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Hopf bifurcation of a Constrained Circuit

&k B (Ryuii Tokunaga)

Department of Electrical Engineering
Waseda University, Tokyo, 160, Japan

ABSTRACT
A repelling torus has been observed in an extremly simple electrical circuit. The paper
explains the mechanism of how the repelling torus is born in terms of "Hopf bifurcation” of a
constrained system in the sense of Tkegamil®.
1. INTRODUCTION

Cdnsider the circuit of Fig.1(a) where the non-linear resistor is characterized by Fig.1(b)
and where the capacitance on the right hand side has a negative value -C,. The dynamics of the

circuit is governed by the state equation

Cl%&:e -g(Vez - Vo)

dV
Cz-d—t'cz= -g(Vez-Va ) -iL N ¢Y)
Lgi_x" = Vi

w - Ve

where Vc,,Vc,andi, denote the voltage across C,, the voltage across C,and the current through
L, respectively. The function g(-) denotes the v-i characteristic of the non-linear resister and is
described by

g(V) = -m,V + 05@m,+m) [IV+E-IV-El 1. @

Note that this is the only one non-linear element in the circuit.
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To simplify our analysis, let us transform (1) to the following dimension less form:

X afwx

@ - X

&Y _ gy -z

m = x-x 3
dz_

a PY

where

X = Ve /E, Y = Ve /E,, Z = i/E,C,
@ =C,/C, B=1/LC,, a=m/C, b=m/C, )
f(X) = -aX+ 05(a +b)[IX+E I-IX-E I G

The dynamics associated with (3) depends on four parameters: a, b, « and p. In this paper

we will choose o and B as our bifurcation parameters by fixing the other parameters as follows:
a =007 b=0.1. 6)

Figure 2 shows the bifurcation diagram in the (o,B)-parameter space. One of the most
interesting featurs of (3) is that a 2-dimensional torus !lis observed for a large range of parameter
values, as well as phase locked states?l. The number n:m indicates an n : m phase-locking. C
denotes region where chaos is observed, while DS denotes the region where the double scroll
attractor®is observed. DIV indicates the line o= 1 where the_divergence of (3) is zero. Now, a
typical 1-parameter bifurcations, ¢.g., B =1 looks like the following: for o < 1, a repelling torus”
is observed while there is an attractive periodic orbit insidé it (see Fig.3(a)). Fora> 1, an
attractive torus is observed while there is a repelling periodic orbit inside (see Fig.3(b)). Further
increase of a gives rise to phase-locking as well as 2-dimensional torus, alternately many.

times, and finally a chaos. The chaos appears to be a_folded torus chaos.!!!

* Note that equation (3) is symmetric with respect to the origin, hence there is a twin torus located symmetrically
with respect to the origin. Figure 3 shows only one of them in the half space X > 0.

o,

-
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If one increases a further, the two chaotic attractors ( recall that the (3) is symmetric with
respect to the origin ) collide with each other and becomes the double scroll.’”) Finally the
double scroll dies when a boundary crisis ! happens. If we consider an appropriate Poincaré map
in the state space, we see that the periodic point (for o< 1),b bifurcates into a circle (for a> 1).

This means that a Hopf bifurcation for the Poincaré map takes place at a = 1. A question arises
then:

How is the attractive periodic orbit ( « < 1) born ?

A natural first guess would be a Hopf bifurcation ata =0 for the flow. It tumns out that
this is not the case. In order to explain this let us look at the equilibria of (3) ( see Fig.4 ):

0=(0,0,0), P*=(1+b/a,0,0) , P = (-1-b/a,0,0). (7)

By the Routh's methody one sees that the equilibrium 0 is a sink ( stable) if and only if a < 0.
On the other hand, the equilibrium P*is a source (unstable ) if and only if a < 0. Therefore there

is neither non-trivial attractor nor non-trivial repellor when « < 0. The characteristic equation at
0 (resp. P*) is described by

A% +(1-)bA2 + BA- ofb  (resp. A3 - (1-0)aA? + P+ afa ). ®)
Within the range of our parameter values the eigen values at 0 (resp. P*) always consist of

one real v, (resp. yp) and a complex comjugate pair o, + jo (resp. o ot jtop). Therefore, the

following holds:
apb=y,(c2+®?2) (resp.opa= Y, (6p 2+ o, 2))- ®
and hence

if a<0,theny,<0 (resp. 1,> 0

if >0, theny,>0 (resp.7p< 0). 10
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Recall that 0 is a sink for a <0 and P*is a source for o < 0. Equation (10) tells us that only

the real eigen value ¥, (resp. yp), changes its sign at 0 (resp. P*) and hence it is not a Hopf

bifurcation. Then the following new question arises:
What happens to the replling torus as o« —0 ?

