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CHARACTERIZATION OF MIN-HYPERS IN A FINITE PROJECTIVE GEOMETRY

AND ITS APPLICATIONS TO ERROR-CORRECTING CODES

Noboru Hamada

Osaka Women's University

1. Introduction

Let V(n;q) be an n-dimensional vector space consisting of row vectors
over a Galois field GF(gq) of order q where n is a positive integer and g is a
prime power. A k-dimensional subspace C of V(n;g) is said to be an (n,k,d;q)-
¢code (or a g-ary linear code with code length ﬁ, dimension k, and ninimum
distance d) if the minimum distance of the code C is equal to d, that is,
min{ d(a,B) [ a, B€C, o #B8 } = d where d(a,B) denotes the Hamming distance
between two vectors o and B in V(n;q) .

It is well known (cf. MacWilliams and Sloane (1977) in detail) that if the
elements of an (n,k;d;q)-code C are used as codewords over a g-ary symmetric
channel, with g inputs, g outputs, a probability 1l-p that no error occurs, and
a probability p (< 0.5) that an error does occur, each of‘the g-1 pdssible
errors being equally likely, the code C is capable of correcting all patterns
of [(d-1)/2] or fewer errors by using a maximum likelihood decoding where [x]
denotes the greatest integer not exceeding x. Hence in order to obtain a g-ary
linear code which is capable of correcting most errors for given integers n, k
and g, it is sufficient to obtain an (n,k,d;q)-code C (called an optimél linear
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code) whose minimum distance 4 is maximum among (n,k,*;q)-codes for given inte-
gers n, k and q. It is also known that in order to obtain an optimal linear
code, it is sufficient to solve the following problem for any prime power g and

any integers k and d such that k > 3 and 4 > 1.

Problem A. Find an {(n,k,d;q)-code C whose code length n is minimum among

(*,k,d;q)-codes for given integers k, 4 and q.

Let g be any prime power and let k and d be any integers such that k > 3

and d > 1. Then d can be expressed uniquely as follows.

(1.1) d = wg - z € q

using some integers w and €u|S such that w > 1 and 0 < ¢ < g-1. Using (1.1),

o
a lower bound for the code length n of Problem A, due to Griesmer (1960) for the

case g = 2 and to Solomon and Stiffler (1965) for the case q > 3, can be express-

ed as follows.

Theorem 1.1. If there exists an (n,k,d;q)-code, then

k-1 d k-2
z — = w Vv - z € v
2=0 qz k 0=0 o o+l

(1.2) n

v

where w and sa's denote integers determined by (1.1) from three integers k, d

and g and v_ = (qu—l)/(q—l) for any integer u > 0 and ,[x.] denotes the small-

U
est integer > x.

Theorem 1.1 shows that in order to obtain a solution of Problem A for given

integers k, d and g, it is sufficient to obtain an (n,k,d;q)-code meeting the
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Griesmer bound (1.2) in the case where there exists such a code for given inte-

gers k, d and q. Hence we shall consider the following

Problem B. (1) Find a necessary and sufficient condition for integers
k, d and g that there exists an (n,k,d;q)-code meeting the Griesmer bound (1.2).
(2) Characterize all (n,k,d;q)-codes meeting the Griesmer bound (1.2) in

the case where there exist such codes.

Remark 1.1. Since in the special case (el,ez,---,sk_z) = (0,0,°°",0),
i.e., d = qu—l - €., Problem B has been already solved completely for any prime

0

power g and any integers k, w and ¢, such that k > 3, w > 1 and O §=eo L qg-1

0

(cf. Corollary 2.2 in Hamada (1985) for example), it is sufficient to solve

Problem B for the case (e,,¢ --',sk_z) # (0,0,---,0).

2'

Remark 1.2. In the case (g_,¢

1 2,-'-’8k_2) # (0,0,---,0), d can be also

expressed as follows.
h H.

(1.1") d = wgq - (e+ I g7)
i=1

using some integers w, € and ui's such that w > 1, 0 < € < g-1 and

€1 ) €k-2
(1.3) (1,1,°°-,1, 2,2,°°°,2, e ’ k-2,k=-2,---,k-2) = (111,112, R ruh)
k-2
where h = I ea. For example, (1.3) means that ul =1, u2 = 1 and u3 = 3 in
a=1
the case k = 5, g > 3 and (81,82,83) = (2,0,1). In this case, the Griesmer

bound (1.2) can be expressed as follows.
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h
(1.2") n > wv - (e + I v )

where w, €, h and ui's denote integers determined by (1.1').

