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0. INTRODUCTION

Physical phenomena of freezing and melting are elementary
components of numerous complex processes like crystal growth,
alloy solidification, ground consolidation, etc. Their analogues
are faced in diffusion processes (possibly coupled with chemical
reactions), in electrochemistry, in ecological processes of pop-
ulation dynamics, to list a few. We shall jointly classify such
phenomena as liquid-solid phase transitions. All these processes
share the feature of a discontinuous transformation from an or-
dered phase to disordered (in a certain sense). This is the
behaviour typical for solid and liquid phases of any convention-
al material.

For the class of processes under consideration, boundary
conditions which in general are time-dependent play a substan-
tial role. Often, either those conditions or the relevant terms
representing distributed sources may be treated as controlling
factors. This gives rise to formulating suitable control prob-
lems, alternatively including cost functionals to be minimized
or having closed-loop feedback structures (cf., [6,10] ). The
first category refers to simple technological and economic cri-
teria, the other reflects an attempt to stabilize the process
along prescribed trajectory.

In this paper we develop an analysis of a certain class
of standard boundary control problems for general two-phase

Stefan-type processes. The Stefan problems can be considered as
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mathematical models of simple liquid-solid phase transitions
(cf., [5,12] ). We use a variational inequality formulation of
the models (cf., [9]). By exploiting diverse regularization
techniques, we give a characterization of the relevant optimal
solutions in the form of explicit optimality conditions. The
characterization is constructive, it may be used for developing
computational schemes (cf., [10]).

For other results on optimal control of various Stefan-type
problems we refer to [1-3,8,13,14].

1. CONTROL PROBLEM STATEMENT

Let § Dbe an open bounded domain in _RN, N>2, with bound-
ary I regular enough. For 0<T <®, denote Q = &x(0,T), 2 =
= I'x(0,T).

To be specific, we shall consider the following boundary
control problem:

2

Minimize J(%,u) = 2|8 - 8 %,
L7(

o 2
= , (1.1
d + ZHUHU )

Q)

over the set of state functions $e¢ LZ(Q) and controls

ue U, subject to the state equations (two-phase Stefan

problem)
w' - A% = XA, W € yb(&) in Q , (1.2a)
3,8 + p% = u Con I, (1.2b)
8(0) = &o , w(0) = W€ YO(SO) in @ . (1.2¢)
Here w' = %%, av denotes the outward normal derivative on
s ‘(}d = ‘(}d(x’t) s A= A(x,t) , “90 = 30(1() > WO = WO(X) » P =
= p(x) >0 are given functions, ¢ is a positive constant; Y

0]

is a monotone graph (multivalued) in R x IR . The control space

U is alternatively assumed as either U = u® = LZ(Z) or u =

1

=U EHl(O,T;LZ(P)) , equipped with the standard norms (up to an



0

equivalence) lull = llull , . lull ;= lluco)] , +
u L7(Z) u L7(T)

sl

L7(Z)

(1.2) is referred to as the enthalpy fixed-domain formula-

tion of two-phase Stefan problem, with the enthalpy graph Yo

Yo (1) = 7,(r) + Lsign+(r) , reR, (1.3)
r
where  § (r) = Of p(8)de , o(r) = EE;% >0, L >0,
0 if r <0
sign'(r) = { [0,17 if Tt =0
1 if r >0

In heat conduction processes with phase transition, $ rep-
resents temperature, ) distributed heat sources, L latent heat
of phase transition, and c,k temperature-dependent specific
heat and heat conductivity, respectively. Both ¢ and k are as-
sumed smooth up to finite jumps at % =0 (critical point of
phase transition); k is strictly positive throughout while ¢
nonnegative, possibly vanishing at some values of & . Hence,
equation (1.2a) is of the mixed parabolic-elliptic type. In
(1.2b), p = p(x), xeT' represents the heat permeability of T
and u = u(x,t) is the boundary control. Problem (1.2),(1.3)
describes also saturated-unsaturated flows in porous media and
electrochemical machining processes (cf., [5,71).

It is to be noted that in the parabolic case (p >0) graph
Yo is strictly monotone, while in the parabolic-elliptic  case
(p>0) it is only monotone (not strictly).

For heat conduction processes, the control objective (1.1)
is to approach a given temperature distribution Sde LZ(Q) by
means of boundary controls wue U of possibly small norms; a is
an arbitrary weight coefficient which is related to the energy
cost of the control. We remark that the control space u® s
representative for numerous applications, e.g., control by means
of Lz—boundary flux or temperature of environment. Also wue Ul
is a natural way of acting for many real problems, for instance

with the environment temperature specified by heat power of ex-
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ternal sources (control wu 1is then the solution of an addition-
al ordinary differential equation).

Now we specify the notion of solution to Stefan problem

(1.2),(1.3) by introducing a relevant variational inequality

formulation in terms of the freezing index y(x,t) = ft %(x,s)ds,
0

yo(y') - Ay 3 fO in Q , (1.4a)

9,y + Py = 8 on I , (1.4b)

y(0) =0 in @ , (1.4¢)

t t
[ A(x,s)ds, g(x,t) =] u(x,s)ds.
0 0

with fo(x,t) = E(X,t) + wo(xj , f(x,t)

System (1.4) admits the following variational inequality
formulation (cf., [9] )

(VI). Determine 1y e H'(0,T;V) such that'

(F ()23 0 YW F (8),8(8)) = (T,(y' (£))-F (t),z-y' (£)) +
J o+ aly(t),z-y'(t)) - (g(t),z-y'(t))p + ¥ (2) -
- Wo(y'(t)) > 0, VzeV, a.a. tel[0,T], (1.5a)
( y(0) = 0 in & , (1.5b)
with : V = Hl(Q), H = LZ(Q), Uy s ‘g the correspond-
ing standard norms; (*,*), (',’)F standard scalar products in
H and LZ(F), respectively;
aly.z) = (Vy, Vz) + (py.2)p
¥ (z) = L éwo(z(x))dx , v (z) = max{0,z}

DEFINITION. By the weak solution of the Stefan problem (1.2),

(1.3) we mean a function vy (which represents the freezing

index of system) such that variational inequality (VI) is satis-
fied.

