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On a characterization of algebraic‘number fields by their

Galois groups of p-closed Galois extensions

Yutaka SUEYOsHI (% & )

7N

Department of Mathematics, Kyushu University

In this note, we give a characterization of finite algebraic
number fields by the Galois groups of their p-closed Galois
extensions. This characterization is a refinement of a theorem
of K. Uchida [11]. For details, see [9].

We use the following notations throughout this note.

Notations. Let K be a field of characteristic 0 and
let p be a prime number. For a normal extension L/K, G(L/K)
denotes its Galois group. In this note, a "p-extension" always
means a normal p-extension. A "solvable" extension is a normal
extension whose Galois group is a projective limit of finite
solvable groups.
: the algebraic closure of K,
: the solvable closure of‘ K (i.e. the maximal solvable
extension over K),
K(p): the maximal p-extension over K,

G, G(X/K): the absolute Galois group of K,

K
e

K

G(¥/K), G.(p) = G(K(p)/K),
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p

PO: the set of all prime numbers.

£ : a primitive p-th root of unity in K,

§1. Introduction.

Let k and k be finite algebréic number fields. 1In

1 2
1969, J. Neukirch characterized finite normal algebraic number

fields by their absolute Galois groups.

THEOREM A (Neukirch [51). 1If k1/Q is normal and

Gk > Gk , then k1 = k2.
1 2
And he conjectured [5]:
if Gk = Gk , then k1 = k2.
1 2

Furthermore, he proved a refinement of Theorem A.

THEOREM A’ (Neukirch [6]). If k1/Q is normal and
v
Gk1 > sz , then k1 = k2.

Neukirch'’s conjecture was proved by Uchida [10], [11], in a

generalized form.

THEOREM B (Uchida [11]). Let s21/k1 and Qz/kz be



solvably closed (i.e. 91 and 92 have no proper abelian
extension) Galois extensions. If there exists a topological
isomorphism O: G(Q1/k1) 5 G(Qzlkz), then there exists a unique
isomorphism of fields g: Q1 = 92 such that o(h) = ghg_1 for
all h € G(Q1/k1). ’In particular, glk gives an isomorphism of

1

fields k1 and kZ'

In this note, we consider the following problem.

PROBLEM. In Theorem B, can we replace 91/k1 and Qzlk2

with some smaller extensions?

We give an answer to this problem by using p-closed

extensions.

To prove Thecorems A and A’ , Neukirch used a characterization
of algebraic number fields with henselian valuations [5], [6].
So, first, we generalize his characterization in §2, and next,

we apply it to finite algebraic number fields in §3.

§2. g—closed extensions and Q-henselian fields.

Let Q be a field of characteristic 0, p be a prime

number and P be a subset of PO.

DEFINITION. We call Q g—closed if and only if @ is



p-closed (i.e. { has no proper p-extension) and § contains
Cp . We call Q ﬁ—closed if and only if Q is g~closed for
all p e P.

REMARK 1. § 1is solvably closed if and only if { is

% -closed.
0
REMARK 2. Let K be a field of characteristic 0 and let

i N
P Dbe a subset of PO . We put K(P) = i Ki , Where
i=0

Ky = | K(g

the composite field of K(QO), p € P,
peP E

p)
K. = ] K.(p): the composite field of K.(p), p e P
i+1 DED i i
(i =0, 1, 2, *°°).
Then, K(%) is the minimal %—closed Galois extension over K.
If k 1is a finite algebraic number field and P ¢ P0 , then

v

C k.

k(P) ¢

Now, let K be an algebraic number field (not necessarily
finite over @) and v|% be a valuation of K induced from a
fixed embedding K ¢ @2 , where & is either a prime number
or ® and @, denotes R. We put K, = K;Q2 .VLet Q/K - be an

algebraic extension.

DEFINITION. We call K Q-henselian with respect to v if

and only if there exists only one extension Y of v to
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(i.e. for any extension { Co» 51 of the embedding K <» ﬁi , we
have N Kv = K). If K is @-henselian with respect to v,

then K is simply called henselian with respect to v.

