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A SOLUTION FORMULA FOR THE STOKES EQUATION IN Ri

Seiji Ukai (Osaka City University)

1. Introduction and Main Result

The Stokes equation is the linear equation obtained from the
Navier-Stokes equation by ignoring the quadratic convection term.
In this paper we discuss its initial boundary value problem in the

half space R, (n > 2);

(1.1a) u, - Au + vp = o,

(1.1b) veu = 0,

(1-10) Yu = B.(t,X’),

(1.14) ult___0 = uo(x).

Here the unkowns are the velocity u(t,x):(ul,uz,;..,un) and the

pressure p(t,x) where t>0 and x:(xl,xz,...,xn)z(x’,xn)eRn—lxR+=R2,

while V=(81,82,...,an), ajza/axj, is the gradient, A the laplacian,
means the inner product in R" and v is the trace operator to the

boundary 6R2=Rn—1x{0}; yusu(t,x’,0). a(t,x’) and uo(x) are the

prescribed boundary and initial values, respectively. In the

sequel the tangential components of vectors will be denoted with

prime. Thus,

n n n
uz(u’,u’), a=(a’,a’), uo:(uc,)’uo)‘

The aim of this paper is to explicitly write down the solution
to (1.1) in terms of only Riesz’ operators and the solution operators

for the heat and Laplace’s equations in R?, all of which are well-



known operators. Solonikov [7] has already derived such explicit
formulas to obtain various estimates of solutions to (1.1). Then
his estimates have been used to evaluate solutions to (1.1) for
arbitray bounded domains, see e.g. [6,8,9] (see also [4] for a
different approach), which is useful to construct strong solutions to
the (nonlinear) Navier-Stokes equations, [3]. The formula derived
here looks more compact and seems easier to evaluate, and further,
our method of derivation is quite different from and simpler than
that of Solonikov [T7]. Also, the formula (1.10) below which gives
the solution to (1.1) for the case az0 is not found in [7] and
crucial to construct LP-global solutions to the Navier-Stokes

. . n .
equation in R, , see section 3.

We shall introduce two kinds of Riesz’ operators, Rj’ j=1,...,n,
and Sj’ j=1,...,n-1, which are the singular integral operators with

the symbols,

O(Rj)zlg‘j/lgli J=1,...,n,
G(Sj)=i€j/|€’|, j=1,...,n-1,
where g:(gl,gz,...,gn)z(g’,gn)ekn_lxk is the dual variable to xeR".

Thus Rj are defined in the space R" and given explicitly as

ij(x) = v.p.fRn RJ(X—Y)f(Y)dY;
where v.p. means the principal part of the integral and

Ry(x) = opxs/IxI™, oy = 2572 /% riin-1)/2),

I' being the gamma function, and similarly for Sj but in Rn—l. We

note that Sj can also be considered in Rn as well as in Rn in a

+

natural manner. Set



H -
R’ = (Rl’Rz""’Rn—l)
(1.2)
S = (Slysz)'--)sn_l))
and define the operators V1 and V2 by
Vlu0 = —S-ué+uo,
(1.3) n
Vou = u’+Su
270 o o
Further, let r be the restriction operator from Rn to R?, that is,
(1.4a) rf=f| ’
n
R,

and e the extension operator from R? over R™ with value 0;
(1.4b) ef=f (xn>0), =0 (xn<0).
Then we define the operator U by
(1.5) Uf = rR’-S(R"S+Rn)e.
We shall further use the heat kernel in the whole space,

-n/2

E (t,x) = (4nt) ™ Zexp(-1x1%/(at)),

in order to define the operators E(t) and F respectively by
(1.6a) E(t)f = f {E_(t,x-y))-E_(t,x+y)}f(y)dy,
RD o) o
+
t
(1.6b) Fb = IOIRn_lanEo(t'SJX’-y’ an)b(E’wy’ )dsdy’,

which are the solution operators to the heat equation in R?;

z,-Az = 0, in ng
(1.7) vz = b(t,x’),
th:O = zo(x).

Thus z=E(t) solves (1.7) for the case b=0 while z=Fb does for z,

zZ
o)
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Also, we shall introduce the Poisson operators D and N for the

Dirichlet and Neumann problems for Laplace’s equation in R?,

respectively. Thus z=Db (resp. z=Nb) is the unique solution of

Az = 0  in R},

(1.8)
vz = b(x’) (resp. yanz:b(x’)).

