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Detecting atoroidal 3-manifolds
Tsuyoshi KOBAYASHI 0 (I’ﬁf'li)

1. Introduction.

Heegaard diagram of a closed 3-manifold ([4]) is one of the
most fundamental description of the manifold. But it seems that
little is known about it. For example, there is no efficient method
to decide if the manifold with a given Heegaard diagram is
aspherical or nct. Recently, Casson-Gordon defined a generalized
Heegaard diagram, and gave a criterion for the irreducibility of the
Heegaard splitting ([2]). 1In fact, they showed that if a Heegaard
splitting (VI'VZ:F) satisfies a certain condition, say a rectangle
condition, and Di (cC Vi) (i=1,2) is an essential disk, then anln
3D2 # @. This result together with the Haken's theorem ([3,5]) and
the Ochiai's theorem ([7]) implies that if a Heegaard splitting
satisfies a rectangle condition, then the manifold is
Pz—irreducible. On the other hand, as the author observed in [6], a
rectangle condiﬁion does not imply the non existence of an

incompressible torus in the manifold. In this paper, we will define

a strong version of a rectangle condition, say a strong rectangle

condition, and show that if a Heegaard splitting satisfies a strong
rectangle condition, then the manifold is geometrically atoroidal
i.e. there is no incompressible torus in it (Corollary 1).

Moreover, we will give a criterion for a hyperbolicity of a knot
which can be embedded in a Heegaard surface of a 3-manifold

(Theorem 2).
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2. Strong rectangle condition.

Throughout this papepr, we will work in the piecewise linear
category. For the definitions of standard terms in the
3-dimensional topology, we refer to [4,5]. A surface (:connected
2-manifold) properly embedded in a 3-manifold is essential if it is
incompressible, and is not parallel to a subsurface of 3M.

In this section, we will give the definition of a strong
rectangle condition.

Let V be a handlebody with Bl(V) =g > 1, and Dl""' D3g—3
be a system of mutually disjoint disks properly embedded in V such
U...VUD

that D cuts V into 2g-2 solid pants Ql""’

1 3g-3
Q2g—2 i.e. cl(V-N(DlU ...le3g_3)) = Qv ...L/Q2g~2, and Qi(\BV
(i=1,...,29-2) is a disk with two holes, where N( ) denotes a
regular neighborhood. 1In this paper, we suppose that there are two
different solid pants which intersect N(Di) for each i. We note
that this conditionﬂis equivalent to:

Each D.l does not separate V into a genus one handlebody and

a genus g-1 handlebody.

Let 2 (C3V) be a simple loop. We say that & 1is

complicated with respect to Dl""’ D39-3 {(or simply ;omplicated)
if & satisfies:
(i) & and BDILI... U3D3g__3 are in general position in 23V,
(ii) there is no 2~gon B in 23V such that 9B = aV b, where
a 1is a subarc of &, and b is a subarc of 3DV ...lJ3D3g_3,
(iii) for each pair of boundary components of each pants

Qiruav, there is a subarc a of & ©properly embedded in Qi(18V'

such that a connects the boundary components.



47

Let R, (i=1,...,3g-3 ) be the solid double pants P,V N(Di)u
i

Pli' where Pkin N(Di) # 4, Pzir\N(Di) # #é. We note that Ri(\8V

is a disk with three holes,.and there are six ways of making pair of

boundary components of Riflav. We say that 2 1is sufficiently

complicated with respect to Dyrev-y D39—3 (or simply sufficiently

complicated) if & satisfies:

The above conditions (i),{ii), and

(iv) for each pair of boundary components of each double pants
Rif\av, there is a subarc a of & properiy embedded in Rifiav
such that a connects the boundary components.

Then we have:

Lemma 2.1. If & is sufficiently complicated with respect to

D then ¢ is complicated with respect to Dl""’

1,-.., D3g_3,

Dyg-3

Proof. Let Pi (i=1,...,2g9-2), R (j=1,...,39-3 ) be as

3
above. Assume that & 1is not complicated with respect to

Dl""’D Then there exists a solid pants Pk and a pair of

3g-3°
bundary components m, ,m, of Pkrmav such that no subarc of &

which is properly embedded in PktWBV connects my and m, . Let
DS be the component of Dl""’DBg—3 such that N(Ds)n Pk # @, and

my mzeﬁN(DS), and P_ be the solid pants such that P, # P, P N

t

N(DS) # 8 i.e. R, =P,

rectangle condition, there is a subarc a of & which is properly

‘IN(DS)\JPk. By the definition of the strong

embedded in RSI\BV, and connects my and m, . Hence, there is a
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subarc a" of a' which is an essential arc properly embedded in
Pt(18V and connects one boundary component N(Ds)r\Pt Na3v. Let Du
be a disk such that D, # D, and N(Du)n Pt # #. Then, a"

separates Rut\av into an anulus and a pants. Hence, there is a

pair of boundary components of Ru1\8V which are separated by a".