It is well known (cf. Baumert and McEliece (1973). and Hamada and Tamari

(1980)) that for any integers k and g, there exists some integer 4. (depending

0

on k and q) such that there exists an (n,k,d;q)-code meeting the Griesmer
bound for any integer 4 ;=d0' From the actual point of view, it is desirable
to obtain a solution of Problem A (or B) for comparatively small integers k, 4

)

and qg. Hence we shall confine ourself to the case w = 1 and (el,ez,;--,ek_2

# (0,0,--+,0) in this paper. Problem B has been solved completely by Helleseth
(1981) for the case w = 1 and g = 2 and by Hamada (1985) for the case w = 1,
g23ande =0orl(a=0,1,-,k-2).

The purpose of this paper is to generalize those results using characteriza-
tion of min-hypers in a finite projective geometry. In Section‘2, a connection
between a min-hyper and an (n,k,d;q)-code meeting the Griesmer bound (1.2) will
be described and it will be shown that in order to solve Problem B for the case

w =1 and (e -,ek_z) # (0,0,---,0), it is sufficient to solve Problem C,

17827”
i.e., it is sufficient to find a necessary and sufficient condition for integers

€., € , t and q that there exists an {f,m;t,q}-min-hyper and to

1 RO |

characterize all {f,m;t,g}-min-hypers if there exist such min-hypers where t =
-1 ' t-1

k-1, £ = L eav and m = % eava. In Section 3, several construc-

+
a=0 a+l o=1

tive methods of min'hyperé and a sufficient condition for the existence of a
min-hyper will be given. In Section 4, we shall characterize certain min-hypers

and using these characterizations, we shall obtain a necessary condition for the

existence of some min-hyper. In detail, refer Hamada (1986a,1986b and 1986c) .
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2. A connection between a min-hyper and an (n,k,d;q)-code meeting the bound (1.2)

In order to solve Prcblem B for the case w = 1, we shall use a min-hyper

which has been introduced by Hamada and Tamari (1978).

Definition 2.1. Let F be a set of f points in a finite projective geometry

PG(t,q) of t dimensions where t > 2 and f > 1. If (a) |F N H| > m for any

hyperplane (i.e., (t-1)-flat) H in PG(t,qg) and (b) IF n Hl = m for some hyper-

plane H in PG(t,q), then F is said to be an {f,m;t,q}~min-hyper where m > 0 and

IAI denotes the number of elements in the set A.

Example 2.1. (1) Let F be a pu~-flat in PG(t,q) where 0 < u < t. Then F

is a {Vu+l' Vu;t,q}—min-hyper where vu = (qu—l)/(q—l) for any integer u > O.

Because |F| = Vi1 lr N H| = v, OF Vi for any hyperplane H in PG(t,g) and

lFN H| = v, for some hyperplane H in PG(t,q).

(2) Let F be a set of g. 0O-flats, €, l-flats, -

0 (t-1)-flats in

]
PG(t,q) which are mutually disjoint where 0O ;;ea < g~1 for a = 0,1,---,t-1.

t-1 t-1
Then F is a { & € Vorl’ T eava;t,q}-mln-hyper.
a=0 a=1

Definition 2.2. Let:dSC(sl,sz,---,ek_z;k—l,q) denote a set of all (n,k,d;q)~-

k-2
codes meeting the Griesmer bound (1.2) in the case w = 1 and d = qk_l - I eaqa.
k-2 k-2 =0
.. s k= by sk— -
Let dBF(eo,sl, ,ek_z,k 1,q) denote a set of all { I € Vo1’ eava,k 1,q}

a=0 a=1l

min-hypers.

Definition 2.3. Two (n,k,d;q)-codes C. and C_ are said to be congruent if

2 1

1 2
there exists a k x n generator matrix G2 of the code C2 such that G2 = GlPD (oxr
G. = G,DP) for some permutation matrix P and some nonsingular diagonal matrix D

whose entries are elements of GF(q) where Gl is a k x n generator matrix of Cl'
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The following theorem is due to the author (cf. Theorems I, 2.3 and 2.4

in Hamada (1985)).

Theorem 2.1. There is a one-to-one correspondence between a set B C(SO'

€ peen ;k-1,9) and a set dg

1’ ’Ek-2 ;k-1,q) if we introduce an

I A RS P

equivalence relation between two (n,k,d;q)-codes as Definition 2.3 where

(80781”..."€k_2) ;é (0,0,"',O) .

