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Abstract
Qualitative features of coupled map lattices are presented mainly

focused on the pattern competition, solitary excitations, and kink
motions. Approaches for the quantitative characterizations are briefly
described with the emphasis on the reconstruction problem.

§1. Introduction and Models

After the excitement of "chaos" in low dimensional dynamical
systems, what has been clarified? We have understood some aspécts of
the onset of turbulence from the viewpoint of chaos and have also
characterized weak turbulence through low dimensional chaos. Still,
however, we do not know what characterizes the developed turbulence and

what the essence of statistical mechanics is.
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To understand the general feature of nonlinear system with a large
number of degrees of freedom, we need the unification of the two
aspects; i.e., the creation of local unpredictability (or local chaos)
and the propagation and distribution of the local chaos among a large
number of modes, which itself may occur statistically through some
nonlinear mechanism. The first aspect is most easily simulated by the
low~-dimensional mapping system as may be phrased by the "chaos fever” a
la Feigenbaum. On the other hand, we do not know so much about the
second aspect. The recent studies on cellular automata are aimed to
study this aspectl[l]. A coupled map lattice has been proposed by some
authors [2-10], mainly on the purpose of the unified study of the two
aspects.

A coupled map lattice is a dynamical system with discrete time,
discrete space, and continuous state[2-16]. Though there are various
kinds of the above models, we restrict ourselves only to the following

diffusive coupling case herel[2,4,51]:

xn+1(i)=(1-8)f(xn(i))+8/2{f(xn(i+1))+f(xn(i-1))} (1)

( for i-dimensional)

or

xn+1(i,j)=(1-£)f(xn(i,j))+

8/4(f(xn(i+1,j))+f(xn(i-1,j))+f(xn(i,j+l))+f(xn(i,j-l))}} (2)
( for 2-dimensional)
where n is a discrete time step and i (j) is a lattice point, with the
periodic boundary condition. Here the mapping function £(x) is chosen
to be the logistic map

&

f(x)=1—ax2,

(corresponding lattice is called as coupled logistic latticew(CLle or
CLL2d)), o
or the circle map
f(x)=x+asin(2nmx)+c.
(the lattice is called as coupled circle lattice (CCLl1ld or CCL2d)).
Since some aspects have been already reported elsewhere
[2,4,5,15,16]1, we will describe some phenomena on this system in 82,



30

which have not yet been reported, while some approaches on the

characterization are discussed in 83.

82. Phenomenology
(I) Soliton turbulence
For CCL1ld, we have observed the following phase change as the

parameter change:

(i) homogeneous motion

(ii) soliton turbulence

(iii) developed turbulence
The change (i)->(ii)->(iii) occurs as the increase of a. ‘In Fig.l,
successive patterns of CCLl1d are shown while spatial derivative plots
are used for some examples of CCLl1ld in Figs.z, i.e., the space time
regions (i,n) which satisfy | xn(i+1)-xn(i)l>0.1 are plotted as +,

while the region | xn(i*l)—xn(i)l>o.05 are plotted as *. The pair-

annihilation of kink-antikinks are clearly shown. As the increase of
parameter, the collision of kink-antikinks induce the creation or
annihilation of them, which cause the turbulent motion. This kind of
behavior may be termed as the "soliton turbulence”, in the sense that
most kinks can move freely unless the collison occurs, while the
sensitive dependence on the phases of the two collided kinks induce the
turbulent behavior.

REMARK: Some investigations have been performed on the chaotic
attractor on a few number of solitons, where the attractor is low-
dimensional and only the soliton parameters change‘without the change
of the number [17]. 1In the present case, the number itself changes
chaotically. Soliton turbulence may be most easily modelled by a class
of cellular automata [18,19], while Hamiltonian systems which show the
soliton turbulence are investigated in [20].

As the increase of the parameter, the turbulent behavior is
developed (see Fig.2c)). v

For the characterization, the spatial power spectra are useful,
defined by :
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Fig.1 .
ia) Successive plots of cos(ann(i))Afcr n=960+16xh (h=1,2, 20). Model

¢CLld;: a=1.5, £=0.4, c=0.4, and N=100. Random initial cendition (RIC).
1b) Same plots for n=800+16xh (h=1,2, 20). Model CCL1d, a=1.6, €=0.4,
¢=0.4, and N=100. RIC.

Fig.2 (next page)
Spatial derivative plots for CCLld with £=0.2 and N=100 (see text).

2a) a=1.5, ¢=0.4 by 8 steps
2b) a=1.56, ¢=0.4 by 8 steps 2¢) continued from 2b)

2d) a=1.6, c=0.4 by 8 steps
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S(k)= << | L cos(2nx(3j))exp(2nik) I2>>,

where <<xxx))> is the time average (for CLL we use x(j) instead of

cos(2mx(3)). At the decaying kink-antikinks regions k *- like behavior
is observed for low-wavelength modes at the transient time regions,
till finally the system falls down into a homogeneous state. As the
nonlineariy is increaséd; we have the spectra similar to Fig. 3d). For

fully developed regions, it is approximated by exp(—const,xkz) [101.