As is well known, they are explicitly given in terms of the single

and double layer potentials by

(1.9a) Db = IRn—l 8,G(x’-y’,x)b(y’)dy’,
(1.9b)  Nb = IR“‘I G(x’-y’,x )b(y’)dy’,
where
- -(n-2) - -1 -
G(x) = C_|x| (n23), =-(2x) “log|x| (n=2)
-1 _n/2

is the Newton potential, with Cn=2(n-2) x r(n/2).
Now we are ready to state our solution formulas. For later
convinience, they will be given separately for the case a=0 and for

u_ =0.
o

Theorem 1.1. Suppose a=0. Then the solution to (1.1) can be
expressed as

n

{(1.10a) u’ = UE(t)Vluo,
! -
(1.10Db) u’ = E(t)V2u0+SUE(t)V1uO,
(1.10¢) P = —DyanE(t)Vluo.
Theorem 1.2. Suppose u0=0. Then the soclution to (1.1) is
(1.11a) u? =z Dan+UFV1a,
(1.11b) u’ = FVza—S(Dan+UFV1a),
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n
(1.11¢) p = |V’|DV1a + Dyd FV a - Nag,
where |v’| is the pseudo differential operator having the symbol |&’].
Remak 1.3. (i) Solonikov [7] have not given (1.10) but only

(1.11), although in a slightly complex expression.

(ii) In order that these formulas actually give smooth solutions
to (1.1), ug and a should not only be smooth but also satisfy the
compatibility conditions described in [7]. In particular, V-uO=O is
required for (1.10) and an(O,x)zO for (1.11).

(iii) Evidently, the sum of (1.10) and (1.11)_gives the solution
to (1.1) when a=0 and u0¢0. However compatibility conditions are
required separately for a and u - More resonable is Solonikov’

procedure [7]: First we solve the Cauchy problem for (1.1), with u,

appropriatly extended over R". Then the solution is u:Eo(t)uO, p=0,
where
(1.12)  E_(t)u, = fRnEo‘t’x‘Y)“o(Y)dy

is just the solution to the Cauchy problem for the heat equation.

If we set u:Eo(t)uo+ v-in (1.1), we obtain again (1.1) for v, p with
uo=0 and a replaced by a—yEo(t)uo, to which (1.11) applies. In
this case we have compatibility conditions relating a and u_, see [T]
for details. In case a=0, this procedure leads to a different form
of the solution from (1.10).

Remark 1.4. Even if u and a are not smooth nor satisfy

compatibility conditions, the above formulas still give solutions to

(1.1) in a certain sense. For example, suppose uoeLp(Ri) with 1<p<{«=.

Then we can see that for t>0, (u,p) of (1.10) is smooth and satisfies

(1.1a2), (1.1b) and (1l.1c) with a=0, and instead of (1.1d), it holds
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that as ti0,
. P, o0
u(t) =» P u, strongly in L7 (R}),

where P0 is the operator defined by

! - -
(Pouo) = Vzuo SUVluo’
(1.13) n
(Pouo) = leuo.
Remark 1.5. It can be shown that if 1<{p<=, Po is a continuous

projection from Lp(Rg) onto the solenoidal subspace
' Pinly _ P, n _ n_
(1.14) PL (R+) = { u, €L (R+)| v'uO-O, yuo-Q}.
Notice, however, that PO does not coincide with the well-known
projection P associated with the Helmholtz decomposition, {2]. In

particular, P is an orthogonal projection but P0 is not, in the case

p=2.

2.. Proof of Theorems

Since we work in the half space RE, it is natural to use the

Fourier transformation with respect to the tangential variable x’.

n

Let f(x):f(x’,xn) be a function defined on R+. Then its Fourier

transform in x’' is defined by
n ‘ - -— 3 ', ?
£(g’,x,) = (2n) (n-1)/2 fRn—lelx £ f(x’,xn)dx’.

~

In the sequel we will drop ", thus using the same symbol f for both f
and its Fourier transform ?, and in accordance with this, we will

freely denote the singular integral operator in x’, say S in (1.2),
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by its symbol, say o(S)=zig’'/|&’]. This convention will simplifies
the notation greatly, not only raise no confusions.

We begin our proof by noting the equation Ap=0 which comes from

(1.1a) and (1.1b). Passing to the Fourier transform in x’ and

recalling our convention, we get the ordinary differential equation
2 y 1 2 _ .
(an—lg |I")p = O in x >0.
Now we shall solve this assuming that p is bounded. Clearly such

solutions must have the form-
p = k(&’,x, )vp,
where
(2.1) k(g’,s) = exp(-|&g’|s).
Although the trace yp is still unknown, it follows that p satisfies
(2.2) (8,+18" p = 0.

This is the key in our argument.