Remark 2.1. (1) Theorem 2.1 shows that £C(€ ;k-1,q9) # ¢

0’817 T2
if and only if d3F(eO,sl,---,ek_2;k—1,q) # 9.

(2) Let ea's, k and q be any integers such that £F(s 1k=-1,q)

0'%1" " 8k—2

# ¢ and let F = { (b,), (132) ;o (Ef) } be any {f,m;k-1,g}-min-hyper where

1
k-2 k~2
f= I ev , m= L € v , b.'s being distinct nonzero vectors in a k-dimen-
0=0 o o+l a=1 o o =i

sional vector space over GF(q) consisting of column vectors and (b) denotes a

point in PG(k-1,q), i.e., (21) = (_\_)2) if and only if there exists some nonzero
element o in GF(qg) such that v, =0y, . Let G = [lal 1_)2 Pf 1. Then we

can obtain an (n,k,d;q)-code meeting the Griesmer bound (1.2) for the case w = 1

k-2
and d = qk—l - I eaqa from the matrix G which is a k x f generator matrix of
a=0

a g-ary anticode with code length f, dimension < k, and maximum distance f-m

(cf. Ch. 17-§6 in MacWilliams and Sloane (1977) in detail).

e )

Definition 2.4. Let E(t,q) denote a set of all ordered sets (e -1

0'%1
b

14
of integers eu's such that (e -,et_l) # (0,0,-+-,0) and O < e, S a- for

17827 °

o =0,1,---,t~1. Let U(t,q) denote a set of all ordered sets (g,u.,u., ---,uh)

172
of integers €, h and u.l's' such that 0 <€ <g-1, 1 <h < (t-1)(g-1), 1 H =

< g-1 for & =1,2,---,t-1 where n, denotes the

" 2

;...;ph;t—iandO;n

2 2
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number of integers i in { 1,2,---,h } such that W, = % for the given integer {.

Theorem 2.1 and Remark 1.2 show that in order to solve Problem B for the

case w = 1 and (81,82,"‘,€k_2) # (0,0,---,0), it is sufficient to solve the

Problem C. Let t and g be a given integer > 2 and a given prime power.

(1) Find a necessary and sufficient condition for an ordered set (eo,el,

--,st_l) in E(t,q) (( or an ordered set (eg,u.,u ,-",uh) in U(t,q) )) that

172
-1 -1 . h
there exists a { I €Votl’ L €4V itral-minhyer ((or a { z Vo4l t e
h o=0 o=1 i=1 i
b v, ;t,q}-min-hyper )).
=11 t-1 t-1

(2) Characterize all { I € Vi1’ L. €4V ;t,ql-min-hypers (( or all
h h

a=0 o=1
{ = vu +1 +¢e, L v ;t,g}l-min-hypers )) in the case where there exist such
i=1 i i=1l i

min-hypers.

3. Construction of several min-hypers and a sufficient condition

Let A(t,q) be a set of all ordered sets (xl,xz,---,x ) of integers n and

n =
o
I
[}
o
A
=)

A;'s such that 1 <n < (t+1) (g-1), 0 £ A S A, < +++ <)

and 0 < m

y < g-1 for o = 1,2,---,t-1 where m denotes the number of integers i

in { 1,2,---,n } such that ki = o for the given integer a. Let‘g(t,q) be a

set of all ordered sets (c,ul,u2,~-~,uh) such that 0 < 0 < g and (O,ul,uz,---,uh)

€ U(t,q) where U(t,q) denotes a set defined in Definition 2.4.

Definition 3.1. For each ordered set (A_,A "',An) in A(t,qg), let us

1’2 n
denote by 5¥(A1'A2""'An’t’q)' a family of all sets ;{1 v, of a Al—flat v,roa
Az—flat V2, s+ , a An-flat Vh in PG(t,q) which are mutually disjoint. As

occasion demands, we shall denote E%(Xl,xz,"',ln;t,q) by Q%U(c,ul,uzr"',uh;t,q)
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where ¢ = m

O,h=n—m

or M5 < }\mo"'i (i=1,2,---,h) and my denotes the number

of integers i in { 1,2,---,n } such that A, = 0.