Since y' = & a.e. in Q , y' (or 'y ) can be treated as
the state variable of the system, corresponding to control u.

The control problem under study admits thus the formulation

&
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(CP). Minimize J(y',u) over vy'e LZ(Q) and uel , subject
to y = y(u) which satisfies (VI) with u

2. BASIC STRUCTURAL PROPERTIES OF VARIATIONAL INEQUALITY (VI)

2.1. Underlying hypotheses

(A1) p admits representation p(r) = 5(r)41551gn+(r) , Wwhere
p e Cl(RJ and 5 finite constant; O ;5 <pe(r) ;5 <+, T ¢ R,

Two cases are to be distinguished: (i) parabolic if p>0 ,

(ii) degenerate (parabolic-elliptic) if p= 0

(A2)°  aeL2(Q) ; Al renlo.T:H)
o ) 0 0 .
(A3) 9, ¢ VAL (Q) , W€ H , W= (YO) (30) , where (YO) is
the minimum-norm section of the graph Y, L >0 ; ‘
(A4) pel™T) , p>0 a.e. on T, the set {xe I'| p(x)>0}
has positive Lebesgue measure in I
(A5)° ue © ; as)t uwe ul
By (A1) , the mapping 70 : H-+H 1is Lipschitz continuous
with Lipschitz constant S , and monotone (strictly if 0 >0),
~ ~ = 2 '
(¥, ) -¥,(2)sy-2) 20 Hy—zHH , Vy,zeH . (2.1)

Functional %): V >R is bounded, convex, l.s.c.; bilinear

form a(°*,*) ¢: VxV~>R is symmetric, continuous and V-elliptic.

2.2. Regularization

We introduce auxiliary regularized problems which approxi-
mate (VI). The procedure comprises parabolic regularization of
the problem (if © =0 ) and its smoothing. The first is based
on approximating YO by strictly monotone graphs Yy, o pe (0,17,
in the other Yu is approached by smooth functions Ve €€ (0,11.

2.2.1. Parabolic regularization

In order to tackle simultaneously the parabolic and degen-
erate cases, we modify (1.4) by replacing Y, with



33

Y (1) = F,(0) + Lsign'(r) , reR , we (0,11, (2.2)
r
where § (r) = [ p (&8)dg , p (r) = o(r) + u
H 0 M M
Clearly, at u= 0 , Yu: Yo - We also have
0<p+u=p <o(r) <p =p+u<+> , VreR

Correspondingly, we replace fo in (1.4) by
fu(x,t) = f(x,t) + WU(X) , WU(X) = wo(x) + L19O(x),(2.3)
to get the variational inequality

(VID)", pe [0,1]. Determine Y, € Hl(O,T;V) , such that

Foly (0),zi ¥, ¥, (0),g(t)) 20, VzeV,
a.a. te [0,T1, (2.4a)
y(0) =0 in @ . (2.4b)

Ciearly, (VI)U with u= 0 coincides with (VI). Notice also
that ?U : H »H is Lipschitz continuous with the constant Bu’
and satisfies (2.1) with Bu. If 5u >0 , _then (viD)" is para-
bolic (or parabolically regularized); if pLl = 0, the problem
is degenerate.

Further, it will be wuseful to notice that problem (VI)u

admits some alternative formulations.
LEMMA 2.1. (2.4a) is equivalent to the inequality
Fyly (1), z3FRNE (0),g(t)) = aly, (t),z -y () -
- (£ (8) 2 -y (8) - (g(B).z -y () + F¥(z) -
- F“(y{l(t)) >0, V¥YzeV, a.a. tel0,T], (2.5)
where Fu(z) = Bu(z) + Wo(z) , Bu(z) = é B“(z(x)) dx ,

z

BY(2) = [ 7,(8)dE .

0
Proof. The Gateaux differential DBu of functional BU : H> R

admits the characterization
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(DB*(y),z) = (7,(052) ¥ y,zel, (2.6)

hence, due to the monotonicity (strict if Bu> 0) of ¥ , BY

is convex (strictly convex). Consequently,
oy H H
(v,(3).z-y) B (2) - B (y) , Vy,zeH,

thus (2.4a) implies (2.5). To show the converse, take z = yh(t)+
+ 6(2-yh(t)), §e (0,1), zeV, in (2.5). Then, because of the

convexity of WO ,

aly (t),z -y, (£)) - (£,(t),z-yu(t)) - (g(t),z-ypu(t))r+
e 3 (BM(y!(0) + 8(2 -y () - BROy (e + ¥ (2) -

- Wo(yu(t)) > 0 , Y zeV

Upon letting § 0 in the above inequality, due to (2.6)
we get (2.4a). [

Remark 2.1. For any we [0,1], functional FY 1 v >R is

convex (strictly convex if ﬁu >0 ), weakly l.s.c. on V , and

lower bounded, FH(2) > %#||ZH§ , Y zeH . Moreover,
T - T .
: U 2 . .
lim [ FH(z(t))dt = [ F(z(t))dt , V zelL“(0,T;V) 3
>0 0 0 (2.7a)
if 2, >z weakly in L2(0,T;V), then
T T
lim inf [ Fu(zu(t)) dt > [ F(z(t)) dt . (2.7b)
w0 0 0
Remark 2.2. (VI)u is equivalent to the time-integrated varia-
tional inequality
T ‘ u 2
[ Ry (0,20 FY £ (0),g(0)) dt 2 0,V ze L7(0,T3V),
0 | (2.8)
with initial condition (2.4b).
2.2.2. Smooth approximation
To approximate graph Y“, we define the following single-

