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1. Introduction

Lgt Pk be a path on k points and Km n be a complete bipartite

’

graph with partite sets V; and V,, where |V,|=m and |V,|=n. A

spanning subgraph F of Km n

is called a Pk—factor if each component
’

of F is isomorphic to Pk. If Km n is expressed as a line-disjoint
) .

sum of Pk—factors,,then this sum is called a Pk—factorization of

m,n

In this paper, a necessary condition for the existence of a

Pk—factorization of Koo will be given. And it will be shown that
?

the necessary condition is also sufficient when k is even.

2. Pk—Factor of K
m

b}

With respect to a Pk—factor of K , we give the following

m,n
theorem.
Theorem 1. A K has a P, -factor if and only if
_— m,n k
(1) m=n=0 (mod k/2) when k is even, and
(I1) m+n=0 (mod k), (k-1)m< (k+1)n and (k-1)n < (k+1)m
when k is odd.
Proof. (Necessity) Suppose that Km a has a Pk—factor F.

’

Let t be the number of components of F. Then t=(m+n)/k. Each
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component is a path obtained by traversing V1 and V2. Thus when k
is even, it holds that m=n=kt/2. Condition (I) is necessary. And
when k is odd, let ty (t2) be the number of components of F whose
end points are in vy (Vz), respectively. Then it holds that
m=((k+1)t;+(k-1)t,)/2 and n=((k-1)t;+(k+1)t,)/2. So we have

t1=((k+1)mn(k-1)n)/2k and t2=((k+1)n-(k~1)m)/2k. From Ot <t and

1
0t <t, we must have (k-1)mg(k+1)n and (k-1)n<(k+1)m. Condition

(I1) is necessary.
(Sufficiency) When k is even, put m=n=kt/2. Consider a Ha-

milton-path of Kon and divide it into t paths of same length.

’

Then they form a Pk—factor of Kn ne When k is odd, for those pa-

’

rameters m and n satisfying (II), put t1=((k+1)m-(k—1)n)/2k and
t2=((k+1)n—(k—1)m)/2k and t=(m+n)/k. Then ty and t, are integers

such as 0t <t and 0<t

1= 2
and n=((k-1)t1+(k+1)t2)/2. Using (k+1)t1/2 points in V, and

<t. And it holds that m=((k+1)t1+(k—1)t2)/2

(k-l)tl/Z points in V,, consider t; Pk's whose end points are in
vy Using remaining (k-l)t2/2 points in vy and remaining (k+1)t2/2
points in V,, consider t., P, 's whose end points are in V,. Then

2 2 "k p 2 _
these ti+t, Pk's are line-disjoint and they form a Pk-factor of
Koo

Corollary 1. A Kn n has a Pk-factor if and only if

?

(1)! n=0 (mod k/2) when k is even, and

(II1)"' n=0 (mod k) when k is odd.

3. Pk—Factorization of K
m’

With respect to a Pk—factorization of Km a2 Ve give the fol-
)
lowing theorem.

Theorem 2. 1If Km o has a Pk—factorization, then it holds that

ily
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(I)" m=n=0 (mod k(k—i)/2) when k is even, and
(II)" m+n=0 (mod k), (k-1)m< (k+1)n, (k-1)n< (k+1)m
and kmn / (k-1)(m+n) is an integer when k is odd.
Proof. Suppose that Ku.n has a Pk-factorization.‘ Let r be

’

the number of Pk—foctors of Km,n and t be the number of components
of each Pk—factor. Then t=(m+n)/k and r=kmn/<k—1)(m+n). Thus t

and r are integers. By Theorem 1, it holds that m=n=0 (mod k(k-
1)/2) when k is even, and that m+n=0 (mod k), (k-1)m<(k+1)n, (k-
1)ng(k+1)m and kmn/(k-1)(m+n) is an integer when k is odd.

Corollary 2. If K.q has a Pk-factorization, then it holds

’

that
(™ n=0 (mod k(k-1)/2) when k is even, and
(ID"' n=0 (mod 2k(k-1)) when k is odd.
We prepare the following extension theorem, which is very
useful.
Theorem 3. If Kmbn

’

a PP-factorization for every positive integer s.

has a Pk—factorlzatlon, then Ksm,sn has

Proof. 1If every subgraph Kl,l of KS,S is replaced by Km,n’

then Ky o is replaced by K Using Ky 1-factorization (1-fa-
Pl ’

sm,sn’

ctorization) of K , we can see that K has a K -factoriza-
S,8S sm, sn m,n

tion. Using a PK—factorization of Km o2 We can easily construct
?

a Pk—factorization of KS About a 1-factorization of KS

m,sn yS’

see [1,2].
Using this theorem, we can obtain several results. When k
is even, we have the following lemma.
Lemma 1. %k is even and m=n=k(k-1)/2
==> Km " has a Pk—factorization.