Definition 3.2. Let V be a 6-flat in PG(t,q) where 2 < 6 < t. A set S

of m points in V is said to be an m-arc in V if |S N Hl £ 6 for any hyperplane
H in PG(t,q) such that VIl H is a (8-1)-flat in the 6-flat V where m > 6. 1In

the special case 6 = t, S is said to be an m~arc in PG(t,q). Let m(t,q) denote

the largest value of m for which there exists an m-arc in PG(t,q).

Definition 3.3. Let M(6,0;t,q) denote a family of all sets V \ S of a

0-flat V in PG(t,q) and a (g+6-0)-arc S in V where 2 < 0 < t and 0 < 0 < q.

Let m(G,C;EITTlr'" .

97 ",sz;t,q) denote a family of all sets (V\S) U A'UB of a

set V\S in )\l(e,c;t,q) , & set A of § points in PG(t,q) and a set B in 3‘(1(0'“1'

T.,---,% ;jt,q) such that vl a = ¢, wvis) N B=Q’andAnB=¢whereO;?;, 3

2! 3

;qu‘FE;qr 2;9;“ cc,T 7trq)=¢in

0282 (£-2)(q-1), Joy0,m ,m,-enym,

l’
the case £ = 0, (O""]_'Kz""'"g,) € U(t,q) in the case £ > 1 and A = @ in the

case § = 0.

Theorem 3.1. (Hamada(1986a)) (1) In the case (O,ul,u2,'°',uh) e 'I;(t,q) v

gu(o,ul,uz,---,uh;t,q) # ¢ if and only if either (@) h =1 and 1 < u, < t-1 or

1
(b) h > 2 and “h—l + ph < t-1.

(2) In the case 2 <6 < t, M(8,0;t,q) # @ if and only if g+6-m(6,q) L0 <q.

(3) Inthecase 0 <z, £<q, T +E<q,2<06=<m,1=<28< (t-2)(g-1) and

ll
(O,ﬂl,wz,"','rrx) € U(t,q), m(e,c;g,nl,ﬂz,"',ﬂz;t,q) # ¢ if and only if either
(@) £=1, 6 +1; <t and g+6-m(6,q) <z < gor (b) & > 2, Moyt Ty < t-1 and
q+6-m(8,q) <7 < g

The following theorem give‘s three methods of construction of min-hypers.
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Theorem 3.2. (Hamada(l986a)) Let S;U(o,ul,uz,-",uh;t,q) 0, Ud,0;t,q9)

# g and m(erC;glﬂlr“ "l'"z;trq) # ¢ where (0,11 23} l"'I]Jh) & ’J(th)-

2" 1M
Eﬁ : h h
1 If F € e . i .
(1) U(O,ul,uz, ,uh,t,q), then F is a { 'Z Vo4l + g, .2 vu',
i=1 i i=1 i
t,q}-min-hyper.
6-1 6-1
(2) 1IfF € Y(6,0;t,q), then Fis a{ I (g-1v +0, I (g-l)v ;
: a+l o
a=1 a=1
t,q}-min-hyper.
' 0-1
(3) If Fe€ nz(G,C;E,ﬂl,ﬂzf“',ﬂz;t,q), then F is a { El (q—l)vm+l +
% o-1 2 o=
.2 Ves T O £, I (q-l)vu + .Z vﬂ';t,q}—min-hyper.
i=1 i a=1 - i=1 i
Remark 3.1. Theorem 3.2 shows that in the case g+8-m(6,g) < o ;:q} h >

(6-1) (g-1) 2 2, o

Ha-1) (@-1D+1 =~ M1 (@-1+2 = 777 T Y(o-1) (g-1) +g-1

(¢ =1,2,°°7,6-1) and W1 + Uy £ t-1 for some integer € such that 2 < 6 < t,

h h
there exist at least 8 { & v o, ¥ v ;t,gq}-min-hypers F
i=1 i=1 Mi

'F ’-~

+ .
u+1 1t ForitiFe g

€ TR i€ s '
and F, such that F, E}U(o,ul,uz, it , F € nZ(arCa €y Ya-1) (g-1) 41

M it,q) (o= 2,3,°--,06-1) and either F, € neee,zyigy,

H(o-1) (g-1)+2' h

(o-1) (q-1) 417 M(0-1) (q-1)42’ 7 MpiteD or Fg € LA(8,0it,q) according as h >

(6-1) (g-1) or h = (6-1) (g-1) where Ca and Ea (2 £ o < 6) are any nonnegative

integers such that Ly Ea = 0 and g+o~-m(a,q) é=Ca £ 4.