The objective of this paper is to report how the repelling torus and periodic attractor are
born from the view point of constrained systems.”™ In the next section, we transform equation (3)
into a constrained equation and we will point out the relationship between "Hopf bifurcation” of
the constrained system and the appearence of the repelling torus and periodic attractor.

II. Constrained Circuit

2.1 The Dynamics

In order to answer the question in the previous section, we will change the time scale by

ge=da, T=¢t 1n

di _
8d[ - BV
dv .
€ == = _ - -
at f(V-#) -1 (12)
an - _
g = f(V-1)

where we changed the symbols of the state variables X,Y,Z into i,v and p, respectively. For ¢ very

small, the first two equation dominate the last equation and describe the "fast" motion while the
last equation describes the "slow" motion.
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Therefore, the variable p behaves like it is almost "frozen" compared with the motion of iand v.

Such a system is called a constrained system'™. In order to study the behavior of (12) with e very

small, it is convenient to consider the plane L u (. = constant ) which is parallel to the (i,v)-plane.

The plane L, is a "state space” when is "frozen” and is called a leaf.

Consider the “frozen fixed point” ‘P# on L# :

P, = (EG),0). (13)

Let us partition the i-v-j state space into 3 parallel regions R*,R® and R separated by boundaries

B,, and B, , respectively, where

R* = (G| vp <-1)
R® = { (,v,u) | lv-pl < 1)
R = { @) ! v >1)

B, ={ Gv) | v-p=-1)

B, ={Gvp)! v-p=1}. (14)

The frozen dynamics is given by

di o opyv | Y = g oyvew L GV.e) eLuaR, | (19

&4t T
di dav . . +
eqr = BV | egp = +a(Vatk), V,0) €Ly AR, ) (16)

where p_= 1+b/a. In the following, we will consider artifical dynamics (15) and (16) by freezing
a value of p. It follows from (13) and (15) that the frozen fixed point P# lies in Lu n R°for0<

lul < 1 and is stable focus and that P# lies in LﬂﬂR“ for 1 <p (resp. in LFﬂR' for-1>p)and

is unstable focus.

* This is not a real fixed point of (12). Rather, it is a fixed point when W is fixed.
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At p=1, however, P, (resp. P_;) lies on the boundary L, N B, ~ (resp. L_ N B )
(see Fig.5(a)). Let ¥*(x) be the "frozen flow" on L ; Which is generated by (15) and which starts
from an initial condition x with forward time: ©> 0. Let %(x) be the "frozen flow" on L ; Which

is generated by (16) and which starts from an initial condition x with backward time: ' <0. Pick
an initial condition on the following set:

x,={ @vp) li< f(1), v=0}. amn

While the frozen flow ¥*(x) is rotating counter-ciockwise around P, , the frozen flow o%(x) is

rotating clockwise. Let x, and x, be the points where ¥*(x;) and cb"(xo) hit L NB for the
first time (see Fig.5(b)). Note that

if a>b then Ix,-f(1)1 < Ix, -f(1)]

if a=b then Ix,-f(1)I

"

Ix, - (1) |

if a<b then Ix,-f()I > Ix -f(1) ! (18)

Hence, the frozen fixed point P, is a centre if a = b, and is a stable focus (resp. unstable focus) if

b>a (resp. b<a). It follows from (6) that P, is a stable focus in the present parameter values.

2.2 Bifurcations of a Second Order Circuit

Consider the simple second order autonomous circucit of Fig.6 whose dynamics is
described by

edi _ oy
pdt (19)
£ (:ii}t/— = -f(V-p) 4
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where u,v and i denote the voltage across the DC-voltage source, the voltage across the capacitor

and the current through the inductor. Function f(-) is the v-i characteristic of the non-linear
resistor and is similar to (5). Note that this circuit is a van der Pol oscillator if DC-voltage source

is shorted, i.e., p = 0 and if the active part and pasive part of f(-) exchange their roles. Equation
(12) tells us that 2-dimensional state space of this circuit is associated with L " Taking p as the
‘ bifurcation parameter, and fixing =1, let us study the one parameter bifurcation of (19). At
p =0, unstable limit cycle C ¥ exists, because of the v-i caharacteristic of the non-linear resistor.
As lul increases, the operating point of the non-linear resistor moves from the origin toward the
break point. For O< lul < 1, unstable limite cycle C . is observed. Across lpl =1, the operating
point enters into the active part, hence the stable limite cycle C ,° appears from P, via a Hopf
bifurcation. It is interesting to see that Cﬂ" Co-eXists With o #’ for 1 < lpt <y’ (= 1.33). At
ul=p", C Y collides with C,* and becomes a semi-stable” periodic orbit C '+ Finally, for lul

> u*, both of them disappear via a saddle-node bifurcation (see Fig.7).