(I1)_Soliton turbulence and pattern competition [151

In a class of coupled map lattices, two patterns with k=0 and k=kP
compete. That is, the powerspectra show the peaks at k=0 and k=kp. In

Figs. 3 successive changes of the spatial powerspectra are shown for
CLL1d with £=0.3. At a=1.75, a peak at k=kp=l/6 is prominent. Patte:n

competition is clearly seen at at a=1.8. As the further increase of
nonlinearity, fully developed turbulence is attained (Fig. 3d)).

The local structure changes intermittently between these two
elementary patterns. As has been investigated recentlyl[151, the
pattern competition induces an intermittent behavior which is

characterized by the low freqdency noise ( £ %) for the modes with
k=k_. As the parameter is changed, the following feature has been

observed:
(i) The regular pattern with k=kp:

(ii) Small chaotic embryos with k=0 appear in the "sea"'of the regular
pattern with k=kp, which travel in the "sea”. An example of the

pattern is shown in Fig. 4, where kp=1/2 and only the regions lxn§i+1)—
xn(i-l)l > 0.1 are plotted. We note the soliton-like propagation of

the region with k#kp. At a=1.8, one-way soliton-like motion finally

remains after long transients (NOTE: original model is symmetric),

while a kind of soliton turbulence is observed for a=1.85 and 1.9.

(iii) As the increase of nonlinearity a, the peak in the powerspectra

at k=kp gradually decreases till the form is fitted by exp(—const.XKz),
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Random initial condition (RIC).

and N=100.
€=0.1 by 32 steps

£=0.1,

4c) a=1.85, £=0.1 by 32 steps

4b) a=1.8,

i
4a) xn(i)'s are plotted for n=800+16*h (h=1,2)";15). Model CLL1d

4b)4c) Spatial derivative plots per two sites for CLL1d ( see text)

a=1.9,



36

which corresponds to the fully developed turbulence in -our model (Fig.
3d)). '

Another useful wvisualization for the'spatiotempcral chaos is spatial
Lorenz plot, where the points {xn(i),xn(i+1)} are plotted successively.

Examples are shown in Figs. 5, where the pattern corresponding to k=kp

and other regions with k=0 are clearly seen.

(III) Two-dimensional patterng: Chaotic motion of kinks:

In two-dimensionalVCHLs, the patterns show much richer behavior:
kink-antikink motions, vortex-like motion, and so on. Here some
examples for CCL2d are shown, where the arrows indicate the vectors

[ cos (ann(i)), sin(ann(i)) 1. The parameter here is chosen so as

the single circle map shows the period-three locking with topological
chaos. Thus, fhe homogeneous period-three motion exists. In the
present parameter, some kinks which separate the different phase
regions of oscillations move chaotically in time. The behavior seems
to be quite similar tb the domain dynamics observed in the pattern
formation problems in the f£irst order phase transitions [21]. A
remarkable difference, however, lies in tha£ the domain dynamics is not
easily reduced to the curvature dynamiés but is goﬁerned by ‘
deterministic chaos, since the values of x at the kink regions can show
the sensitive dependence (l£f'(x)I>1 as average) due to topological
chaos in the single circle map. ( See [22} for an oscillator lattice
with random frequency.)

As a statistical mechanics problem the above phencmenon gives the
following question:

Since the space without kinks are nearly homogeneous, we may expect
the existence of some reduced dynamics which includes only the chaotic
motion of kinks. One may expect that the reduction is performed by the
choice of kink motions. In the present problem, however,’the number of
kinks can change. Thus the dynamical system of the kink motion must
allow the change of the numbe: of dynamic variables also. This kind of
a varying dynamical system is investigated in a biological context[231],
while the present case may give an example in a physical context.
Construction of a concrete way of reduction and the characterization
of chaos in such system 1s a future problem.
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Spatial Lorenz plots: (xn(i), xn(1+1))'s are plotted for all §.

n=1000,1001, 2000. CLL1d: RIC: N=128
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3. Characterization of Spatiotemporal chaos
How is the spatiotemporal chaos quantitatively characterized? Some
ways have already been proposed, though we do not yet know a good and
simple way of quantitative characterization. Examﬁles of the methods
are:
(i) Extension of dimensions
In low-dimensional systems, attempts have been performed for the
reconstruction of dynamics from experimental data [24]. The algorithm
commonly used is / ’ ‘ ’
(1) Take a time series of some variables and embed in k-dimenions
i.e., construct a vector Z(ti)= { z(ti), z(ti+T), ce-, z(ti+(k—1)T) },

where z is an observable and T is the sampling interval.( following
Packard et al. [25] and Takens [261)

(2) Calculate the correlation integral C(r), the ratio of the points
in data which satisfy IZ(ti)—Z(tj)l < r. The scaling exponent d ( C(r)

o rd for small r) converges as the embedding dimenéion k is increased,
if the data are generated by a low-dimensional dynamical systemn.
(following Grassberger and Procaccia [271])

In our problem the attractor is high-dimensional and the above
algorithm does not work. Then how can we characterize the
spatiotemporal chaos? .