From Theorems 3.1 and 3.2, we have the following corollary which gives a

sufficient condition for integers t, €, h, ul, uz, ces , uh and g (( or integers

h h

k, d and q )) that there exists a { I v +€, I v ;t,qt-min-hyper (( or
i=1 Wit i=1 M

an (n,k,d;q)-code meeting the bound (1.2') in the case w =1 )).
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Corollary 3.1. If either (a) 0 < e <g-1l, h=1and 1l 2y Lt-lor (b)

Oés;q—l,h;.Zanduh_l+uh=

and u(a_l) (q_l)+l = U(a_l) (q_l)+2 = ot = U(a_l) (q_l) +q-l = 0 (a = 1121'..16"1)
h h
for some integer 6 such that 2 < 8 < t, there exist a { £ v +e, T Vv ;
- - Cam Wt i=1 M

t,q}-min-hyper and an (n,k,d;q)-code meeting the bound (1.2') where k = t+1,

h w,
w=1and d = qk 1o (e+ 2 ¢g 5 ).

i=1

In the special case g = 2, we have the following corollary since m(6,2) =

0+2 for any integer 6 > 2.

Corollary 3.2. If either (a) ¢ € {0,1}, h =1 and 1

A

ul < t-1 or (b)

e €{0,1}, h>2andy , +w <t-lor (c) e €{0,1}, 2 <h < t-1 and ST I

h h h
-,uh) = (1,2,°"",h), there exist a { £ v 41 F & I v ;t,2}-min-hyper and
=1 W4 i=1 M4
an (n,k,d;2)-code meeting the Griesmer bound (1.2') where k = t+1, w = 1, d =
h M.
2k o (e+ T 27%) and vu =2 -1 for any integer u > O.
i=1

Helleseth (1981) showed that (1) a sufficient condition in Corollary 3.2
is also a necessary condition in the case g = 2 and (2) there is no (n,k,d;2)-
code meeting the Griesmer bound (1.2') except for (n,k,d;2)-codes constructed

by Theorem 3.2, Remarks 3.1 and 2.1 in the case @ = 2, k = t+l1, w = 1 and 4 =

h o,
Zk—l - (e+ I 2 . ). In terms of a min-hyper, his result can be expressed

i=1

as follows.

Theorem 3.3. Let (a,pl,pZ,---,ph) be an ordered set in U(t,2) and let

Vp = 2u - 1 for any integer p > O where t > 2.
(1) In the case h =1, F is a {vﬁ +l+g,vu ;t,2}-min-hyper if and only if

1 1

- 10 -

< t-1 or (c) g+6-m(6,q) < € < g-1, h = (6-1) (g-1)
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F € JU(e,ul;t,z) .

h
2) In th h > + < t- i
(2) n the case h > 2, Hpog TH St 1 and (ul,pz) # (1,2), F is a {.Z Vo4l
h i=1 i

+e, I v_ ;t,2}-min-hyper if and only if F € :} (e, 0., U ,""",u ;t,2).

iop My AN R h

(3) In the case t > 3, (ul,uz,'°',uh) = (1,2,-+-,h) and t/2 < h < t-1 (i.e.,

h h
Wy t W, >tD, Fisa {.Z Vo4l + €, .Z vu.;t,Z}—min‘hyper if and only if
i=1 i i=1 1

F € M(h+l,e;t,2).

(4) In the case t > 4, (ul,uz,'°-,uh) = (1,2,---,h) and 2 £ h 2 t/2 (i.e.,
h h '
<t-1), Fisa{I v +€, I v ;t,2}-minhyper if and only if

W, o+
h-1 7 Pp = +1
i=1 Y i=1 M

either F € :ﬁU(e,l,2,"',h;t,2) or F € M(h+1,e;t,2) or F € nz(a,ca;aa,a{a+1,
.+-,h;t,2) for some integer @ in-{2,3,---,h} where ;a and Ea are any nonnegative

integers such that ;a + & = €.

(5) In the case h > 6, (ul,uz,---,ue_l) = (1,2,---,6-1), Hg > 0 and L +

h h
uh < t-1 for some integer 6 > 3, Fisa{ I v + e, ¥ Vv_;t,2}-min-hyper
= = . u,+1 . .
i=1 i i=1 i
if and only if either F € :ﬁU(s,ul,uz,"°,uh;t,2) or F € n?(a'ca;gu’ua'ua+l'.‘.'

uh;t,2) for some integer o in {2,3,::+,8} where Ea and Ea are any nonnegative

integers such that Ca + Ea = €.