-valued functdions



Yue(r) ?ue(r) + L Xe(r) , reR , ee (0,11 , (2.9)

r ~
e e e (1) = B ¢ Bx(r) ¢

with Yue(r)
Xg(’) is a Cz-approximation of sign+(‘) (for instance in a
polynomial form, cf., [9]). Then Yu€€ CZ(]R) and Ve
imates graph yu in sense of the uniform convergence on compact

approx-

subsets of R~ {0} . Moreover,
Dy (1) =Dy (r) , 1 (-2,01Ule,+>) ,
- C - ~ =
P DY () 22 pL S DY (r) 20 s
D%y ()] < & VreR (2.10)
ue = 27 ’ ’

where C is a constant independent of 1, €. By (A3), the in-

troduced approximations induce the following compatible smooth

approximations to fu

(x) + wue(x) = ¥, (3 (). (2.11a)

fue(x,t) = f(x,t) + Woe

Notice that kueﬂ < C with a constant C independent of

L7(2)
u, € ;3 hence, for any w20,
w > w a.e. in & as € >0 . ' (2.11b)

3> M

The corresponding smooth approximation of problem (1.4)

takes the form
YeOhe) - byye = £ in Q (2.12)
(1'4b) s (1.4C) .

which gives rise to the following variational inequality

(VI)E R pe [0,11 , €€ (0,1]. Determine Y e € Hl(O,T;V) such
that
RO,z 9 o Yo f (8),g(8)) 20, VzeV,
a.a. te [0,T], (2.13a)
Yue(0) =0 in @ (2.13b)



96

r
where We(z) = L é ¢€(z(x)) dx , ¢€(r) = O'f Xe(g) dg

i.e., wee CS(R) and uniformly approximates wo. For any >0,
functionals Wg: V > R are bounded, convex, l.s.c. and Gateaux
differentiable; besides, convergences analogous to (2.7) hold

as €+ 0

Remark 2.3. Variational inequality (2.13a) admits equivalent

formulation in the form (2.5), with FH, fu to be respectively

replaced by FE and f where

e ’
u

Fe(z) = Bg(z) + We(z),’

T

Bp(z) = sze‘;(z(x))dx . BH(n) = OI ¥ (£) dE

Clearly, FE : V> R preserves properties of F". Besides, the

convergences analogous to (2.7) hold, equally at € -0 (for any
fixed pe [0,1] ) and at u,e >0

Remark 2.4. Further on, (VI). with € = 0 will be identified
with (VI)“. For simplicity, we shall omit indices wu,e in all

subsequent notations, whenever equal zero.

2.3. Existence and uniqueness

Consider variational inequality (VI). Because of our prima-
ry interest in control problem (CP) stated for (VI), we shall
discuss properties of the solutions to (VI) for various classes
of admissible controls, with possible degeneracy of the prob-

lem itself.

THEOREM 2.1 ( bu >0, ue @' ). Let (A1), (A2)°,(A3),(A4) be
satisfied. Then there exists a unique solution yu€ Wl’w(O,T;V)
N H*(0,TsH) of (VD*, we[0,1], such that yi(0) = 8, in & .

Moreover, the following a priori bounds hold:

Iyl 4 A FAA <C, .  (2.14a)
H™(0,T;V) L (0,T;H)

Iy ll e /2yl , scp if B3>0, (2.14D)
L (0,T;V) L“(Q) °

and, provided (A2)1,



1 1 2 "
(Bl w2y ISR

WULE(0,T5V) KL Q)
with positive constants Co’cl’CZ dependent on the following
data:

if p=0,(2.14c)

(@]
I

ol il o)

c= e I, sl
L™ (Q) H

Cy = G Tl Tl )

Gy = G ULy Il el @)
Proof (outline; cf., [9] for details). A Galerkin approxima-
tion to the regularized variational inequality (VI)E, e €(0,11,
is constructed. Let {Vl,...,vm}- be a system of linearly inde-
pendent elements in V , such that cl(ééNVng =V, for Vm =
=span{v1,...,vm} . The elements ViV, are to be selected so

that 0,%)e span{vl,vz}. The following family of approximating

semidiscrete Galerkin problems is introduced:

( Determine Y =Y ele(O,T;Vm) (m > 2), such that

nem
4(Ym(yr;l(t)) -fe(t)sz ) + aly (£),z ) - (g(t),z )p = 0,

v z € Vm , a.a. te [0,T], (2.16)

\ym(O) = 0 in

Sysgem (2.16) of nonlinear ordinary differential equations
admits§éﬁsolution Y Over [0,T], which satisfies bounds (2.14)
uniformly in m, € . This enables us to pass in (2.16) to the
limit with m + e ( ¢ fixed), and to show that the resulting
limit function yue satisfies (VI)E. Next, due to the analogous
uniform bounds for yus , we pass in (VI)? to the limit with
e+0 , and conclude that the relevant limit Y is a solution
to (VI)U. Estimates (2.14) on yﬂe imply the same bounds for
YU .

The uniqueness follows directly from the stability of solu-
tions to (VI)u with respect to perturbations of the data as
shown in [9] . [

THEOREM 2.2 ( 6,>0 , wue u® ). Let (A1), (A2)° ,(A3),(Ad) be
satisfied. Then there exists a unique solution yue Hl(O,T;V)r1
n Wl’m(O,T;H) of (VI)U, we [0,1]1, which satisfies the bound

/o



(2.14a). This solution may be constructed as a 1limit of the

solutions Yun to problems (VI)“’n which correspond to u € U1
if u, *u strongly in W as n » o , then (2.17a)
yun-+ yu weakly in Hl(O,T;V) ,
weakly-* in W1°*®(0,T:H) , (2.17b)
yLn > yL strongly in LZ(Q) , (2.17c)

where yu is the solution of (VI)u corresponding to uce ue.

