u' = (x € R . <a'1X> =1
defined by ,' is called a canonical section.

EféTQiE_gLél (Normal Forms of 3-Dimensional Linear Vector Fields
with Section)

3x3 real Jordan matrices are classefied into the following 4
cases;

(1) u (2) A (3)
v p

>
N
)
|
o

In each case, canonical vectors o Rn are following;
Case of (1):
o« = 7(1,1,1), T(0,1,1), T(0,0,1).
Case of (2):
« = T(1,0,1), T(0,1,1), 1(0,0,1), 1(1,0,0), 1(0,1,0).
Case of (3):
o = 7(1,0,0), (0,1,0), T(0,0,1).
Case of (4):

T T T
@ = (1,1,0), “(0,1,0), (1,0,0).

3. TlNormal Forms of Regular 2-Region Piecewise Linear Vector Fields.

Recall the 2-region piecewise linear map f defined by (1.4) and

(1.5);
AX + qA, X € R+
f(x) = _ (3'1)
Bx + qB, x €R

For f, a piecewise linear map f defined by
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Bx + qB, x €R
f(x) = (3.2)
Ax + qu x €R

is called the SSTEEETEEE of f. For a piecewise linear vector field Xf

defined by f in (3.1), the piecewise linear vector field X defined by

f

f in (3.2) is called the complement of X A 2-region piecewise linear

__________ £’

map f(x) = f(x;A,B,qA,qB,a,B) defined by (1.4) and (1.5) is regular if

there exists xO Rn such that

(1) <a,x,> # 8 i.e. x5 ¢ U, and

(2) f(xo) =0 or f(xo) = 0.

defined by f is regular if f is

A piecewise linear vector field Xf u

regular. For a 2-region piecewise linear map f(x;A,B,qA,qB,a,B), to

consider f(x;A,B,qA,qB,—a,—B) is called to change the signe of regions.

Suppose X_. is regular. Then, taking a parallel translation : x

f

——— x—xo, and if necessary, taking the complement and changing the

signe of regions, X_ reduces to the folloWing form;

ot
AX + qA X € §+
Xf(x) = fix) = _ {3.3a)
: ‘ Bx - .X €R
* n .
R ={x €R : *(<a,x> - 8) > 0}, g >0 . (3.3b)

Moreover, by Theorem 2, we can suppose that B is ‘a real Jordan matrix,

a is a canonical normal vector and B = 1, without loss of generality;

Ax + qA yX € R+

Xelx) = f(x) = o (3.4a)
Jx y X 6 R

+ 11!

RM={x &R : *(<a,x> - 1) > 0} ~ (3.4b)

where a is a canonical normal vector corresponding to a real Jordan
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matrix J.

Theorem 3 (Normal Forms of Regular 2-Region Piecewise Linear

Vector Fields) If necessary, taking the complement and changing the

signe of regions, any continuous n-dimensional regular 2-resion
piecewise linear vector field is linearly conjugate to the vector field

with the following form;

(J—qTa)x +q ,x €R"
Xf(x) = f(x) = _ (3.5a)
Jx yX € R
= Jx - % g { l<a,x> - 1| + <a,x> ~ 1} (3.5b)
+ n n '
RM={x€R : #<a,x>-1) >0}, q €R (3.5¢)

where J is a real Jordan matrix and a € R" is a canonical normal vector
corresponding to J.

Remark. Suppose a continuous regular 2-region piecewise linear
map f(x;A,B,qA,qB,a,B) of (3.1). If we choose a real Jordan ﬁatrix JA
of A as J in (3.5a), a amd q are uniquely determined corresponding to
it, and we obtain one répresentation of £ by (3.5). However if we
choose a real Jordan matrix JB of Bas J in (3.5a), o« amd q are
uniquely determined corresponding to it, and we obtain another
‘representation of f by (3.5). HNo representation of f by (3.5) exists
except these two representations. In this sence, (3.5) gives us a
normal form for continuous regular 2-region piecewise linear vector

fields under linear conjugacy, which is determined by (J, «, q).