First, we set

(2.3) z = (9 +1g" |)u”,

and apply (an+|g’|) to the n-th equation in (1.1la) to see, by the
aid of (2.2), that zt-Az=0 holds. Further, since (1.1b) is

equivalent to
(2.4) ig’-u'+g u” = 0,
we have, together with (1.1lc),

n . n
v(8 t1E")u” = -ig’-yu’+]E’ |yu

Yz

-ig’-a’+lg’ a” = |g' Vs,



and similarly, with (1.14d),

zle-g = €71V ug,
where V1 is the operator defined_by (1.3). This shows that =z
defined by (2.3) solves the heat equation (1.6) with b:lg’lVla and
zozlg’lvluo. Accordingly, z is given in the form of
(2.5) z = ]g’l(E(t)Vluo+FV1a).
Note that |£’]|=|v’]| (pseudo differential operator) commutes with E(t)
and F.

Now that z is known, u” can be obtained if (2.3) is looked as

the ordinary differential equation for u” in xn>0 and solved under

the boundary condition yunzan which comes from (1.1c). The result
is,
X
n n n
(2.6) u® = k(g’,x,)a” + fo k(g',x,-y,)z(t, 8",y )dy, ,

where k is as in (2.1).

We shall show that (2.6) coincides with the sum of (1.10a) and
(1.11a). First, we note that the Poisson operator D in (1.8a) has
the symbol o(D):k(g’,xn), so the first term on the right hand side of
(2.6) is pa™ ({recall our convention). Next, define the operator U
by

X
n

Uf = |g’| fO k(g ,x -y )f(g’,y, )dy,.

We shall show that this is nothing but U of (1.5). Set h(s) =
|8’ |k(g’,s) for 8>0 and = 0 for s<0. Then we have
(2.7) Uf = rf_m hx -y )ef(y, )dy,,
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)

where r and e are as in (1.8). The Fourier transform ﬁ(gn) of h(xn

with rerspect to X is

_ o —(|E'|+iE )x
(zr) 2 e[ e n’ gy
0

R(g,)

n

(2m) "M Z e (e eie )Tt

"

Hence we have, recalling (1.2),

1/2H

(2.8) (2x) I 1(1g 1-18,) /181

o(R)-0(8'){o(R) -0(8’)+o(R )}

n

1]

a(R~S’(R-S’+Rn)).
Since the Fourier transform of the convolution (in xn) of h and f is

1/2

(2rx) hf, we conclude from (2.7), (2.8) that U = U. In view of

(2.5), therefore, (2.6) can be rewritten as

n

(2.9) u® = pa"

+ U(E(t)V1u0+FVIa),

which is what was desired.

To obtain the tangential component u’, we set
W = Vzu = u’+Sun = U'+(i§n/|§’|)un-
Then it follows from (1.1a) and (2.2) that
we-aw = -ig'p-(ig’/1g’|)o,p = -S(|g’ |+, )p = O,
and from (1.1c) and (1.1d) that yw=Voya and w‘t:O:VZuo’ respectively.
Hence we have w = E(t)V2u0+FV2a or

y PN .|
u’ = E(t)V2u0+FV a-Su ,

2
which, together with (2.9), gives rise to the sum of (1.10b) and
(1.11b).

It remains to derive the expression for p. This is done
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upon substitution of (2.9) into the n-th equation of (1.1la);

(2.10) a,p = - (uf-au”) = -Dag-(at-A)U(E(t)v1u0+Fv1a).
2

We note that atU = Uat and |&'|°U =U |€’|2 while, since U=U and since
ak(xn—yn)/axnz—ak(xn—yn)/ayn where k(s)=zk(£’,s) is that of (2.1), we

have by integration by parts,

Xn
IE’lanfo k(x -y, &) f(y, )dy,

X
’ n
l£ l{f(xn)—[k(xn—yn)f(yn)]yn=0 } + Us f

anUf

l£’ |k(x,)vf + Ug_f.

Iterating this, we get

2 2 2
8 Uf = -1&' ["k(x )vf + g’ [k(x, )vo f + Ua f.
_ 2
= -1&’1(1&’ IDyf-Dyy,f) + Uy f.
Recall that o(D):k(xn) for D of (1.8a). Combining these yields

(8,-A)Uf = [£7 (&’ IDyE-Dyd f) + U(3,-a)f.

Consequently, (2.10) becomes

(2.11)  3,p = -Da} - |&’|(l&’ |Dy-Dya,) (E(t)V u +FV a)
= |g’ [Dya,E(t)V u - Dag - 1&’1(1&’ |DV a+Dys FV a),

because z = E(t)Vluo+FV1a solves (1.7) for b = Vla and z, = Vluo'

But 9,p = -1’ |p by (2.2), so p is given by dividing the last
expression in (2.11) by ¥|g'|. Noting -o(D)/Ig’|=—k(xn)/|§’|=o(N),

we have
- _ ’ - n
p = DyanE(t)Vluo + |v |DV1a + Dyaanla Nat.