Proof. Since U1 is dense in U°, for any ue U° there exists a
sequence {un]~cl} which satisfies (2.17a). Let {yuH}rbe the
sequence of solutions to (VI)U’n with u - Due to (2.14a) and
the boundedness of {un} in u°, {yun} is uniformly bounded in
Hl(O,T;V)r]Wl’m(Q,T;H) . For a subsequence, this yields (2.17b).
To get (2.17c), it is enough to show that {yﬁn} is a Cauchy

H,n

sequence in LZ(Q) . To this end, consider problems (VI) and

(VI)“’m, respectively corresponding to u, and U, - Take 1z =

= yLn(t) in the inequality (2.4a) with u. s and z = yhm(t)
in the same inequality with u,o- By combining both inequal-
ities integrated over [0,t] , 0<t <T , due to the strict
monotonicity of 7u we get
t
- 2
1 _ T
N Of 1Y 1 (T =y (D [l dT =
1 , , <
ey (W) -y (Oy () -y () S

t T
= T Gt -ug(0)ds v (D= (D))pdT . (2.18)

' 1. oin L2(D), we
un' 2 2
see that indeed {yhn} is a Cauchy sequence in L7(Q). To com-

Hence, by the uniform boundedness of vy

plete the proof, it remains to show that the limit yu is solu-
tion of (VI with u . To this purpose, take the upper limit
at n » © in the inequality (2.8) with u . By (2.17) and the
weak l.s.c. of pH , it follows that Yy satisfies (VI)u cor-

responding to u . Furthermore, the bounds (2.14a) on Yun imply
their analogues for yp . With the uniqueness following as in’
Thm. 2.1, this completes the proof. [

a4
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By applying the parabolic regularization (VI)U, p>0 , a
relevant result can be proved for (VI) in the degenerate case,

equally at u in ul and U°.

THEOREM 2.3 ( p = 0 ).
(I) Let (Al),(AZ)liAS),£A4){A5)1 hold. Then there exists a unique
solution vy € Wl’w(O,T;V) to (VI); this solution satisfies the

bounds

Iyl

A

| c. ., Hyll 1 < C (2.19)
nlco,Tsv) - © w0, vy T 2

with the same constants Co’CZ as in (2.15). It may be con-
structed by taking the limit of solutions y, to (VI)u at > 0,

Y, Y weakly-* in W1*%(0,T:V) , (2.20a)

yl »y'  strongly in L) ; (2.20b)
moreover,

1}/2 yh >0 strongly in Lw(O,T;V) ,

uy! > 0 strongly in L2(Q) . (2.20¢)

(I1) Let (Al),(AZ)O,(AS),(A4) and (AS)O hold. Then there exists
a unique solution y e I{I(O,T;V) of (VI); it satisfies the
bound -

HYH}ﬂ(O vy S C, (2.21)

with the same constant C0 as in (2.15). This solution may be
constructed by taking the limit of solutions Yy to (VI)u at
u>0 ,

Yty weakly in HL(0,T;V) , (2.22a)
y, > y'  strongly in L2 ; (2.22Db)
moreover, uy) > 0 strongly in L¥(0,T;H) . (2.22¢)

Proof. (I) By estimates (2.14a,c) for {yu} , the convergences
(2.20a,c) follow directly. To show (2.20b), consider problems
(VD" and (VD)* with w2 ¢ (0,11. Take z = y;(t) in (2.4a)
and z = yh(t) in the same inequality corresponding to A

By combining both inequalities integrated over [0,t] , 0<t <T,
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due to the monotonicity of 70, we get

t
OI (ryy(s)-9) - A (y3(s)-8 ) » y(s)-yi(s) ) ds +

b 3aly, (1) -y, (1), y,(D)-y,(t)) S0, te (0,T]

1A

Hence, in particular

, 0, V whie(o,171.
L™(Q) \ (2.23)

A

Culy) =95 - A(y)=8,) » vy - vyy)

Due to the Crandall-Pazy lemma [4] , the boundedness of {yh} in
LZ(Q) together with (2.23) imply that ||yLH 2 is nondecreas-
Q)

ing in u , and

yﬁ > y! strongly in LZ(Q) as H > 0

It remains to show that y satisfies (VI). To this end,
take the upper limit at u > 0 in the inequality (2.4a) inte-
grated in time. Due to (2.20), continuity of ?0 and weak l.s.c.
of Wo s it follows that y is a solution to (VI). Estimates
(2.19) are direct consequences of their counterparts for Y u
The uniqueness follows as in [9]

The proof of (II) proceeds much the same way as for (I). D

3. STRUCTURAL PROPERTIES OF CONTROL PROBLEM (CP)

3.1. State observation mapping

u +-L2(Q) denote the state observation mapping

Let =)
defined by E(u) = y' , where vy is the solution of (VI) with
control u . Then, control problem (CP) admits the equivalent

formulation in the control space,

(CP). inf {I(uw) = J(E(u),u)}
uelu

The observation mapping E is continuous in the following

sense.

PROPOSITION 3.1. Assume that (Al),(AZf),(AS),(A4) and, alter-

Ly
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natively, (A5)° or (A5)' holds. Then
(I) degenerate case (p = 0)
(1) Z 1is continuous from U(weak) into LZ(O,T;V)(weak);

(II) parabolic case (p > 0) : (i) holds, furthermore

(ii) ¥ is compact from u®  into LZ(Q);

(iii) & is Lipschitz continuous from u° into L2(Q).
Proof. (D Consider any sequence {un}cll, such that u,>u
weakly in U4 . Let {yn} be the sequence of solutions to (VI)
which correspond to {un}. Since {un} is bounded in U , it

follows by (2.21) that {y_} is uniformly bounded in Hl(O,T;V).
v n .