(6) 1In the case h > 2, W + y, > t-1 and (ul,uz) # (1,2), there is no

h h
{z Vo4l +€e, ¥ v ;t,2}-min-hyper.
i=1 i i=1 i

h

Remark 3.2. Theorem 3.3 can be proved directly using the inductive stru-

cture of a min-hyper such as Proposition 3.1 in Hamada (1985).

h h
Remark 3.3. In the case g > 3, there exists a { Z v +€, X v ;
- =1 M3t i=1 ¥i
h h +
t,q}-min-hyper except for { I v + €, I v ;it,q}l-min-hypers constructed
i=1 Wit =1 Wi

by Theorem 3.2 and Remark 3.1.
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Example 3.1. (1) In the casegq =3, h =1, u, =1, € = 2 and t > 2, let

1
(vo), (vl) and (v2) be any non-collinear points in PG(t,3) and let F = {(vl),

(vo+v1), (2v_+v.), (vz), (vl+v2). (v0+2v

otV +v2)}. Then F is a {v2+2,1;t,3}—m1n'

1

hyper which contains no l-flat (i.e., F ﬁ::ﬁU(2,l;t,3)) where v_ = (32—1)/(3—1).

2

(2) In the case g =4, h =1, ul =1, e=2and t > 2, let (vo), (vl) and

(v2) be any noncollinear points in PG(t,4) and let F = { (v0+vl), (avo+vl),

2 2 2 . _—
+ +u_+ -
(o Vo vl), (v2), (vo vy v2), (o vo+avl+v2), (av0+a vl+v2)} where o is a primi

. 2
tive element of GF(2”) such that az =0 + 1 and a3 = 1. Then F is a {v2+2,1;

t,4}-min-hyper which contains no 1-flat where v (42—1)/(4—1).

2

(3) In the case g > 4, h =2, y =1, € =g-2 and t > 2, let V be any

1”2
2-flat in PG(t,q) and let Li (i =1,2,+-+,g+1) be g+l 1-flats in V passing

through one point Q in V and let F = L U L, U i{r ---,Pq+l} where P, (3<1i

3IP4I
< g+l) denotes any point in L; \ {Q}. Then F is a {2v2+(q—2),2;t,q}-min-hyper

such that F ﬁJ‘U(q—2,l,l;t,q) .

From Theorem 2.6 in Hamada (1985), we have the

- t-1 t-1
Theorem 3.4. If there exists a {QEO eava+l' an Eava;t,q}—mln-hyper,
t-1 t-1 B B
there exists a { &I ¢ € v. _;t,gq}-min-hyper for any positive

v z
o o+l-n’ o a-n
a=n o=n

integer n < t-2.

From Theorem 3.4, we have the following corollary which is very useful in

proving the nonexistence of a min-hyper.

t-1-n t-1-n
Corollary 3.3. (1) If there isno { = € Vorl’ ) sava;t,q}-mln-

a=0 t_1_ncx=0

hyper for some positive integer n < t-2, there is no { = €
a=0

v +
o m+o+l
m-1 t~1-n m-1
* ] * 0
L e.v, € Vv + I Ei v, ;t,q}-min-hyper for any integers m and ei's

i‘i+l’ z o mt+o
i=0 a=0 i=0
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suchthatl;_m;nando_f:e;;q—l.

h h

(2) If there is no { I Vo4l +e, I v ;t,q}-min-hyper for some ordered
' ' i=1 i i=1 i h'

--,uh) in U(t,q) such that uh < t-2, there is no {2 v
i=1

set (e Iulr 2! °

+ mgl x g + + m;l *v.it,q}-min-h £ i
evm+l €2V2+1, . Vu.+m .svm €2v2,>,q -min-hyper for any integers
2=0 « i=1 i | 2=0

+
. +Hmn+
ul m+1

*
2 g-l.

m and €°'s such that 1 in §=t'1‘uh and O ;:62__

L

4. Characterization of certain min-hypers and a necessary condition

Recently, the author proved the following theorem using Propositions 3.1 and

3.2 in Hamada (1985).

