Existence of an unramified cyclic extension and congruence conditions

Makoto Ishida (石田 方意)
(Tokyo Metropolitan University)

Let K be an algebraic number field of odd prime degree ℓ . Then the following two facts are known.

1) The prime ℓ is totally ramified in K if and only if there exists a primitive element π of K ($K = \Omega(\pi)$) having the minimal polynomial f(X) of Eisenstein type with respect to ℓ , i.e.

$$f(X) = X^{\ell} + a_1 X^{\ell-1} + a_2 X^{\ell-2} + \dots + a_{\ell} \in \mathbf{Z}[X],$$
where $a_1 \equiv a_2 \equiv \dots \equiv a_{\ell} \equiv 0 \pmod{\ell}$
and $a_{\ell} \not\equiv 0 \pmod{\ell^2}$.

Let k^+ be the unique (real) subfield, of degree ℓ , of the ℓ^2 -th cyclotomic field.

2) In the case 1), $L = k^{+}K$ is an unramified (cyclic) extension over K if and only if we have

$$a_1 + a_{\ell} \equiv a_2 \equiv \dots \equiv a_{\ell-1} \equiv 0 \pmod{\ell^2}$$
.

We exclude the special case $K = k^+$. So, in the following, we may suppose $K \neq k^+$ and $[L:K] = \ell$. Of course, we may also suppose that K is real.

Now our problem in the case 2) is as follows :

Is there an unramified cyclic extension M, of degree ℓ^2 , over K, containing $L = k^+K$? More precisely, are there any higher congruence conditions on the coefficients a_1, a_2, \ldots, a_ℓ of f(X), which ensure the existence of such an extension M of K?

I. Under the congruence conditions in 1) and 2), our first conclusion is:

If $a_{\ell} \neq \ell d^{\ell} \pmod{\ell^3}$ for any $d \in \mathbb{Z}$, then there is no unramified cyclic extension, of degree ℓ^2 , over K, containing $L = k^+ K$.

In fact, let ℓ be the prime ideal in K dividing ℓ and we have $(\pi)=\ell\mathcal{L}$ with $(\ell,\mathcal{E})=1.$ The ideal class group C_K of K has the subgroup

 $G_{\ell} = \left\{ \begin{array}{c|c} \operatorname{Cl}(\ell) & (\ell,\ell) = 1 \text{ and } \operatorname{N}(\ell^{\ell-1}) \equiv 1 \pmod{\ell^2} \end{array} \right\}$ of index ℓ , which corresponds to the abelian extension L in the sense of class field theory. Then it is proved

$$a_{\ell} \neq \ell d^{\ell} \pmod{\ell^3}$$
 for any $d \in \mathbb{Z}$

$$\iff C1(\ell)^{-1} = C1(\ell) \notin G_{\ell}$$

$$\iff C_{K} = \langle C1(\ell) \rangle G_{\ell}.$$

Then the assertion easily follows.

Therefore, in consideration of our problem, we may suppose that we have $a_{\ell} \equiv \ell d^{\ell} \pmod{\ell^3}$ with some $d \in \mathbb{Z}$. Then, replacing π by $c\pi$ with $c \notin \mathbb{Z}$ such that $cd \equiv 1 \pmod{\ell^2}$, we may assume that we have

$$a_{\ell} \equiv \ell \pmod{\ell^3}$$
.

II. From now on, we treat the cubic case i.e. l = 3. Notations:

 ζ = a primitive 3rd root of unity, η = a primitive 9-th root of unity, $k = Q(\zeta) = Q(\sqrt{-3})$, K' = kK, L' = kL, so $L' = kk^+K = K(\eta) = K'(\eta) = K'(\sqrt[3]{\zeta})$, ζ' = the prime ideal in K', dividing 3,

so (3) =
$$\zeta^{6}$$
, ζ^{2} | π and $(1-\zeta) = \zeta^{3}$.

- 1°. As preliminaries, we have the following two assertions.
- (a) Algebraic aspect. By Kummer theory, for any $\alpha \in K'$ $(\alpha \neq 0)$, $M' = L'(^3\sqrt{\eta\alpha}) = K'(^3\sqrt{\eta\alpha})$ is a cyclic extension, of degree 9, over K'. (Conversely, every cyclic extension, of degree 9, over K', containing L', is obtained in this way.) Moreover if we have

(*)
$$\alpha \alpha^{J} = \gamma^{3}$$
 with $\gamma \in K'$,

(J denotes the complex conjugation)

then M' is an abelian extension, of degree 18, over K and the fixed subfield M by J is a cyclic extension, of degree 9, over K, containing $L = k^+K$.

- (b) Arithmetic aspect. As L' is unramified over K', the unramifiedness of M over K is equivalent to that of M' over L'. Then, by the ramification theory in Kummer extensions, it is also equivalent, under the condition $(\alpha, \ell') = 1$, to the two facts
 - (1) the principal ideal (α) is the cube of an ideal in L'.
 - (2) $\eta\alpha$ is congruent to the cube of an integer in L' modulo χ'^9 for any prime divisors χ' of χ' in L'.