Therefore, for a subsequence,

Y, Y weakly in HI(O,T;V) . (3.1)

To show that y is the solution of (VI) corresponding to u ,
we pass to the limit as n = « in (VI) with Uy, - Notice that,

according to (3.1), y(0) = 0 in @ ; besides, as n » =,

T t T
\ fﬁzﬁ(o'f u (s)ds, yr'l(t))l,dt = -Of (u (£),y (£))pdt +
T T t
+ (J o w(s)ds,y (M)~ [ (] u(s)ds,y' (t))dt.
0 0 0
(3.2)
Take the upper limit as n »« in (2.8) at u= 0, with -
By (3.2) and due to the weak l.s.c. of F , we can conclude
that y satisfies (2.8) with up replaced by u . Thus, vy
is the solution of (VI), corresponding to u . Hence, (1) has
been proved.
(11) In the parabolic case, assertion (ii) follows as

in the proof of Thm. 2.2 (cf., (2.18) ). Indeed, from integrat-
ing by parts the right-hand side of (2.18) we get

2

o v vl y ) Faly (1)-y (1),y, (T)-y, (T)) <

HA

T
-Of (u (£)-u, (£),y (t)-y (£)) dt +

+

T
(OI (u (s)-u (s))ds,y (T)-y (T)), » Vn,meN .
(3.3)

Hence, due to (3.1), {y'} 1is a Cauchy sequence in LZ(Q). Thus,
n
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yﬁ > y' strongly in LZ(Q).
To conclude (iii), we use inequality (2.18) with the right-
-hand side integrated by parts. An appropriate use of Young's

and Gronwall's inequalities yields then the estimate

< Cllu, -u

Iy} ymHLZ(Q) + Ay, 'ymHLm(O,T;V) < N mHLZ(z) ,
(3.4)
with a positive constant € independent of u.o, u (dependent
on p -1 ). The proof is complete. []

3.2. Existence of optimal solutions

A direct consequence of the continuity of Z is

THEOREM 3.1. Control problem (CP) has nonempty set of optimal

solutions.

Proof. Let {uu} c U be a minimizing sequence for functional

I, 1i.e., :
lim I(u ) = lim J(8(u),u ) = I = inf I(u)
n n n
n > n-+ow uel
Hence, by the radial unboundedness of functional I , the se-

quence {un} is uniformly bounded in U . Therefore, for a sub-
sequence, u_ > i weakly in U as n->« . Due to Prop. 3.1,(i)
we get immediately
J(E(2),8) < lim inf J(E(u).u ) = T
n -+ o
and hence conclude that @ is an obtimal control for (CP). D

3.3. Role of control spaces u° and U1

There is a link between problems with control spaces u° and
Ul, which reflects a regularizing role of controls from the

space ul against those from U°.

THEOREM 3.2. Consider the family of control problems

(CP), » v20. inf {I(u) = Hs(u)—sdllizm) S RY R
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2
sl r
. u
over ue U1 if v >0, and over uce T T 0

Assume that (A1), (A2)°,(A3),(A4),(A5)° hold and ¢ > 0 . Then
there exists a sequence {ﬁv} cul of optimal controls to (CP)V,
such that as v >0 ,

ﬁv > { strongly in u® s (3.5)
E(ﬁv) > 5(1) weakly in LZ(O,T;V) , strongly in LZ(Q),
(3.6)
IV > IO , (3.7)
o o . . Lo ~
Yherev uf u is an optimal control to (CP)0 ; Iv = Iv(uv) ,
IO = Io(u)

Proof. Notice that, for each v >0 ,

Ivgf 1nf:l Iv(u) > inf(3 IO(u) = IO . (3.8)

ue U uel

Now, we show that for every o >0 there is v(0) such that

Iv < Io + 0 for v < v(o) . (3.9)

Observe that, for any pair ug,u, € W , due to the Lipschitz
continuity and boundedness of EZ (cf., (3.4),(2.14a) ),

150 = | s € llug-wyll o €= cClugll oo lluyll Q)
(3.10)

By the density of U1 in u° ,» (3.10) implies the existence of
1 .
we U such that

~ A o
[IO(W) —Io(u0)| < C Hw-—uOHuO <5
where ﬁo is any optimal control for (CP) ; consequently,
- o] V2
Iy 2 1,00 < Io(ﬁo) 77 ollw Iluo
Hence, after adjusting Vv = v(0) so that V(o) Hw'l[zo < % , we
W =
get (3.9) and therefore
lim sup T < T . (3.11)

\% 0

v+0
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(3.11) together with (3.8) imply (3.7). By (3.11), for v <v(o),
~ 2 ~y 2 =
lagl%o = viiayily < 1,
thus, for a subsequence,
g, > 1 weakly in u° , (3.12a)
Vﬁb +~ 0 strongly in u° . (3.12b)

To show that @i is an optimal control for (CP)O , observe
that by Prop. 3.1,(i),(ii) ,

E(0) ~ 5(8) weakly in L%(0,T;V) , strongly in L?(Q)
Hence, 1lim inf Iv(ﬁv) > Io(ﬁ) . Simultaneously, by (3.11),
v>0 -
I () < liminf I (&) < T ,
0 = 50 veevl o= To

implying that { actually is optimal for (CP)O . Thus, the weak
convergence in (3.5) and (3.6) have been shown. To complete the
proof, it remains to show the strong convergence in (3.5). To
this end, notice there is n > 0 such that for a subsequence
LONTR I ,

Ilﬁv'” > n as V' >0 . (3.13)

Due to Prop. 3.1,(i), by (3.12) and (3.13), we have

. ~ o 2
lim inf Iv'(uv') ||:(u)-—&d|| ) + N . (3.14)

v' >0 L™(Q)

Hv

(3.14) together with (3.11) yield the inequality n < |lﬁH20 .
N u

At the same time, by the weak l.s.c. of the norm,

2
1

i < lim inf ||Q_, = n
uO = V! “)O v UO

Hence, 1lim ||4_, ]| = ||d]] This gives (3.5) for the sub-

V' >0 v uO uO
sequence {ﬁv‘} . It remains to show that (3.5) holds for the
whole sequence {ﬁv} which satisfies (3.12a). To this end,
observe that 1lim ||Q = ||1 . ’

lin 1 vlluo 1 IIUO

},

Suppose the converse, i.e., for some subsequence {ﬁv"



lin o, 1% = & # lal?, . (3.15)
v'=+0 u u
By repeating the arguments used for {ﬁv'} ,» we can deduce though
that n = Hﬁllzo . This contradicts (3.15), hence the proof is
complete. u U

4. CHARACTERIZATION OF OPTIMAL SOLUTIONS

4.1. Regularized control problem

We are going to exploit gradient-type algorithms for numer-
ical solving the control problems, therefore differentiability
of the state observation mapping and cost functional become of
primary importance.