But this contradicts the fact that & 1is sufficiently complicated.

Let (Vl,V :F) be a Heegaard splitting of a closed 3-manifold

2

M i.e. Vi (i=1,2) is a handlebody, M = VlU V2, and Vlnv2 = avl =

8V2 = F. We say that (Vl,VZ:F) satisfies a rectangle condition if

there is a system of mutually disjoint disks {Dl,..., D3g—3}

({El,..., E3g;3} resp.) properly embedded in vy (V2 resp.), which

cuts Vv, (V2 resp.) into solid pants Qrreves ng_ '(Pl,..., P2g—2

resp.) and satisfies:

(1) 9D, v ... VvaD and 3E, V... V3E are in general

1 3g-3 1
position,
(2) There is no 2-gon B in F such that 08B = aV b, where
a 1is a subarc of SDlU <o U3D3g_3, and b 1is a subarc of aElu
v ,
ces 8E3g_3,
(3) For each pair (Qi,Pj), we have:
For each pair of pair of boundary components ((a,B),(y,8)) of

Qile and P.nNnF, there is a rectangle R in F such that R 1is

embedded in Qif\F ,and Pj(\F, and the edges of R are subarcs of

a,B8,Y, and 6.
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We say that (Vl,VZ;F) satisfies a strong rectangle condition

if there is a system of disks’ {Dl""’DBg—B} ({El’°"’E3g—3}
resp.) as above which satisfies:

The above conditions (1),(2), and

(4) Let R, (S; resp.) (i=1,...,3g9-3) be the solid double
pants obtained from D, (Ei resp.) as above. Then, for each pair
(Rj,Sk), we have: |

For each pair of a pair of boundary components ((a,B),(y,S))

of Rj NF and S, nF, there is a rectangle R in F such that R

k
is embedded in R. nF and Skr\F, and the edges of R are subarcs
of «,B,Y, and §.

By using the arguments in the proof of Lemma 2.1. We can

prove:

Lemma 2.2. If (Vl,VZ:F) satisfies a strong rectangle
condition, then it satisfies a rectangle condition. In fact, if two
systems of disks in Vl’ V2 give a strong rectangle condition, then

they also give a rectangle condition.
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3. Theorem 1.

In this section, we will give a proof of the following theorem

vhich is an analogy of a theorem of Casson-Gordon ([2]).

Theorem 1. Let (Vl,VZ:F) be a Heegaard splitting of a closed
3-manifold, and Ai (i=1,2) be an essential annulus in Vi‘ If

(Vl,VZ:F) satisfies a strong rectangle condition, then aAlr\aAz #

B.

Proof. Let {Dl""'DBg—B}’ {El"f"EBg—B} be systems of
disks which give a strong rectangle condtion of (VI,VZ:F). Let
Ql""’QZg—Z (Pl""’PZg—Z resp.) be solid pants-which are obtained
from Vl (V2 resp.) (i=1l,...,3g-3) by cutting along uD, (UEi
resp.). By general poéition argumnents and cut and paste methods
([4]), we may suppose that- D;n A (EirxA2 resp.) consists of
(possibly empty) arcs properly embedded in D; (Ei resp.).
Moreover, we may suppose that each component of 3A1(\(Qi(\F) (BAZH
(Pin F) resp.) is an essential arc in Qin F (Pin F. resp.).

Suppose that there are components of (v Di)lel, and (\jEi)n
A2 which are inessential arcs in Al’ and A2. Then, by Lemma 2.2,
and by the arguments in [2], we see that aAlr\BAZ # ®. Hence, we
may suppose that each component of (V Ei)(\A2 is an essential arc
in Az.