N . A
In the case of p-closed Galois extensions, we can charac-

terize algebraic number fields which are §-henselian with respect

to non-archimedean valuations, by their Galois groups.

THEOREM 1. Let p be a prime number and let Q/K be a
g—closed (i.e. &£ 1is g—closed) Galois extension of algebraic
number fields. Then the following two conditions are eguivalent.

(i) There exists a non-archimedian valuation v|p of K
such that K 1is §li-henselian with respect to v and [KV:Qp]< ©,

(ii) There exist a finite extension K'/(Dp and a g~closed
Galois extension Q’/K’ such that G(Q/K) = G(QR'/K').

Furthermore, Vv (in (i)) obtained from the condition (ii) is

unique and [Kv:Qp] = [K’:Qp] holds.

Qn = Q0
Q{/ v p Q ¢ s e 0 Q’
K_=K-Q
QnK =K/ v b Keoooo K’
v finite |
finite
Qp 0
: P
0 ]
(i) (ii)
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REMARK 3. In the following three cases, Theorem 1 has been

proved.
Case 1. © =@ and Q' = Ep: by Neukirch [5].
Case 2. 9 = K and Q' = K’ (= @;): by Neukirch [6].

1

Case 3. Cp € K and Q K(p) (hence Cp e K' and

Q! = RK'(p)): Dby Y. Hironaka-Kobayashi [3].

REMARK 4. Case 1 (in Remark 3) of Theorem 1 is a p-adic
analogue of a theorem of E. Artin [11]:
If K (# Q) is an algebraic number field and [©:K]
is finite, then XK is henselian with respect to a unigue
archimedian valuation of K and @ = K(/-1), [@:K] = 2.
We can generalize Artin’s theorem as follows:
Let p be a prime number and Q/K (Q # K) be a
p-closed finite p-extension of algebraic number fields. Then
p =2 and K 1is Q-henselian with respect to a unigque

archimedean valuation of K, and O = K(vV-1), [Q:K] = 2.
83, A characterization of finite algebraic number fields.

For a finite algebraic number field k 'and a prime number
p, we put Sp(k) = {g | a prime ideal of k above (p)}. For
F € Sp(k), we use the following notations.
k;: the completion of k with respect to %,
e(y/p): the ramification index of k¥/Qp'

f(§/p): the relative degree of k;/Qp.



Then, from Theorem 1, we obtain the following

COROLLARY. Let p be a prime number, k1 and k2 be
finite algebraic number fields, and 91/k1' and Qzlk2 be
g—closed Galois extensions. If G(Q1/k1) = G(Qz/kz), then there
exists a bijection ¢_: Sp(k1) - Sp(kz) such that [kszp]

b

Lk¢p($) :Qp] for all g € Sp(k1).
PROOF. Using Theorem 1, we can define ¢p by the 1-1

correspondence of the decomposition subgroups of the prime

ideals above (p) of Kk, ~and k, .

h

Let A = (r; 10 fr) be a tuple of natural numbers

such that f1 Sesex fr . For such A and a finite algebraic

number field k, we put

e(}1/p). }e(}r/p)

() = &, %, in k,
P, (k) = {p € P,
£(§,/p) = £, (1 s i s 7).
For P C PO , we put
§ (P) = lim ( & -=)/logz= (if it exists), 05 68(P) s 1

s+1+0 peP p S

(6§(P) 1is called the Dirichlet density of P).

For two subsets P1 P P2<: PO , we write

] = P2 if and only if #((P1U Pz) - (P1ﬂ P2)< ®,
P if and only if 6((P1u P2) - (P1n P2)= 0.

v}
i

DEFINITION. Let k1 and k2 be finite algebraic number
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fields. Then k1 and k2 are called arithmetically equivalent

over @ if and only if PA(k1) = PA(k2) for all A = (r; f1,'°',

fr) (This is equivalent to PA(k1) g PA(kz) for all A = (r; f1,

°'°,fr). For arithmetically equivalent fields, see e.g. [2],

t41, [71).

THEOREM 2. Let P be a subset of P such that §&§(P) = 1.