"~ The control problems under study exhibit structural non-
smoothness due to lack of a sufficient regularity of the solu-
tion to variational inequality (VI). In order to ensure differ-
entiability of the state observation mapping, with the differ-
ential explicitly given, we apply the regularization of (VI) as
exposed in Sec. 2.2 . Consequently, after constructing discreti-
zations to the regularized control problem, optimization tech-
niques of gradient type can be applied for solving the problem
numerically.

For wee [0,1], let &' : u > 1%(Q) be defined by sH(u)-
Y e is the solution of (VI)E

It is to be recalled here that the regularized varia-

— ]
= Yie where

tional inequality (VI) compréhends both p >0 and ¢ >0 . Then
the regularized counterpart of control problem (CP) assumes
the form

(cpY , wel0,1], ee (0,11 . inf { M) = JeeH).w }
uel

As up to now, at any of the parameters u,e vanishing, we

skip index '"0" in all relevant notations.

By the same arguments as in the proof of Prop. 3.1 it
follows that, provided 5u> 0,

Eg is continuous from U(weak) into LZ(O,T;V)(weak),
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compact from U° into LZ(Q),

Lipschitz continuous from u° into LZ(Q) ,
with the Lipschitz constant independent of € .(4.1)

Clearly, problem (CP)E has at least one optimal solution
Ujeg€ u.
The regularized state observation mapping EE is differ-

entiable in the following sense.

PROPOSITION 4.1. Assume that 5u ,€>0 . Then is Gateaux

differentiable in U° . Its Gateaux differential D

1m

E is charac-

terized by

':.'u —_ 1 0
Due(u)\/ = gue , Y u,vel s (4.2)

where gue is the unique solution of the problem

' 1 1 -
(Dy, O () g (), z) + alg (£),2)
t
) = ([ v(s)ds,z )F , YzeV , a.a. te[0,T], (4.33)
0

\EHE(O) = 0 in & , (4.3b)

: v oM . ; ; -
with yue = _e(u) , and DYue( ) being the Gateaux differen

tial of Yue : H~>- H .

Proof. For A >0 , denote = EE(u~+Xv) ,

Yhue
= - )\ . = t - 1
Exve = Uape " Y/ Mue - e aue? YUE(YUE))/ A

Observe that gkue satisfies the system

) t
(Mype(®)22) *+ alEy(8).2) = ([ v(s)ds . 2)p

¥YzeV, a.a. te[0,T] , (4.4a)

£5,.(0) = 0 in Q. (4.4b)

Let us set z = giue(t) in (4.4a) and integrate it over
[0,t], with 0 <t<T . After integrating the right-hand side
of the resulting inequality by parts, and applying Young's and
Gronwall's inequalities, by the strict monotonicity of Yu€ , we

get
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=172 |y . .
+ < C v <cC,
oLty o I MEIILZ(Q) < | HLZ(Z) <

(4.5a)

e, |

with a constant C independent of A,u,e . Moreover, by (2.10),

_C_”'

n, |l < gyl < —75 (4.5b)
Aue LZ(Q) = € AUE LZ(Q) = 1/2

with a constant C independent of X,u,e . By (4.5), as Ar~> 0,

. fo) . 1
% . .
gkpe - gus weakly in L (0,T;V), weakly in H (0,T;H),

o . 2 ;
nxus > nue weakly in L7(Q) . (4.6)

Hence, after passing in (4.4) to the limit as X >0 , we can
see that equality (4.3a) is satisfied, with nue replacing
DYue(yLe)ghe . Besides, due to (4.4b), (4.3b) holds as well.
Notice also that relation (4.2) follows directly by definition
of the Gateaux differential. Hence, to complete the proof, it
only remains to show that

ne = DY O B - (4.7)

By the mean-value theorem,

1

_ ' 1 2 2
Mue Dyue(yue) Ekus )

PRI NCHIR LS L (4.8)

where Y e = (1—B)yLle + Byxue.’ with some Be [0,1] . Simulta-

neously, by (2.10) and (4.5) we have
dl CL ey 12, o SR

82 )\118 LZ(Q) = 82 E)u

A

2 -
I AD%y (y' )(E, )
ue~’ ue Aue Ll(Q)

where,VC is a positive constant independent of A, u,e . Hence,
as A+ 0 ,

ADZY (y' )(¢&! )2 »> 0 strongly in Ll(Q) . (4.9)

ue -’ ue AUE ’

According to (4.8) and (4.9), by (4.6) we. get relation

(4.7). This completes the proof. ]

Let us notice that problem (4.3) has the unique solution

e © L”(0,T;V)N HL(0,T:H) which satisfies estimate (4.5a).
To study convergence of regularized control problems, we



need some estimates of the errors due to regularization of vari-
ational inequality (VI). We recall here those estimates, ex-
pressed in terms of the state observation mapping & (cf.,
91).

For any wue U°, the error due to parabolic regularization
admits the estimate
c W72 (4.10)
Q) ©

with constant CO defined as in (2.15). In the parabolic case

HA

5 1/2 = - mH
/2 llsw - Sl

(p >0), under the additional hypothesis on initial data about
the phase transition point,

(A6) mes {xeQ | O <8 (x)< e }<Ce with C # C(e) ,
for any ue u°® the relevant estimate on the error due to smooth-
ing is
- - 1/2
pllzay -zl , g cet? (4.11)
L7(Q)

where C is a positive constant independent of ¢

4.2. Necessary conditions of optimality

Let us consider the regularized problem (CP)E . We define

the adjoint state as solution of the problem

(APY . ((Dy (y1, () p) (2] 2) - alp  (t).2) =

= (yLE(t)—&d(t),z) s VzeV, a.a. te [0,T],
(4.12a)
pus(T) = 0 in  , (4.12b)
' = :u
where Y e “e(u)
Problem (4.12) has a unique solution pue € Lm(O,T;V) n
n Hl(O,T;H) . Optimal solutions to (CP)E can be given the fol-

lowing characterization.