The algorifhm we have to construct is
(a) Reconstruction of local dynamics and spatial coupling term from
experimental data in space-time: Though the separation of local chéos
and spaﬁial diffusion ( or flow ) may not be performed rigorously, it
may be performed approximately. ’ '

(b) Estimation of the dimension density: Since the degree of relevant
freedoms increase linearly as. size in most spatiotemporal chaos [12],
the density is a well-defined quantity.

(c) Extension of the dimensions to characterize the spatial correlation
and spatial coupling. »

Up tb now we have not yet succeeded in.the construction of the above
algorithms. Here we apply the above Takens-Packard-Grassberger-
Procaccia alogorithm directly to our system and see what happens.

If the system size is large, the above exponent d does not converge

within our possible choice of embedding dimensions ( less than 740).

/2
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Numerical simulations show the following features for fully developed

turbulence.

d(k) for

As in Fig. 7, C(r) is well approximated by C(r) « r
embedding dimension k. Here C(r) is calculated from a time series of

xn(i) of the model CLLl1d. We note that

o dlk) o« k°
with s= 0.6 for the barameters in Fig.8. The exponent s changes by the
choice of the parameters which scatters around 0.5-0.7 for CLL1d.
If the data were purely random, é should have taken 1. The above
value of s seems to represent the diffusive nature of our model. If a
small disturbance 6(r) is applied at r=0, it is enhanced and propagates

roughly as [5]

6(r,t)=exp(At)xexp(-r2/ Dt)

Thus thebmode which affects in the embedding steps k increases as k;/z,

since the effective spatial regions for the time interval t increases

proportionally to (Dt)llz. Our numerical results seem to give some

corrections on s from the above estimate s=1/2.
If the turbulence is not yet developed, the function C(r) is not

easily approximatea by rd and the slope changes by r. If the

spatiotemporal chaos is composed of local chaos with separaﬁed scales
(e.g. by kinks), C(r) has more than one slopes separated by flat
regions. This is the case with CLL1d with weak nonlinearity.

(ii) Lyapunov spectra and Lvapunov vectors [51:

Analogy with the Anderson localization for the vectors
corresponding to the positive Lyapunov exponents have been discussed.
The overlappings of Lyapunov vectors are related with the propagation
of disturbances in the turbulent media.

(iii) Co-movin apunov Exponents [81]:

This exponent is introduced for the study of the enhancement of a
disturbance with some given speeds, which will be useful in the
characterization of the spatial propagation of disturbance.
Practically, the quantity is hard to measure and some other gimple ways
of estimation are strongly required.

(iv) Speed of the propagation of disturbance:

/3
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right Figure.
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The speed is obtained from the difference patterns, which can be
related with Lyapunov analysis [5].

(v) Symbolic Dynamics and Entropies:

The extensions of the notions of entropies and symbolic dynamics are
quite straightforward. Though we have not yet obtained any new ‘
features from these calculations, a kind of statistical mechanics
formulation may be possible from this direction.

(vi) Spatial entropies and spatial Lorenz plots:

Complexity of spatial sequnence is calculated for one-dimensional
lattice case with the use of entropies. For the visualization, spatial
Lorenz plots are useful as was shown in g82.

(vii) Spatial derivative plot and its distribution:

For the visualization of inhomogeneous regions, spatial derivative
plots are introduced as was seen in 82. For the quantitative
chéracterization, the distribution function of spatial derivative plots

are useful, i.e.,
P(y)6y = Ratio of the points s.t. y < Ix(i+1)-x(i)l| < y+éy,
from which we can, for example, estimate the dénsity of some specified
patterns such as kinks. '
(viii) Power spectra and correlation functions:
They are commonly used in nonlinear dynamics. In the spatio-
temporal chaos, both the time and spatial transformations are useful.

As is used in the pattern competetion problem [15], some>filtering

procedure can extract an intermittent nature.
(ix) Information flow [5]:

Chaotic system creates information [29]. Through the spatial
coupling term, the information is distributed into other elements. For
one-dimensional systems the comoving mutual informatioﬁ flow has been '
calculated, to clarify the propagation with some speed.

(x) Scaling by coarse graining

As is commonly used, coarse graining is a powerful technique in
statistical physics. In the present model, we can use the coarse-
graining in spacetime. An example is seen in the intermittency problem
[15]. 1In the problem, powerspectra for some given k modes are chosen
as observables. The powerspectra are calculated only within a given
size L and the scaling of the low frequency modes as the size L is
studied. The low-frequency spectra for the mode near k=kp increase as

/5
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gsize even if suitably normalized ("superrelevant”), while those for
other modes stay constant ("relevént“) or decrease as L ("irrelevant”).
The scaling analysis gives a newllight on the spatiotemporal
intermittency and will also be useful to extract a collective motion.

84. Summary
In the present paper we have reported some aspects in the

phenomenology of coupled map lattices and discussed some approaches of
the characterization of spatiotemporal chaos. A lot of_questions lie
in the study of spatiotemporal chaos. Though we have not discussed
here, Hamiltonian version of coupled map lattices [30] may shed a new
light on the study of ergodicity, Arnold diffusion, phase space
structure.

I hope the coupled map lattice approach gives us a new perspective

and leads us to a new paradigm in future.
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