0

Let k1 and k2 be finite algebraic number fields and let Q,I/k1

and Qz/k2 be %—closed Galois extensions. If there exists

~

a topological isomorphism o: G(Q1/k1) > G(Qz/kz), then there

exists a unique isomorphism of fields g: 91 > 92 such that

1

o(h) = ghg" ' for all h € G(Q,/k;). In particular, glk gives
1

an isomorphism of fields k1 and k2.

PROOF. From Corollary, it follows easily that k and k2

1

are arithmetically equivalent over @. Let k{ be an intermedi-

ate field of 91/]{1 such that k{/k1 is finite, and let ké be

the corresponding subfield of 92 by 0, then k{ and ké are
also arithmetically equivalent over @. Using this, we can prove

Theorem 2 by slightly modifying the proof of Theorem B.

REMARK 5. In Theorem 2, the conclusion k1 = k2 (over Q)

cannot be strengthened to k1 > k2 over k1ﬂ k2.

Example. Put k, = 0(7/2) and k, = ©(#/2*/-1). Then,

k,n k, = ©{/2). Since k, = k, (over 0Q), Gk1 S sz.

But, for any isomorphism g: k1 > k2 ;, we have



g(v/2) = /2. Hence, g cannot be an isomorphism over

k1n k2.
84. An outline of the proof of Theorem 1.
Using Krasner'’s lemma, we can prove the following two lemmas.

LEMMA 1. Let p be a prime number,  be a g—closed
algebraic number field and v be a non-archimedean valuation

of §. Then Qv is also g—closed.

LEMMA 2. Let p be a prime number and /K be a rg—closed
Galois extension of algebraic number fields. If p|IQ:K], then
K is Q-henselian with respect to at most one non-archimedean

valuation.

We use the following propositions from Galois cohomology

(See [5], [61, [81).

PROPOSITION 1. Let &, p Dbe prime numbers and K/(D2 be an

algebraic extension.
(1) 1If me[K:QQ] and ¢ ¢ K, then
1 (L#p),
GK(p) is a free pro-p-group of rank {
~ [K:Qp]+1 (L=p)

(Here, if [K:Qp] = o, then [K:Qp] + 1 means }{0.),



and Cdp‘GK(p)) = 1.
(2) If p JiK:@ ] and ¢, € K, then
2 (2 ¢ p),
generator-rank (GK(p)) = {
[X:@_ ] + 2 (& = p)
p
(Here, if [K:Qp] = »©, then [K:Qp]+2 means }QO.),
relation-rank (GK(p)) =1,
and cdp(GK(p)) = 2.
(3) If pw|[K:Q£], then Gg(p) 1is a free pro-p-group and
cdp(GK(p)) £ 1.

PROPOSITION 2. Let K be an algebraic number field, then

(Res_))
the canonical homomorphism BK————!—+1J_BK is injective.

v v

Here, BK' and BK denote the Brauer groups of K and Kv’
v

respectively, and v runs over all valuations of K.

An outline of the proof of Theorem 1. First, we assume (i).
N .
Let v be the unique extension of v to Q. We put K' = KV

and Q' = Q Then ' 1is g—closed by Lemma 1, and [K':Qp]

e
is finite b; the assumption. Since Q(\Kv = K Dby the assumption,
we have G(Q/K) = G(Q'/K'). Next, we assume (ii). Let G(R/L)

be a p-Sylow subgroup of G(Q/K) and G(QR'/L’) be the corres-
ponding p-Sylow subgroup of G(Q'/k') by the isomorphism. Then
= L(p), T e, 2 =L'(p), c e L' and pr[L':Qp]. By

Proposition 1, we have cdp(GL,(p))= 2, therefore cdp(GL(p)) = 2

- 10 -
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and BL(p) # 0. Then, by Proposition 2, there exists a non-archi-

medean valuation w of L (say w|f) such that BL (p) # 0
w

i.e. pr[LW:QQ]. Let w be an extension of w to £ and put
v = wIK , then we can prove the following:

p = £ (by Proposition 1),

w is the unique extension of v to ¢,

v 1s unique (by Lemma 2),

[Kv:Qp] = [K’:Qp] < ® (by Proposition 1).

This is an outline of the proof of Theorem 1.
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