PROPOSITION 4.2. Assume that Bu,e >0 . Let ﬁuae_u be an ar-
3 : H S - ';U "
bitrary optimal control to (CP)€ and Yie = “e(uue) represent

the corresponding optimal state. Then there exists a function
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ﬁue € Lm(O,T;V)FIHl(O,T;H) which satisfies (AP)E corresponding
to ¥' , and such that

ue
Py _ ~ . _ (8]
puglz = el if u=u , (4.13)
whereas
a ~y 2 B ~ ) 1
puelZ = ol , pue(o)lf = uUE(O) if u=u ,
(4.14)
where\%\:’“’z T _
PLe(t) = tf P (s)ds
Proof. If U= u°, then the Gateaux differential of IL is
characterized by
pI*(w) v = (EHw-9,, DEMw) v) + @ (u,v)
® =od e L% (Q) Ly
vV ou,v e U° (4.15)

But according to (4.2),(4.3) and (4.12), we have

(EHu)-9,, pEX(u) v) = (E¥u)-9,,8' ) =
€ d € LZ(Q) € d’ "ue LZ(Q)

T

T
[ [(Dy
0

e (e () 8 (6D ,p Y (8))

T t
)G st =) g e (416)

In view of (4.15) and (4.16), the optimality condition
DIY(d,) = 0 implies directly (4.13). If U= u'  then due to

LYY pL(e)  EL(E)) - 8l ()8, (0)]de

+ a(Eue(t) ,phe(t))]dt

(4.16),

Hence,

after an appropriate integration by parts, we get

relations (4.14) follow.

DI¥(uw)v = (E¥(uw)-9,, DE*(uW)v) + o (u',v') +
3 3 d € LZ(Q) LZ(Z)
+ a(u(0),v(0)) . = (@' _,Vv) + a(u',v') +
a(u v r PlerV LZ(Z) a (u',v LZ(Z)
+ e (u(0),v(0))p = (-p,+au',v )LZ(Z) +
¢ (-5 (0) +au(0) ,v(0) ) . Vuve
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4.3. Convergence of regularized control problems

We shall show that the regularization approach presented
above 1is correct, i.e., the regularized control problems in
a. certain sense approximate the original one. To begin, we con-
sider the parabolic situation, with regularization reduced to

the smoothing, i.e., € >0 and wu = 0

THEOREM 4.1. Consider control problem (CP) in the parabolic
case (p>0), with u=u® or U1 . Assume that hypotheses (A1),
(A2)°, (A3)-(A6) hold. Let {i_}cU be a sequence of optimal

controls to problems (CP)€ . Then, for a subsequence, as e€-+0 ,

ﬁ€ ~ 4 strongly in U, (4.17)
5 (8,) > E(@) weakly in L%(0,T;V) and
strongly in LZ(Q) if Uu=U% , (4.18a)
weakly-* in Lm(O,T;V) and
weakly in HL(Q) if u = ul | (4.18b)
f€ =T I(ﬁe) > 1 with convergence rate 0(81/2) s
(4.19)
where @ is an optimal control for (CP):; fg = Is(ﬁe) R
T=1I()
Proof. First we show that {ﬁe} is bounded in U . Indeed,
since
I.(0) = J(E (Q).0,) < J(E_(D),1) (4.20)
by (4.11) we have
' limsup I_(G.) < J(E(®).1) =1 . (4.21)
e >0 € e =
Thus, ||ﬁ€Hu < C with C # C(e) , and, for a subsequence,
ﬁe -4 weakly in U as € > 0 . Due to (2.1l4a,b), we get the
corresponding uniform bounds for {?E} . Hence, at u= u?,
§. > 9 weakly-* in W'*7(0,T:H) ,
weakly  in H1(0,T5V) ; | (4.22a)
1
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y >3 weakly-* in Wl’w(O,T;V) ,

€
weakly  in H2(0,T:H) . (4.22b)

To show that §' = E({i) , we pass to the limit with €~ 0

in (YI)E, written in the form (2.8) (w = 0), with F, fo to

be f@placed by Fsand fo€ , respectively. As in Prop. 3.1(i),
we conclude that § satisfies (VI) with { . In addition,
notice that since

e (@D-2@Il , < e @-2@II 5,  +

L°(Q) L™ (Q)

€ L2 Q)

due to (4.11) and Prop. 3.1,(ii), we have Ee(ﬁe) > E(U) strong-
ly in LZ(Q) as e¢~>0 . By weak 1.s.c. of the norm,

J(2(1),W)

HA

lig{fgf J( sg(ﬁs),ﬁg) . (4.23)
Simultaneously, by (4.21) we get inequality JCE(),M) < T
This implies i is an optimal control for (CP). Assertion
(4.18) has been shown. Clearly, by (4.21) and (4.23), I.~-1
as € >0

To conclude (4.17), it remains to notice that the strong
convergence of {ﬁg} in U follows by (4.18) in the same way
as in Thm. 3.2.