Of course, we can easily modify these assertions for the case of arbitrary odd prime \mathbb{l}.

2°. Now we assume that the following congruence conditions are satisfied:

$$\begin{cases} a_3 \equiv 3 \pmod{3^3} & (\text{as remarked in I}) \\ \text{i.e. } a_3 = 3b \pmod{5^2}, & b \equiv 1 \pmod{3^2}), \\ a_1 \equiv -a_3 = -3b \pmod{3^3}, \\ a_2 \equiv 0 \pmod{3^3}. \end{cases}$$

We put $\omega=b(1-\zeta)/\pi$ and $\varepsilon=1-\omega$, which are integers in K' such that $\ell'\parallel\omega$ and $\ell'\not\parallel\varepsilon$.

Then, under the above conditions, it is proved that we have

$$(\varepsilon^{J})^3 - \varepsilon^3 \zeta \equiv 0 \pmod{\ell^{15}}$$
.

So we have

 ζ = the cube of an integer in K' (mod \mathcal{L}^{10}), which implies that \mathcal{L}' is completely decomposed in L' = K'($\sqrt[3]{\zeta}$): $\mathcal{L}' = \mathcal{L}_1'\mathcal{L}_2'\mathcal{L}_3'$, Moreover, for each prime ideal \mathcal{L}_1' , we see that

 $(\epsilon^{J} - \eta \epsilon) (\epsilon^{J} - \eta \epsilon \zeta) (\epsilon^{J} - \eta \epsilon \zeta^{2}) \equiv 0 \pmod {\mathcal{L}_{i}}^{15}).$ Investigating the exponent of \mathcal{L}_{i} in each factor of the lefthand side, we have

$$\eta \epsilon \zeta^{j} \equiv \epsilon^{J} \pmod{(\chi_{i}^{9})}$$
 with some $j = j(i)$.

Hence our second conclusion follows:

We have

$$\eta \epsilon (\epsilon^{J})^{2} \equiv \underline{\text{the cube of an integer in}} \quad L'$$

$$(\text{mod } \mathcal{L}_{i})^{9}) \quad (i=1,2,3)$$

and

$$(\varepsilon(\varepsilon^{J})^{2}) (\varepsilon(\varepsilon^{J})^{2})^{J} = (\varepsilon\varepsilon^{J})^{3}.$$

(That is, $\alpha = \varepsilon(\varepsilon^{J})^2$ satisfies the conditions (*) in (a) and (2) in (b).)

3°. Consequently, by considering the extension M' = L'($^3\sqrt{\eta\epsilon(\epsilon^J)^2}$) of K, our third conclusion is:

If the principal ideal $(\epsilon(\epsilon^{J})^{2})$ is the cube of an ideal in L', then there exists an unramified cyclic extension M, of degree 9, over K, containing $L = k^{+}K$.

Here we note that, for an integer δ in K' such that

$$\delta \equiv \epsilon = 1 - \omega \pmod{\ell^9}$$
,

we have the similar conclusion for the extension $L'(\sqrt[3]{\eta\delta(\delta^J)^2})$.

 4° . As for the assumption in the third conclusion, we can show that ϵ is a unit in K' if and only if

$$N_{K'/k}(\varepsilon) = \pm 1 \text{ or } \pm \zeta \text{ or } \pm \zeta^2$$
,

and so if and only if $(N_{K'/k}(\epsilon) = \zeta$ i.e.)

$$a_3 = 3b$$
, $a_1 = -3b$, $a_2 = 3(b^2-1)$
(b = 1 (mod 3²))

(and in this case, our extension M exists).

In this special case, the minimal polynomial of π -b is given by $X^3 - 3X + b^3$ and the discriminant is equal to $-27(b^6-4)$. We note that the norm $N_{K'/K}(\epsilon)$ of the unit ϵ is of course a unit of K and we have $-(N_{K'/K}(\epsilon))^{-1} = b\pi + 1$.

Hence we have the following assertion :

Let $K = Q(\beta)$ be a cubic number field, where the minimal polynomial of β is

$$x^3 - 3x + b^3 \in Z[x]$$

with $b \equiv 1 \pmod{3^2}$.

Then $1+b(\beta+b) = 1+b^2+b\beta$ is a unit of K. Moreover, K has an unramified cyclic extension of degree 9 (so the ideal class group of K contains a cyclic subgroup of order 9).

It is also shown that there are infinitely many cubic number fields $K = Q(\beta)$, which are obtained in the above way.

5°. Under the congruence conditions on a_1 , a_2 , a_3 as in 2°, we investigate the ω -adic expansions of several integers in K' and L', where $\omega = b(1-\zeta)/\pi$ ($f' \| \omega$). Let O_K , and O_L , be the rings of integers in K' and L' respectively. Since we have

(3) =
$$\mathcal{L}^{106}$$
 in K' and $\mathcal{L}' = \mathcal{L}_1'\mathcal{L}_2'\mathcal{L}_3'$ in L',

we can take $\{0,1,-1\}$ as a representative system of the residue fields $0_{K'}/\ell'$ and $0_{L'}/\ell_i'$.