?

Proof. The proof is shown by a construction algorithm. Let
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e {Vgl),vgl),...,vél)} and{V2= {ng), (2> cee (2>J

1 i . (1)_ (1) +$2)
n=k(k-1)/2. Construct k-1 Pk's such as Pk v(l 1)a+1 (121)b+1

§1)1> TZVE§Z1)b+2‘ v (21 (1) ﬁ%)), where a=k/2, b=k/2-1 and

K(i)=((k/2-1)+1 mod k-1)+(k/2-1)(k-1). Then F=p{Py p{2)y ... U
Pék;i)

, Where m=

is a Pk-factor. Increasing all point numbers of F in V1
by k-1 (mod m) simultaneously k/2 times and increasing all point
numbers of F in V2 by k-1 (mod n) simultaneously k/2 times, we
obtain k2/4 Pk-factors. Then it can be easily cheéked that these
Pk—factors are line-disjoint and that the sum of them is a Pk-fa-
ctorizgtion of Km,n'
Applying Theorem 3 to Lemma 1 and considering Theorem 2, we have
the following theorem.

Theorem 4. When k is even, a Km,n has a Pk—factorization if
and only if m=n=0 (mod k(k~-1)/2).

When k is odd, we have the following lemmas.

Lemma 2. k is odd, (k-1)m= (k+1)n and kmn / (k=-1)(m+n) is an
integer

==> (i) m+n=0 (mod k), and
\ (i1) m=(k+1)s/2, n=(k-1)s/2 when k=3 (mod 4),
m=(k+1)s, n=(k-1)s when k=1 (med 4),
where s is a positive integer.

Lenma 3. k is odd, (k-1)n=(k+1)m and kmn/ (k-1)(m+n) is an
integer |
==> (i) m+n=0 (mod k), and

(ii)" m=(k-1)s/2, n=(k+1)s/2 when k=3 (mod 4),

m=(k-1)s, n=(k+1)s when k=1 (mod 4),
where s is a positive integer.

Lemma 2 and Lemma 3 can be easily checked. We have the following
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lemmas.
Lemma 4. k=3 (mod 4), m=(k-1)/2, n=(k+1)/2

==> Km,n has a Pk-factorlzatlon.

Proof. The proof is shown by a simple construction algorithm.
- 1 1 1 2 2 2
Let Vy= {v§ ),vé ),...,v; )} and V,= {vi ?,vé >,...,vg )} , where

m=(k-1)/2 and n=(k+1)/2. Construct a Py such as Pk=v§2)v§1)v§2)

Vél)"‘Vgﬁzl)/ngézl)/ZVE§21)/2' Then F=P, is a Pk-factor. Inc-

reasing all point numbers of F in V2 by 2 (mod n) simultaneously
n/2 times, we obtain n/2 P, -factors. Then it can be easily chec-
ked that these Pk-factors are line-disjoint and that the sum of

them is a P, -factorization of K .
k m,n

Lemma 5. k=1 (mod 4), m=k-1, n=k+1

==> K has a P, -factorization.
m,n k

Proof. The proof is shown by a simple construction algorithm.

1 1) 1 2 2 2
Let V= {v§ ),vé ),...,vé )} and V,= {v§ ),vé ),...,vé )} , where
m=k-1 and n=k+1. Construct two Pk's such as Pé1)=v§2)v§1)véz)v§1)

2 1 2 2 2) (1) (2) (1 2
"'ngzl)/zvgkz1)/2VE1<3L1)/2 and P1(< >=V§1+ivl(3+ive(1-!-%vl(>+.’)2”‘Vg+zk—1)/2

(1) (2) = (k4 _ _p(1)
Ve (k-1)/2Var(k+1)/2° where a=(k+1)/2 gnd b=(k~-1)/2. Then F—Pk
LlPéz) is a Pk-factor. Increasing all point numbers of F in V2
by 2 (mod n) simultaneously n/2 times, we obtain n/2 P, -factors.
Then it can be easily checked that these Pk—factors are line-dis-
. joint and that the sum of them is a Pk-factorization of Kn a-

1Ly

Applying Theorem 3 to Lemma 4 - Lemma 5 and considering Lemma 2 -
Lemma 3, we have the following Theorems.

Theorem 5. k is odd, (k-1)m=(k+1)n and kmn / (k-1)(m+n) is
an integer

==> K has a P, -factorization.
m,n k
Theorem 6. k is odd, (k-1)n=(k+1)m and kmn / (k-1)(m+n) is.
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an integer
==> Km,n has a Pk—factorization.
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