Example 3.1 (Normal Forms of 3-Dimensional Regular 2-Region

T 3
Piecwise Linear Vector Fields) Define (c c3) =-(1/2) q € R .

1'%2’

(1) Case of J = " and o = (1,1,1):
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X = AX - c, (Il x+y+z-1)V+(x+y+2z-1)}
§ =W -c, x+y+2z-1}+(x+y+2z-1 )}
z = vz - ¢4 {lx+y+z-1}l+(x+y+z-1)}
A1 T
(2) Case of J = A and o = (1,0,1):
i
X = AX +y - c; {l x+2~-11+(x+2-1)}
¥y = Ay - <, {lx+z-1}1+(x+2z-1)1}
z = nz - cg4 x+z-1}1+(x+z-1)}
A T ‘
(3) Case of J = a -b and o = (1,1,0):
b a
X = AX —c, {lx+y -1} +(x+y-1)}

& =ay bz-c,  {l x+y-11+(x+y-1)1}

2

z=by+az-c_  {lx+y-11+(x+y-1)}

3
As stated in Example 2.3, corresponding to choice of J and a,

there exist 14 different ordinary differential equations including the

above three equations.

4. Normal Forms of Proper 2-Region Piecewise Linear Vector Fields

As stated in section 3, any regular 2-region piecewise linear
vector field is transformed, by a parallel translation, taking the
complement and changing the signe of region, into the following vector
field;

Ax + qA X € R+

Xf(x) = f(x) = (4.1a)
' Bx , X € R

[/
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Ri ={x e R” : *(<a,x> - B) > 0O}, B#£O (4.1b)

A linear subspace E in R" is B-invariant if B(E) C E. A regular
linear subspace E C Rn (0 < dim E < n) which is parallel to U = {x €
Rn:<a,x> = B } and is B-invariant. In this section,‘we consider normal
forms of continuous/proper 2-region piecewise linear vector fields.

By taking a linear transformation and the complement of the vector
field, without loss of generality, we may aSsumé that (4.1) has the

following form (see (3.4));

Ax + qA X € R+
Xf(x) = f(x) = B (4.2a)
Jx »X € R
+ n
R ={x €R : #(<a,x> - 1) > 0} (4.2b)
J=11. T30,k ) s 7. % J(a.,b;51.) | (4.2¢)
i=1 i’ Jj=1 3375

a is a canonical normal vector corresponding to J (4.24)

Proposition 4.1. Suppose Xf

in (4.2) is proper, then the
following holds;
(i) the eigen values of J, ki (L <i<r), a.t ibj (1 < j<s)

are distinct.

T

(ii) a = (ul,...,ur,vl,...,vs) (4.3)
1xki
u; = (1,0,...,0) €R ,
1x21 :
vi=(1,0,...,00€R °, 1=1(1,0), 0= (0,0)

/ 2



179

Proposition 4.2. (Sylvester Matrix) For an nxn matrix defined by

0 1
o o 1 0

S = . i e (al.,...,an € R)
an an—l a1

(called Sylvester matrix), the following hold.

(i) If X is a real eigenvalue of S, the real eigenspace belonging

to A, E(d) = {x € R": (S-AI)x = 0}, is a 1-dimensional linear subspace

spanning by

w o= T, 2" € B, ile. E(N) = span{ u) }

(ii) Moreover, if X has multiplicity k, the generalized real

eigenspace belonging to A, EW(X) = {x € R™: (S—XI)kx = 0}, is

a
k—dimensional linear subspace spanning by
j_T - n < i<
uy = (ujl'ujz""’ujn) € R (1 3 k) (4.5a)
where
w..=..c. A9 (1<i<n, 1<j<k) (4.5Db)
ji i-1"j-1 =" =" =V =
ir/{j? (i=-j)1} if i>3 .
iC_ = N (4.5c)
J 0 if <)
. L1 k
i.e. Ew(l) = span{ Uyseeesly 1.