Theorem 4.1. (Hamada(1985)) Let t and q be any integer > 2 and any prime
power > 3 respectively and let (e,ul,uz,---,uh) be any ordered set in U(t,q) such

that € € {0,1} and 1 < u, < u, < eee < w

1 < t-1 where 1 < h < t-1.
(1) In the case h = 1 and 1'§=ul < t-1, Fis a {v

" a7t e,vu ;t,q}-min-hyper
1 1
if and only if F € G;U(e,ul;t,q).

" h h
(2) In the case h > 2 and Woq t < t-1, F is a {'X Vo4l + e, I v,
) i=1 i i=1 i
t,gq}-min-hyper if and only if F € :} (€,M, U ,-"",u,_;t,q). :
U 1'"72 h h h
(3) 1In the case h 2 2 and w _, + W > t-1, there is no {.Z vogl ¥ €, I v K
i=1 i i=1 i

t,q}-min-hyper F.

In order to generalize Theorem 4.1, it is necessary to characterize all
v, + ;
legv, + eqreys

generalize Propositions 3.1 and 3.2 in Hamada (1985). In this section, we shall

°

try to characterize all {elv2+eo,el;t,q}-min-hypers for any ordered set (80,81)

in E(t,q) such that € € {1,2}, € € {0,1,2}, t > 2 and g > 3 and to generalize

t,g}-min-hypers for any ordered set (eo,el) in E(t,q) and to
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Proposition 3.1 in Hamada (1985). In the case 4, > 2 and 0 < € < g-1, we have

1

the following theorem from the proof of Proposition 3.1 in Hamada (1985) since

v + -1) < v. for any integer > 2.
-1 (a " y ger u >

Theorem 4.2.  Let (e,ul,uz,---,uh) be any ordered set in U(t,q) such that

My ;:2 and :%U(e,ul—l,u —l,"',uh—l;t-l,q) # ¢ and let Gj‘s be any nonnegative

2
g+l - h h
integers such that z §. =¢. ‘If there exists a { X v +e, I v ;t,gq}-
. j . ., +1 . .
i=1 i=1 i i=l i

min-hyper F such that (a) F} G € ;}(ul—z,u -2, .- ,uh—Z;t,q) for some (t-2)-

2

flat G in PG(t,q) and (b) F () Hj € EFU(6j,u —1,92-1, .-+, -1;t,q) for any

1 h 3
1
hyperplane Hj (1 < j < g+l) which contains G, then F € :}]j(e,ul,uz,---,uh;t,q)- |
|

Remark 4.1. Let (e,ul,uz,---,uh) be an ordered set in U(t,q) such that

h > 2 and u, > 2. Then it follows from Theorem 3.1 that (1) :}U(e,u —l,uz—l,

1 1

...,uh—l;t-l,q) # @ if and only if uh—l + uh < t and (2) :}U(s,ul,uz,"',uh;t,q)

. . + - . i ; + = i
# @ if and only if uh—l uh 2 t1 Hence in the case uh—l uh  t, there is
h h
no {Z v 41 T € L v ;t,g}-min-hyper F which satisfies conditions (a) and (b)
i=1 % i=1 i
h h
in Theorem 4.2. In order to show that there isno { £ v +1 +e,I v ;t,g}-
i=1 M i=1 ¥
' *
min-hyper in the case Mg W =t it is sufficient to show that (o) F €
h h o,
,;}(ul-z,uz—Z, .. ,uh—2;t,q) for any {.Z Vu.-l' 'Z vu._z;t,q}—mln-hyper F and
) i=1 i i=1 i
s h b
(BY F €& fﬁ (e,u,-1,u.-1, --- ,pu-1;t,q) for any { I v +€e, X v it,ql-
. U 1 2 h . . . u.-1
i=1 i i=1 i

min-hyper F**.

From Theorem 4.2, Remark 4.1 and Corollary 3.3, we have the

Corollary 4.1. (1) 1f F*é_:;lj(e,l;t,q) for any {v2+s,v ;t,g}l-min-hyper

1

F*, then F € sﬁU(e,ul;t,q) for any {v z»:,vu ;t,q}-min-hyper F where t > 3,

1

+
+
My 1
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0O<e<g-land2z<y t-l.
(2) Let (O,pl,uz,---,uh) be an ordered set in U(t,q) such that h > 2, uy o= 2
. h
*
and p _, + LN é=t-‘ If (a) F € ;$(ul—2,u2-2, <o ,uh—2;t,q) for any { I V-1

h i=1 i
v}1 _2;t,q}—min-hyper F* and (B) F** € :}(ul—l,u2—l, A ,uh—l;t,q) for any