This completes the proof of Theorems 1.1 and 1.2.

- 10 -



3. LP-L? estimates.

The formulas derived so far provides us with an easy way to
evaluate the solution of (1.1) and its derivatives in various
function spaces. Here we will illustrate LP-L9 estimates of u for
the case a=z0, using the formula (1.10). The case a0 can be treated
essentially in the same way. In the sequel n-Ip will denote the norm

of Lp(RT). Our main result is,

Theorem 3.1. Let u:(u’,un) be the solution to (1.1) for a=0.

Then, for any p,q with 1<{q<{p<«, there is a constant C>0 such that

i *4
(3.1) ﬂu(t)ﬂp < Ct “uo“q’

-o-1/2
(3.2) uvu(t)np < Ct uuouq,

hold for any uoeLq(RE) and for all t>0, with

(3.3) « = (n/2)(q t-p7}).

To prove this we need three lemmas. First, according to

Calderdon-Zygmund [1], Riesz’ operators Rj are bounded operators on

n-l)

Lp(Rn) and Sj on LP(R , both for 1<p<«. Further, S‘j can be also

looked in a natural way as bounded operators on Lp(RE) as well as on

Lp(Rn). Hence we have the

Lemma 3.2. For 1<p<«, the operators U, V1 and V2 are all
bounded on Lp(Rz). Moreover, V1 and V2 are also bounded on Lp(Rn_l)
=LF (aR}) .

Next, we recall that U=U where U is defined by (2.8). Putting

k(s)=k(&',8) for (2.1) and noting that



k(0) = 1, dk(s)/as = -|&’ |k(s),

we readily see that

SnUf

Xn
l& lanfo k(x -y )f(y,)dy,

g’ [{f(x)-Uf(x )}.
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Since aj’ 1<j<n-1, commute with all Rj and Sj’ we thus proved

(ii) a,U = (I-U) v’ |,

(iii) aij = Vkaj, 1 < Jj<n, k = 1,2.

Finally we shall prove that the solution z(t):E(t)z0 to the heat

equation (1.7) with b=0 enjoys the following LP-L9 estimates.

Lemma 3.4. For lx<g<p<«, we have
-
(3.4) HE(t)zonp < t Hzoﬂq:
-x-1/2
(3.5) “vE(t)Zoﬂp <t Hzoﬂq,

for any z_eL%(R}]) and t>0, with « defined by (3.3).
Proof. Recall Eo(t) of (1.14), the solution operator
‘heat equation in Rn. Then E(t)z0 defined by (1.6) can be

terms of Eo(t) as

(3.6) E(t)zo = rEo(t)Eo,

where Eo(x) is the odd extention into xn<0 of zo(x);

) = zo(x’,xn) for xn>0, and = —zo(x’,—xn) for
On the other hand, it is well-known from the properties of

kernel Eo(t,x) that (3.4) and (3.5) holds for Eo(t) if the

for the

written in

xn<0.
the heat

norms are

modified for Rn, so that the lemma immediately follows in view of

(3.6).
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Proof of Theorem 3.1. Since we are assuming a=0, the normal

component u® is given by (1.10a), so we have, using (3.4),

n
i, < ﬂUﬂpﬂE(t)Vluoﬂ

P p

< TV IV gl

< tTHHUIL IV DUl
where nUﬂp is the operator norm of U on Lp(R:) and gimilarly for
"VI"q' Since these norms are finite owing to Lemma 3.2, we have
(3.1) for un, and also for u’, proceeding similarly with (1.10b).

The estimate (3.2) can be obtained essentially in the same way if

one uses Lemma 3.3 and (3.5), and notices that
n-1
jv’ | = —jglsjaj.
This completes the proof of Theorem 3.1.
Remark 3.5. This theorem enables us to construct local and
global strong LP solutions to the Navier-Stokes equation in R?;

ug + u-vu - Au + vp = o,

v-eu = 0,

(3.7)
yu = 0,
u|t=0 = ug.

In fact, Giga [3] and Kato [5] proved the existence of such LP

solutions for the whole space Rn, and also Giga [3] for arbitrary

bounded domains. Their proof makes use of only the estimates (3.1)
and (3.2) for the solution of the corresponding Stokes equation. In

other words, their proof applies literally to the case R?, by virtue

of Theorem 3.1. Thus all theorems in [3,5] remain true for the half
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space Rf. We will not reproduce them here. As for local LP

strong solutions in Rn see also Weissler [10].

+)
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