(iii) If v and w are complex eigenvalues of S, the real

eigenspace belonging to w and ®, E(w,s) = span{Re(z), Im(z) € R :

(S-wI)z = 0, z e‘Cn }, is a 2-dimensional linear subspace spanning by

Re(vl) and Im(vl) where
-0 w

1 T
v, = (1,0,...,w

n—l) n

i.e. E(w,w) = span{ Re(vi), Im(vi) }.

/7
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(iv) Moreover, if w and w have multiplicity 1, the generalized
real eigenspace belonging to w and w, Ew(w,a) = span{Re(z), Im(z):
(S—wI)lz =0, z € Cn }, is a 2l-dimensional linear subspace spanning by

Re(vi) and Im(vi) € R (1 < j <1) where

j_T n << '
v = (vjl’vjz""’vjn) €C (1 <J s k) (4.6a)
v, = C wi™d (1 <i<n, 1<j<k) (4.6b)
ji T i-17j-1 =t = s =d2 ,
i1/431 (i=3)t} if i>j
iC. = - (4.6¢)
J 0 : if i<

: =y _ o d Jy . .
i.e. Ew(w,m) = span{ Re(vw),Im(vw) 1 <35 1 }.

(v) Let u Sy € C be all eigenvalues of S including

1’

multiplicity, then

k-1
a, = (-1) Dwow -oony 0 (1 <k <n) (4.7)
172 k - -
.. . v L <i<...<i . .
where 2 takes all 11,12,...,1k such that 1l 12 lk In particular,
a; = trace S and a = (-l)n—ldet S.

JIf the piesewise linear vectér field Xf in (4.2) is proper, number
of real Jordan block belonging to one eigenvalue is one by Proposition
4.1. Thus, J is transformed into a Sylvester matrix S under some
linear transformation by Proposition 4.2. 1Indeed, using column vectors

i

uy € R" and vi € ¢ in Proposition 4.2(ii) and (iv), define a matrix

G by

[ F
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where u.j =u J s V J =v J and w, = a_, + ib,.
1 w, i i

Then we can verify that

1

S = GJG (4.10a)
G(U) = { x €R": <a',x> =1} (4.10Db)
o' = T(1,0,...,0) (4.10¢c)

where U {x € Rn: <a,x> =1 } and o is a normal vector in (4.3).

Under considering the above argument, we have the following.

Theorem 4 (Normal Forms of Proper 2-Region Piecewise Linear Vector

Eields) If necessary, taking the complement and changing the signe of
regions, any continuous n-dimensional proper 2-region piecewise linear

vector field is linearly conjugate to the vector field with the

following form;

Cx + q X € R
Xf(x) = f(x) = _ (4.11)
Sx ,X €ER
where
* n
RO ={x€R : *(<a,x> -~ 1) > 0} (4.12a)
T ' T
a = (1,0,...,0), q= - (cl"'f’cn) (4.12b)
0 1
0o o0 1
S = - T (4.12¢c)
an an—-l a1
c 1
cé 0 1
C = : . - T (4.124d)
c . . 1
n-1
Lcn+an 8n-1 - a
-

s7S
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Moreover, the following hold.

(i) Put p = T(cl,...,cn) € Rn, then (4.11) is written as

Xp(x) = Sx + (1/2)pll<a,x> - 1]+(<a,x> - 1)}  (4.13)

(ii) Let p dﬂle'c be eigenvalues of S including the

1

multiplicity, and define

a = (1% uiluiz". pik (1 <k <n) | (4.14)

Y

where ; takes all i .,i, such that i <i_ <...<i

17tor sty 112 K

(iii) Let v "V € C be eigenvalues of C including the

1o
multiplicity, and define

b = (—1)k_12 ViV ees vy (1 <k <n) (4.15)
172 k -7
.. . < <. .<i .
where X takes all 11’12""’1k such that 11 12 _ 1k Then
k-1

- - < < .