vu__l;t,q}-min-hyper F**, then F € :}(ul+m,u

+m, --- ,H
1 i

4m;t,q) for

2 h

r Z vui+m;t,q}—min‘hyper F in the case 0 < m é=(t—l_uh¥1—uh)/2

and there is no { & v

N v m;t,q}—min-hyper F in the case (t-1-u
i=1 i

H,*+
i

n o~

n-1""p’ /2
i=1

<m< t-l-y .
m < t-1 uh

In the case h > 2, ul = 1 and uh 2 3, we can prove the following theorem

using a method similar to the proof of Proposition 3.1 in Hamada (1985).

Theorem 4.3. Let (e,ul,u2,---,uh) and 0 be an ordered set in U(t,q) and an

integer respectively such that h > 6 > 2, ul =1, ue > 3 and uh—l + uh < t and

let T be the number of integers i in {1,2,---,h} such that By = 1 and let Gj's

g+l h

be nonnegative integers such that I 6. = €. If there exists a { & vu +1 + €,
h

j=1 i=1 i ,
I v ;t,gq}-min-hyper F such that (a) F[} G & :;(u -2,u -2,--+,0. ~-2;t,q) for
i=1 i T+l T+2 h

-1,u —1,"':Uh—l;t,q)

1

some (t-2)-flat G in PG(t,q) and (b) F N Hj € :}U‘T+6j’u1+ 42

for any hyperplane ij(l < j £ g+l) which contains G, then F consists of a ue—flat,

ayu ~flat, ... , a uh—flat and a set X in PG(t,q) which are mutually disjoint.

6+1

Remark 4.2. A set X in Theorem 4.3 is not necessarily unique. For example,

either X € F(1,2;t,2) or X € U(3,0;t,2) in the case q = 2, € =0, h > 3, w, =1,

B, = 2 and u3 > 3.

2
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Remark 4.3. Theorem 4.3 shows that in the case h > 06 > 2, pl =1, pe >3

h h

+u =t, there isno { & v +€e, & Vv ;t,gl-min-hyper which
h . u,+1 . H.
1=1 i i=1 1

and Wy

satisfies two conditions (a) and (b) in Theorem 4.3 since there exist a uh_l—flat

and a uh—flat in PG(t,q) which are mutually dis'joint if and only if LN + % <t

Since there is no space to give the proof of the following theorem, we shall
describe only results. In detail, refer Hamada (1986a, 1986b and 1986c¢) in

which the proofs of theorems in Sections 3 and 4 and more general results are give

Theorem 4.4. (Hamada(1986b and 1986c¢)) Let t and q be an integer > 2 and
a prime power > 3 respectively and let v, = g+l.

(1) In the case 0 < € < Jq_, F is a {v2+e,l;t,q}-min-hy_per if and only if
F € 3U(e,l;t,q).

(2) In the case where either (a) g = 3 and € = 2 or (b) g = P2r and Jq < €
< g-1 for a prime p and a positive integer r, there exists a {v2+'a,1;t,q}—min-
hyper F such that F £ &"U(e,l;t,q) .

(3) 1In the case where g is a prime and (g+l)/2 < € £ g-1, there exists a
{v2+e,l;t,q}-min-hyper F such that F ¢ 3U(€,l;t,q) .

(4) In the case t = 2, (a) there is no {2v2,2;t,q}-min-.hyper for any prime
power g > 3 and (B) there is no {2v2+l,2;t,q}—min-hyper for any prime power g
>4 and (y) there is no {2v2+2,2;t,q}—min-hyper for any prime power gq > 5.

(5) In the case t > 3 and g > 3, F is a {2v2,2;t,q}—min.hyper if and only if
FeE Fa,1;6,9.

(6) In the case t >3 and g = 3, F is a {2v2+1,2;t,3}-min-hyper if and only
if either F € £(0,1,1;t,3) or F € U(2,1;t,3). 1In the case t > 3 and q > 4,

F is a {2V2+l,2;t,3}—min»hyper if and only if F € #(0,1,1;t,q).
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(7) In the case t 23 and g > 5, F is a‘{2V2+2,2;t,q}wmin~hyper if and only

if F € J(0,0,1,1;t,q). In the case t > 3 and q = 3 or 4, there exists a {2v2

+2,2;t,q}-min-hyper F such that F &€ J:(0,0,1,1;t,q).

10.

11.
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