2.3 Appearence of the repeiling torus and the periodic attractor

With the help of the observations-of 2.2, we will explain how the repelling torus and the

periodic attractor are bom. Define

p=p* u p=ur g
Tu = Cr , 2 = ycCe
£>0 R>1 (21)
B=1 U
Fu=U E , B o= u->1}lzs
>0

where the superscripts s and u stand for stable and unstable periodic orbits or frozen fixed points,
respectively . Figure 8 shows the relative positions of these sets in the state space. Figure 9(a)
shows the trajectory by solving the constrained equation (12) with B = 1 and & = 0.001. Periodic
orbit of Fig.9(a) is observed with forward time, and the object surrounding the periodic orbit is
observed with backward time.

* If we pick an intial condition inside of this periodic orbit, the flow with forward time converges to it, on the
other hand, if we pick an initial condition outside of this periodic orbit, the flow with backward time converges to it.
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Now we illustrate the typical behavior of the flow in order to associate the repelling torus with the

repelling object of Fig.9. Let ¥*(x) be the flow generated by (12) starting from an initial
condition x, . Pick x, in a neighborhood of P0 ;i.e.,0. Then \Iﬁ(xo)‘is at&acted to F ° with rapid

rotation around F ®and moves up very slowly staying very close to F 5. After ¥%(x ) reaches a
point very close to the frozen fixed point P1 P, becomes unstable and WE(x,) is constrained onto
Z%,and further moves upward with rapid rotation around F Y. Finally ¥*(x,) stops moving up
before reaching L#‘ ;ie., ¥(x,) converges to the pericdic attractor. Nete that this periodic
attractor appears via a "Hopf bifurcation;' at L in the sense described in [5]. On the other hand,
if one picks an initial condition x, on Lﬂ(l < p<uh), then ¥(x,) is attracted to Z ° with rapid

rotation and moves downward very slowly staying very close to £ °. And finally ¥*(x,) converges
to the periodic attractor. Now we tumn to discuss the appearence of the repelling object. Let

@%(x) be the flow generated by (12) starting from an initial condition x with backward time:
7 < 0. Pick an initial condition X, in a neighborhood of VP# .» 1.6, P @f(xz) is attracted to F
with rapid rotation and moves downward very slowly stayiﬁg very close to F Y. As soon as <I>"(x2)
hits a point very close to the frozen stable fixed point P, ,chn"(x‘z) is attractéd to T “and starts
moving upward on XY with rapid rotation. After d)"(xz) reaches L#, , (I)"(xz) is attracted to F Y
again, because of disappearence of X" and »°. Next, pick an initial condition x, in a
neighborhood of P ,i.e.,0. Then @"(x,) converges to Z* with rapid rotation and moves upward

very slowly staying very close to ¥, and finally ®¥(x,) is attracted to F “. If this process is
repeated many times, then a repelling object will be observed. Note that the repelling object of
Fig.9(a) is a "holeless" torus. If ¢ is increased by an appropriate amount, the attraction toward F ¥ -

and £ Yis weakeried and a "hole" of the torus is discernible.
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FIGURE CAPTION

Figure 1 (a) A simple electrical circuit with attracting and repelling tori.

(b) The v-i characteristic of the non-linear resistor.

Figure 2 Bifurcation diagram in the (a,b)-parameter space.

Figure 3 (a) Attracting torus and periodic repellerata=2 andb=1.

(b) Repelling torus and periodic attractorata=0.5andb=1. -

Figure 4 The relative positions of the equilibria and torus.

Figure 5 (a) The relative posiﬁons of L #and the boundaries.

(b) The flowonL,.

Figure 6 A second order circuit.

Figure 7 Family of periodic orbits in the (1,V)-state space.
Figure 8 The relative positions of subsets in the state space.
Figure 9 Trajectory atp=1and e =0.001.

Figure 10 ~ Typical trajectories in the (i,V,)-state space.

(a) A typical trajectory in foward time.
(b) A typical trajectory in backward time.
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Figure 3
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- Figure 5
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Figure 6

Figure 7

/ #

v
_ )
......... _— -~ M
L ~ 1 —f-
P o e, 3
P 3 P ..,
i o} -J
[ 4 /... !
LN ) /
\ 7 !
,/... . //;:: .&z....s\,.\
N @
O T o
e . ™~ 3 e N 1
\. . . \\\ - !;flf,///.“//
\ ( !
f | \
\ ) \ /
\ x__ ..,./ \4\
. ’ e
/,./.. //NM!:J \\.\W\\ ,\\
o -. e
P I il . u
s / B8 ~ 2
/ \, \.\ h K
; o .
/ S B
{ tf \ |
_/ ,,. .,f/ \‘_ _\
/v \\ //. : - - ’ ...\..
p \ e
//! ff.;!l- . L




114

Figure 8

Figure 9 /T\
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