¢ bk a + Zi=1 a;c, s (1<kg n) (4.16)

. -1 . : -1 n - .
(iv) Assume C exists, and put Q = -C "q € R'. Then (4.11) is

written as

C(x + Q) ,X € rt
Xf(x) = (4.17)
' S x ,X € R
and
T
Q = (1—an/bn, clan/bn’czaq/bn’""Cn—lan/bn) (4.18)

/6
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Example 4.3. (Normal Forms of 3-Dimensional Proper 2-Region

Piecewise Linear Vector Fields)

Moo
1]

vy + (1/2) cl{lx—ll + (x-1)}

<o
1]

z + (1/2) cz{lx—ll + {x-1)}

zZ = agx +ay +a

Remark 4.4. Theorem 4 means that the linearly conjugate classes

12+ (1/2) ca{lx—ll + (x—l)}

of proper 2-region systems are determined by the fundamehtalFSymmetric
expression of eigenvalues for linear vector fields in each region,
except the complement vector fields. . To take the complement is needed
for only 2-region systems. For proper system having many region (more
than 2, but not greater than 2n), the linearly conjugate classes are
determined by the fundamental symmetric expression of eigenvalues in
each region. The condition for proper (i.e. invariant subspaces are
not parallel to the boundary of regions) is generic. Thus; if we want
to know the global bifurcation, it is important to study it for the
proper piesewise linear vector fields. 1In this case, the problem of
global bifucation can be stated b& values of fundamental symmetric
expression of eigenvalues. In this sense; +the values of fundamental
symmetric expression of eigenvalues in each regioﬁ can be thought as an
univarsal bifurcation parameter for proper 2-region piecewise linear

vector fields.

5. Three Dimensional Many Region Systems and Chaotic Attractors.

In this section, as an application of Theorem 4, we will derive

normal forms of 3-dimensional 3-region systems with point symmetry and

77



184

normal forms of 3-dimensional 4-region systems with axial symmetry. We
will deal with only 3-dimensional systems, while the method of
derivation of normal forms is valid for n-dimensional systems with many

regions.

Definition 5.1. Let Xf be a PL-vector field having many regions.

If each 2-region system deriving from adjacent two regionsbof Xf is

regular (resp. proper), X_. is regular (resp. proper).

f

A vector field Xf:Rn———+ R" is symmetric with respect to the
origin if Xf(—x) = —Xf(x) holds for all x R'. Then 3~region
PL-vector fields with the symmetry with respect to the origin

are expressed as follows;

Ax + . q , X € R"
Xf(x) = f(x) = Bx X € &° (5.1) .
Ax + q , X €R
+ n
R ={ x€&€R : *<a,x> - B) > 0},
0 n
RT={x€R : .<a,x>. <81}, B >0.

Theorem 5 (3-Dimensional 3-Region System with Origin Symmetry )

Any continuous 3-dimensional proper 3-region system with symmetry
with respect to the origin is linearly conjugate to the vector field

with the following fofm;

X =cx+y +(1/2)c1{|x—1l - |x+1 }
§ =Cc X + 2 +(1/2)02{|x—1| - Ix+11} (5.2)
z = (c3+a3)x +ay +az +(1/2)03{|x—1l - | x+11}

Moreover the following holds;

/Y
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(i) (5.2) is written as

Ml T(x,y,z) + q , x>1
T =
Xf(x,y,z) = ”0 (x,y,2) o Ixl <1 (5.3a)
. Ml L(X,y,rZ) - q ’» x —5_ _1 .
0O 1 O Cl 0 -C
MO ={0 O 1 ’ M, = c2 0 1 , q = —02 (5.3b)
aj a, a; catay 2, a, -C

(ii) Let My and v; (i=1,2,3) be eigenvalues of MO and Ml

respectively, then

a) = MtHytHg A, =—(u1u2+u2u3+u3ul) s Ag=H H5Hgs
b1 =V VY, b2 =—(v1v2+92v3+v3v1) , b3=vlv2v3, (5.4)
c.=b_-a, , c.=b_-a_ +a_.c =b_-a_+a,.c_+a.c

17°178 0 CoTPa7% % v C3TP3TR3TEC 48
(iii) Linearly conjugate classes are uniqﬁely determined by the
values of a; and bi (i =1,2,3).