Finally, to show (4.19), observe that due to (4.11) and

by a priori bounds (2.14a) on Eg(ﬁ) and E(4d) ,
[ T-1. () | sclle@-zs @l , <cel? (4.24)
L7(Q)

with a positive constant C independent of € . Similarly,
TG -1 1 < oc /2 (4.25)

with C independent of ¢ , because of the uniform boundedness
}oin U . By (4.24),(4.25) and since Tcrdy . 1.¢
) » we have

1/2

0 < I(i) -1 < |1l -Tg] + [Te(@)-T] ScCe . (4.26)

HA

with C independent of € . Eventually, according to (4.25)
and (4.26),



11<

|1€- I < |1€ -1(u€)| + |I(u€)- I|] <Ce

1/2
With the last estimate, the proof is complete. []

In the degenerate case (p = 0), there is a two-step regula-
rization, with two positive parameters Us € Thus, it is of
interest then to consider both iterative and joint convergences
of the solutions to the regularized control problems (CP)E with

respect to py and e

THEOREM 4.2. Consider problem (CP)L , w,e ¢ (0,11, in the de-
generate case (p = 0), with U=U° or Ul . Assume that (A1),
(A2)°,(A3)-(A6) hold. Let {ﬁMS} — U be a sequence of optimal
controls for (CP)E

(I) Iterative convergence: €=>0 , u=>0

(i) Assume u>0 fixed. Then there exists a subsequence of
{ﬁue} ,  such that ﬁus > ﬁu strongly in U as € >0 ,
assertions (4.18) and (4.19) on the convergences of the optimal
Eg(u ) > "u(u ) , and the minimal values of the cost
functionals, fu O L I“(u ) ™" take place, with 1
U

representing an optimal control for problem (CP) l

states

u
_ tH~
=1 (u“).

(ii) Let {ﬁu} be a sequence of optimal controls for (CP)U

Then there exists a subsequence of {ﬁu} , such that as u ~ 0 ,
ﬁL1+ u strongly in U , (4.27)
'@ ) » 5(8) weakly in L2(0,T5V) (4.28)
L | (4.29)

where U is an optimal control for problem (CP); 1= I(ﬁ)

(I1) Joint convergence: u,e~>0 . Assume e < g, u2+6 s eo,s >

> 0 . Then, for a subsequence of {ﬁue} s ai we=0 , Athe

assertions (4.27)-(4.29) hold for ﬁue s Eg(uue) and IE ,

respectively.

Proof. (D Assertion (i) follows immediately from Thm. 4.1.
In the proof of (ii) we make use of convergences (2.22) and,

" moreover, the follow1ng property:



113

[

f uU +u weakly in U as u >0 , then :
Ll(Uu) + E(u) weakly in LZ(O,T;V) . (4.30)

{n

To show (4.30), observe that since {uu} is bounded in U,
a priori estimates (2.14a) imply uniform bounds on {yu} in
Hl(OiT;V), with y' = E“(u ) . Therefore, for a subsequence,
yu - y weakly in %I(O,T;Vf as u~> 0 . In order to prove that
y' = E(u) , we pass to the limit as uy > 0 in (VI)“, given the
form (2.8). Then, as in Prop. 3.1,(i) , due to. (2.3) and (2.7),
(4.36) follows. On account of (2.22) and (4.30), we can argue as
in the proof of Thm. 4.1, to show assertions (4.27)-(4.29).

(IT) The following convergences hold: for any ue U,

Ez(u) + E(u) weakly in LZ(O,T;V) as u,e~>0 ;3 (4.31la)

if uu€ ~u weakly in U as w,e~>0 , . then
slu )+ Ew)  weakly in LP(0,T5V) . (4.31b)
By the uniform estimate (2.14a) on Ve
yue >y weakly in Hl(O,T;V) as U,e~>0
To show that y' = E(u) , we pass to the limit with u,e~>0 in
(VI)E written in the form (2.8), with Fu, fu to be replaced
by Fg and fpe , Trespectively. Again, we follow the arguments

of Prop. 3.1,(i), this time exploiting (2.7) at y e >0 and

the convergence

fue > fO strongly in LZ(Q) as - g,e >0

(a consequence of (2.3),(2.11b) ), to conclude that y satis-
fies (VI) with wu . This yields (4.31b) and, similarly, (4.31a).

Now, we shall show that for any wue U,
Eg(u) > E(u) strongly -in LZ(Q) as u,e >0 ,(4.31c)

provided an appropriate relation between Y and € . Indeed,

~ notice that

A

[EXOE SOl HEOE E“(u)lle +

Q) Q)

-+

84w - s ||

L2 Q) . (4.32)



By estimate (4.11), with p to be replaced by o (since
the problem is parabolically regularized), for every ue U

. 1/2 :
4w - ]l , cc St ccel/ 2 (4.33)
L7(Q)
with a constant C independent of b, € and u . On account

of (2.22b) and (4.33), estimate (4.32) implies (4.31c).

Eventually, with the properties (4.31,a-c) for e

€
can again apply the same arguments as in Thm. 4.1, to conclude

assertion (II). D

N we

Remark. How to construct necessary optimality conditions for
control problem (CP) in an explicit form, remains an open ques-
tion. It is so due to lack of any global regularity of the free
boundary. Were it at least of zero Lebesgue measure in Q (what
is unknown and rather questionable), a construction due to Tiba
[14] would apply in the case of the parabolic two-phase Stefan

problem,.

5. CONCLUDING COMMENTS

Discrete approximations to optimal control problem (CP)
are studied in the forthcoming paper [11]. In [11], the prob-
lem is discretized by employing linear finite elements in space
and finite differences in time. The approximations equally comp-
rise schemes with regularization of the state observation map-
ping and schemes without such regularization. '

The regularization techniques\exploited in this paper turn
out useful for the numerical analysis of the corresponding dis-
crete approximations. In view of a suitable regularity of solu-
tioms: to the regularized problems (VI)E , and simultaneously
due to the error estimates established for parabolic regulariz-
ation and smoothing, an application of the regularization pro-
cedure brings estimates on the errors which characterize accu-
racy of the proposed discrete approximatiohs.: Moreover, as
it has been shown in Sec. 4, regularization applied to the cont-

rol problem assures differentiability of the state observation

Yod
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mapping. This, in turn, implies differentiability of the cost

functional and gives rise to optimality conditions in an expli-

cit form, therefore providing a constructive gradient-type algo-

rithm for numerical solving the control problem under consider-

ation.
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