By {1], we see that there is a train track 1t on F such that

3A is carried by T, and Tr\(Rir\F), T n(N(Ei)n F) -looks like as

2
in Figure 1. Since each component of A2r1(\JEi) is an essential



arc in A,, we can isotope A, so that 8A2<:N(T), and each
component of Ri(\A2 looks like the bottom of a ditch (Figure 2).
Let D be a component of N(Ei)r\Az. We say that D 1is of
type a if the components of DAF (:two arcs) are carried by a path
in T n(N(Di)n F), D 1is of type b if the components of DANF are

carried by pairwise different paths in 1 n(N(Di)r\F) (Figure 3).

Assertion. There exists a component of AZ(\(\/N(Di)) which

is of type b.

Proof. ' Assume that all components of A, (VN(D,)) are of

type a. Then A is parallel to an annulus in 8V2, a

2

contradiction.

We may suppocse that N(EI)I\A2 contains a type b disk D. Let

S be the solid double pants obtained from E1 as in section 2,

1
and D' be the component of ,Azn S1 which contains D. Then D'n
F consists of two arés ay;, a, properly embedded in Sln F. Since
D 1is of type b, a,va, separates two boundary components 21, QZ
of SlrlF (Figure 4). Hence, if a 1is an arc properly embedded in

S, NF, which connects £ and 22, then a intersects aleaz.

1 1
Then, by the definition of strong rectangle condition, we. see that a
component & of 8A2_(C'8V1) is sufficiently complicated with

respect to Dl""' D3g_3. Now, we have the following two cases.



Case 1. There is a component a of Alf\(\lDi) which is an

inessential arc in Al'

We may suppose that a 'is innermost i.e. there is a disk D
in Al .such that cl(aD-BAl) = a, and Int Df\(k!Di) = &. And we
may suppose that ac Dl’ D<:Ql. Since & 1is complicated with

.

RN

respect to Dl""’DBg—3 (ﬁemma 2.1), we see that (9D-a)n ¢

Hence, GAln 8A2 # .

Case 2. Every component of Al(\((JDi) is an essential arc in

In this case, by the arguments as above, we see that there is a
solid double pants R obtained from Di as in sectiod 2, and there
is a component E of Aln R such that EaF separates two
boundary components my and m, of RnF. 8Since { 1is
sufficiently complicated, there is a subarc b of & properly
embedded in R aF, which connects my and m, . Hence, BAln 8A2 #
2.

This completes the proof of Theorem 1.

Corollary 1. If a Heegaard splitting of a closed 3-manifold
satisfies a strong rectangle condition, then the manifold is

geometrically atoroidal.
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Proof. Let (Vl,VZ:F) be a Heegaard splitting of a 3-manifold
M, which satisfies a strong ﬁectangle condition. Assume that M
contains an incompressible torus T. By Lemma 2.2, and [6, Theorem
2}, we may suppcse that each component of TnVi (i¥1,2) is an
essential apnulus in Vi' Hence, there are essential annuli Al, A2

in Vl’ V2 respectively such that aAln 8A2 = @8, a contradiction.
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4. Detecting hyperbolic knots.
- In this section, we will give a criterion to detect a given
knot which is embedded in a Heegaard surface of a 3-manifold is

hyperbolic.

Theorem 2. Let K be a knot embedded in the Heegaard surface
of a Heegaard splitting (V1'V27F) of a closed orientable
3-manifold. Suppose that K is sufficiently complicated with

respect to V,, and V,. Then K 1is a hyperbolic knot.
1 2 Y

Lemma 4.1. Let V be a genus g (>1) handlebody, and £ (<
dV) be a simple loop. If & 1is complicated, then cf(3V-N(2)) is

incompressible in V.

Proof. Assume that ‘CQ(QV—N(Q)) is compressible in V, and
let D be a compressing disk. Let Dl"“’ D39-3 be a system of
disks in V such that & 1is complicated with respect to Dl""’

i vo...

D3g_3. Then we may suppose that D intersects D1 . ‘jDBg—3
transversely and Da (Vv Di) consists of arcs properly embedded in
D. Moreover, we may suppose that there is no 2-gon B in F such
that 9B = avb, where a 1s a subarc of 3D, and b 1is a subarc

v...V .
of BDl 8D39_3
parallel to some Di' But this contradicts the fact that & 1is

Suppose that Dt\(t/Di) = 4. Then D is

complicated with respect to Dyres-r D3g—3’ and 203D = g. Suppose
that D n(\/Di) # ¢. Let C be a component of Dn (V Di), which is

innermost in D i.e. there is a disk D' in D such that



cl(3aD'-3D) = C, and Int D'(\(\JDi) = 4. Let P be the closure of
the component of V—(\IDi) such that D'« P. Then, c2(3D'-C) is
an essential arc in PO 3V. But this contradicts the fact that &
is complicated with respect to Dl""’ D3g~3’ and 203D = &.