(iv) If b3 # 0 and a3/b3 < 0, singular points of Xf are three

points P+, P and O which are given by

T ‘ + T
= = + (1~

0= "(0,0,0), P f 7 (1 a3/b3, c1a3(b3,c2a3/b3) (5.5)

Definition 5.2. A 3-dimensional vector field Xf: R3———+ R3

defined by
Xo(x,y,2) = (fl(x,y,Z), £,(x,5,2), f5(x,y,2))
is symmetric with respect to z-axis if
X (=x,-y,2) = (-f (x,y,2), -f,(x,y,2), £ (x,y,2)) |
is satisfied for all (x,y,z) € R3. Two plaines in R3 with general
position devide R3 into four regions. We consider 3—dimehsional

4-region system with axial symmetry. In the following theorem. notice
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that a denotes a real number.

Theorem 6 (3-Dimensional Proper 4-Region System with z-Axial

Symmetry )

Any continuous 3-dimensional proper 4-region piesewise

linear vector field with z-axial symmetry such that the boundaries of

regions are not parallel to z-axis is linearly conjugate to the vector

field with the following form;

X = ((al+ao)/(2ao))y + ((a1-ao)/(40to)){ly+zl - ly-zl}
y = ogx + ((Bl+Bo)/2)y + ((Bl-BO)/4){ly+z| - jy-z1} (5.86)
z = ((v)+75)/2)z + ((Yl—YO)/4){ly+Zl - ly-zl} -1
Moreover the following holed;
(i) (5.6) is equivalent to the following.
4 T '
My, (x,¥,2) +q »(x,¥,2) €R,
ul T(xsy’z) + g ,(X1sz) € Rl
X (x,5,2) = § (5.7a)
' 4T +
h2 (x,y,2) +q ,({x,y,2) € R2
- T -
X M2 (x,y,2) + q ,{x,y,2) € R2
0 v1 0 0 al/ao 0
Mo =| o, 80 0 s Ml =| e Bl 0 (5.7b) |
0O 0 YO 0 0] Yl
+ —_
. |° (@ +ag) /20, (o -ag)/2a, .
t ria _ )
M, = |, (B1+8,)/2 *(8 -8,)/2 » q 0 (5.7¢)
+ - —
0 —(vr‘l Yo)/2 (Y1+YO)/2 1
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3

RO = {{x,y,z) € R": y+z < 0, y-z > 0O},
3 ,
Rl = {(x,y,2) € R”: y+z >0, y-z < 0},
(5.7d)
+ 3
R2 = {(x,y,2) € R™: y+z >0, y-z 2 0},
- 3
R2 = {(x,y,z) € R™: y+z : 0, y-z : 0},
(ii) Define
P = -m '1§ o |a=o 1) ($v8a)
Fi i : hed Cee Tt
l/Yi
+ -
.\ L o8y =%81)/%
Q = —————0 | (o -0a) (5.8b)
aoyl+alyo (aO . al ) .
0 1

' + + , +
If P, € Ri-(i = 0,1) (resp. @ € R, ), then P, (resp. Q ) are

singular points of Xf.
(iii) 1
2

o . -—
.+ BiYi Yi

. 40 (i . 0,1)

holds, (5.7) is proper. Then linearly conjugate classes of (5.7) are

uniquely determined by the values of @, Bi and Yy (i = 0,1).
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