Then, after cumbersome calculations, we have

$$\begin{cases}
-3 \equiv \omega^{6} \\
\pi \equiv \omega^{2} + \omega^{5} - \omega^{6} - \omega^{7} - \omega^{8} - \omega^{9} \\
\zeta \equiv 1 - \omega^{3} - \omega^{6} + \omega^{9}
\end{cases} \pmod{\mathcal{L}^{10}};$$

especially we have

$$\zeta \equiv (1 - \omega - \omega^2)^3 \pmod{\lfloor 10}$$

(see 2°).

We fix one of \mathcal{L}_i 's: e.g. $\mathcal{L}' = \mathcal{L}_1'$. Then, by a suitable choice of η (a primitive 9-th root of unity), we have

$$\eta \equiv 1 - \omega - \omega^2 - \omega^3 + \omega^7 \pmod{2^9}.$$

As $\omega^{J} = \omega (1+\zeta) \equiv -\omega - \omega^{4} + \omega^{7} + \omega^{8} \pmod{\zeta^{19}}$, we see $\eta (1-\omega) \equiv 1 + \omega + \omega^{4} - \omega^{7} - \omega^{8}$ $\equiv 1-\omega^{J} \pmod{\zeta^{19}}.$

Consequently, putting $\varepsilon = 1-\omega$, we have

$$\eta \varepsilon \equiv \varepsilon^{J} \pmod{\mathcal{L}^{9}}$$
i.e. $\eta \varepsilon (\varepsilon^{J})^{2} \equiv (\varepsilon^{J})^{3} \pmod{\mathcal{L}^{9}}$.

For another \mathcal{L}_{i} ' (i=2,3), we have \mathcal{L}_{i} ' = \mathcal{L}^{τ} with some $\tau \in Gal(L'/K')$ and, as $\eta^{\tau} = \eta \zeta^{j}$,

$$\eta \varepsilon (\varepsilon^{J})^{2} \equiv (\varepsilon^{J})^{3} \zeta^{-j}$$

$$\equiv (\varepsilon^{J} (1 - \omega - \omega^{2})^{-j})^{3} \pmod{\mathcal{L}_{i}^{9}}.$$

These are the congruences obtained in 2° .

Finally, we add some remærks in local aspect. We are interested in seeking all $\alpha \in O_K$, such that

$$\eta \alpha \equiv \alpha^{J} \beta^{3} \pmod{\mathcal{L}^{9}}$$
 with $\beta \in O_{K'}$,

because this congruence implies

$$\eta \alpha (\alpha^{J})^{2} \equiv (\alpha^{J} \beta)^{3} \pmod{\mathcal{L}^{9}}$$
and
$$(\alpha (\alpha^{J})^{2}) (\alpha (\alpha^{J})^{2})^{J} = (\alpha \alpha^{J})^{3},$$

that is, $\alpha(\alpha^J)^2$ satisfies the conditions (*) in (a) and (2) in (b).

If
$$\eta \alpha \equiv \alpha^{J} \beta^{3} \pmod{\mathcal{L}^{9}}$$
, then we have $\alpha/\epsilon \equiv (\alpha/\epsilon)^{J} \beta^{3} \pmod{\mathcal{L}^{9}}$.

It is proved that, for any $\gamma \in O_{K'}$ ($\gamma \equiv 1 \pmod{\ell'}$), we have $\gamma \equiv \gamma^{J} \beta^{3} \quad \text{i.e.} \quad \alpha \equiv \epsilon \gamma \qquad (\text{mod } {\ell'}^{9})$

if and only if

$$\gamma \equiv \lambda \mu^3 \pmod{\ell^9}$$
,

where $\lambda, \mu \in O_{K'}$ ($\lambda, \mu \equiv 1 \pmod{\ell'}$) such that $\lambda \equiv \lambda^{J} \pmod{\ell'}$.

Hence, for $\alpha \in O_{K'}$ ($\alpha \equiv 1 \pmod{\ell'}$) such that $\alpha \equiv \epsilon \gamma$ i.e. $\equiv \epsilon \lambda \mu^3 \pmod{\ell'}$,

if the principal ideal $(\alpha(\alpha^J)^2)$ is the cube of an ideal in L', then the extension M' = L'($^3\sqrt{\eta\alpha(\alpha^J)^2}$) has the subfield M, which is an unramified cyclic extension, of degree 9, over K, containing L = k^+K .

We note that, as $\varepsilon = 1-\omega$ and $\gamma \equiv 1 \pmod {\ell^2}$, we have $\alpha \equiv \varepsilon \gamma \equiv 1-\omega \pmod {\ell^2}$.

Among 3^7 classes of $0_{K'}/\mathcal{L}^{'9}$, containing an integer $\approx 1-\omega$ (mod $\mathcal{L}^{'2}$), there are exactly 3^5 classes, containing some $\epsilon \gamma$ as above.