This completes the proof of Lemma 4.1.

The next lemma is proved implicitly in section 3. So, we will

just see how the proof proceed.

Lemma 4.2. Let V, & be as above. If 2 is sufficiently
complicated, then (V, c(3V-N(L))) 1is acylindrical i.e. if (A,33)
(V,c2(3V-N(2))) 4is an incompressible annulus, then A 1is parallel

to an annulus in avV.

Outline of proof. Assume that there is an essential annulus ‘A
properly embedded in (V,cl(9V-N(2))) such that A is not parallel
to an annulus in 9dV. - We may suppose that A and Dl""’ D3g—3
are in general position, and each component of A n (v Di) is an
arc. Then, by the proof of Lemma 4.1, and 2.1, we see that each
component of Atﬂ(\)Di) is an essential érc,in A. Then, by
Assertion in section 3 we see that there is a solid double pants Q
defined from Direcey D3g—3 such that a component of AaQ

separates a pair of boundary components of QnJdV, a contradiction.

- 11_
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As an immediate consequence of Lemma 4.2, we have:

Corollary 4.3. Let V, & be as above. If £ 1is sufficiently
complicated, then V 1is not homeomorphic to the total space of a
[0,1] bundle over a surface such that /cl(BV—N(R)) corresponds to

the associated {O,l} bundle.

Proof of Theorem 2. First, we will show that the exterior of
K, Q(K), is geometrically atoroidal i.e. every incompressible torus
in it is boundary parallel. Let T be an incompressible torus in
Q(K). Since cQ(F-N(K)) 1is incompressible in Q(K) (Lemma 4.1),
and handlebodies are irreducible, we may suppose tha@ T intersects
Cl(F;N(K)) transversely in essential loops. Moreové;, we may
suppose that the number of the components of T/\(cl(F;N(K))) is
minimal among all surfaces which are ambient isotopic to T. By
Lemma 4.2, we see that each component of T(\Vi is an annulus which
is parallel to N(K) (cF). Hence, T is parallel to ©5Q(K).

rThen we will show that Q(K) does not admit a Seifert
fibration. Assumevthat Q(K) admits a Seifert fibration. Then, by
Lemma 4.1, and [5,Theorem VI.34], we see that Vi is‘homeomorphic
to the total space of a [0,1] bundle over a surface, where
cl(9V-N(2)) corresponds to the associated {0,1} bundle,
contradicting Corollary 4.3.

Hence, by Thurston [8], K is a hyperbolic knot.

This completes the proof of Theorem 2.

-12 -
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5. Examples.
In this section, we will give some examples. For the

definition and properties of train tracks, see [1].

1. Let V be a genus 2 handlebody, and 1t be the train track
as in Figure 5. We note that Tt 1is complete i.e. each component of
3V-t 1is a 3-gon. Hence 1t defines an open set of the projective
lamination space of 3V ([1]). Let & be a simple loop which is
caried by 1t with all weights are positive. Then it is easy to see
that & is sufficiently complicated with respect to Dy, Dy, Dj.

Let V' be a copy of V, and ‘h:aV+3V' be the homeomorphism
induced from the identification. Then V H v' is homeomorphic to
the connected sum of two Szxsl’s. Let T2:3V+3V be the Dehn twist
along 4. Then, by seeing the configuration of Tzn(aDlU 8D2L(8D3)
and aDlU 8D2 UaD3 in N(&), we see that the Heegaard splitting

(V,V';F) of the manifold V U n V' satisfies a strong rectangle
heT ‘
2

condition provided |n| 'is'sufficiently large. In fact, it is
easily verified that if all the weights are greater than two, then
(V,V';F) satisfies a strong rectangle condition provided |n]| # 0.
2. Let (Vl’V27F) be a genus two Heegaard splitting of S3.
We draw a picture of F as in Figure 7. Let 1t be‘the complete
train track on F as in Figure 7, and {DI'DZ’D3} ({Dl"Dz"D3'}
resp.) be a system of disks in Vl (V2 resp.) as in Figure 7. Let
£ be a simple loop which is carried by =t with all weights are
positive. Then & 1is sufficiently complicated with respect to

D and Dl',DZ',D '. Hence, by Theorem 2, & is a hyperbolic

1P/ D3 3

knot.

- 13 -
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