<table>
<thead>
<tr>
<th>Title</th>
<th>CHARACTERIZATION OF MIN-HYPERS IN A FINITE PROJECTIVE GEOMETRY AND ITS APPLICATIONS TO ERROR-CORRECTING CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hamada, Noboru</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1987), 607: 52-69</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/99705</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
CHARACTERIZATION OF MIN-HYPERS IN A FINITE PROJECTIVE GEOMETRY
AND ITS APPLICATIONS TO ERROR-CORRECTING CODES

Noboru Hamada
Osaka Women's University

1. Introduction

Let $V(n;q)$ be an n-dimensional vector space consisting of row vectors over a Galois field $GF(q)$ of order q where n is a positive integer and q is a prime power. A k-dimensional subspace C of $V(n;q)$ is said to be an $(n,k,d;q)$-code (or a q-ary linear code with code length n, dimension k, and minimum distance d) if the minimum distance of the code C is equal to d, that is,
\[\min \{ d(\alpha, \beta) \mid \alpha, \beta \in C, \alpha \neq \beta \} = d \]
where $d(\alpha, \beta)$ denotes the Hamming distance between two vectors α and β in $V(n;q)$.

It is well known (cf. MacWilliams and Sloane (1977) in detail) that if the elements of an $(n,k,d;q)$-code C are used as codewords over a q-ary symmetric channel, with q inputs, q outputs, a probability $1-p$ that no error occurs, and a probability $p (< 0.5)$ that an error does occur, each of the $q-1$ possible errors being equally likely, the code C is capable of correcting all patterns of \([(d-1)/2]\) or fewer errors by using a maximum likelihood decoding where $[x]$ denotes the greatest integer not exceeding x. Hence in order to obtain a q-ary linear code which is capable of correcting most errors for given integers n, k and q, it is sufficient to obtain an $(n,k,d;q)$-code C (called an optimal linear
code) whose minimum distance \(d \) is maximum among \((n,k,*,q)\)-codes for given integers \(n, k \) and \(q \). It is also known that in order to obtain an optimal linear code, it is sufficient to solve the following problem for any prime power \(q \) and any integers \(k \) and \(d \) such that \(k \geq 3 \) and \(d \geq 1 \).

Problem A. Find an \((n,k,d;q)\)-code \(C \) whose code length \(n \) is minimum among \((*,k,d;q)\)-codes for given integers \(k \), \(d \) and \(q \).

Let \(q \) be any prime power and let \(k \) and \(d \) be any integers such that \(k \geq 3 \) and \(d \geq 1 \). Then \(d \) can be expressed uniquely as follows.

\[
(1.1) \quad d = \omega q^{k-1} - \sum_{\alpha=0}^{k-2} \epsilon_\alpha q^\alpha
\]

using some integers \(\omega \) and \(\epsilon_\alpha \)'s such that \(\omega \geq 1 \) and \(0 \leq \epsilon_\alpha \leq q-1 \). Using (1.1), a lower bound for the code length \(n \) of Problem A, due to Griesmer (1960) for the case \(q = 2 \) and to Solomon and Stiffler (1965) for the case \(q \geq 3 \), can be expressed as follows.

Theorem 1.1. If there exists an \((n,k,d;q)\)-code, then

\[
(1.2) \quad n \geq \sum_{l=0}^{k-1} \left(\frac{d}{q^l} \right) = \omega v_k - \sum_{\alpha=0}^{k-2} \epsilon_\alpha v_{\alpha+1}
\]

where \(\omega \) and \(\epsilon_\alpha \)'s denote integers determined by (1.1) from three integers \(k, d \) and \(q \) and \(v_\mu = (q^{\mu-1})/(q-1) \) for any integer \(\mu \geq 0 \) and \(\lfloor x \rfloor \) denotes the smallest integer \(\geq x \).

Theorem 1.1 shows that in order to obtain a solution of Problem A for given integers \(k, d \) and \(q \), it is sufficient to obtain an \((n,k,d;q)\)-code meeting the
Griesmer bound (1.2) in the case where there exists such a code for given integers \(k, d \) and \(q \). Hence we shall consider the following

Problem B. (1) Find a necessary and sufficient condition for integers \(k, d \) and \(q \) that there exists an \((n,k,d;q)\)-code meeting the Griesmer bound (1.2).

(2) Characterize all \((n,k,d;q)\)-codes meeting the Griesmer bound (1.2) in the case where there exist such codes.

Remark 1.1. Since in the special case \((\epsilon_1, \epsilon_2, \ldots, \epsilon_{k-2}) = (0,0,\ldots,0)\), i.e., \(d = \omega q^{k-1} - \epsilon_0 \), Problem B has been already solved completely for any prime power \(q \) and any integers \(k, \omega \) and \(\epsilon_0 \) such that \(k \geq 3, \omega \geq 1 \) and \(0 \leq \epsilon_0 \leq q-1 \) (cf. Corollary 2.2 in Hamada (1985) for example), it is sufficient to solve Problem B for the case \((\epsilon_1, \epsilon_2, \ldots, \epsilon_{k-2}) \neq (0,0,\ldots,0)\).

Remark 1.2. In the case \((\epsilon_1, \epsilon_2, \ldots, \epsilon_{k-2}) \neq (0,0,\ldots,0)\), \(d \) can be also expressed as follows.

\[
(1.1') \quad d = \omega q^{k-1} - (\epsilon + \sum_{i=1}^{h} \mu_i q^i)
\]

using some integers \(\omega, \epsilon \) and \(\mu_i \)'s such that \(\omega \geq 1, 0 \leq \epsilon \leq q-1 \) and

\[
(1.3) \quad (1,1,\ldots,1,2,2,\ldots,2,\ldots,k-2,k-2,\ldots,k-2) \equiv (\mu_1, \mu_2, \ldots, \mu_h)
\]

where \(h = \sum_{a=1}^{k-2} \epsilon_a \). For example, (1.3) means that \(\mu_1 = 1, \mu_2 = 1 \) and \(\mu_3 = 3 \) in the case \(k = 5, \ q \geq 3 \) and \((\epsilon_1, \epsilon_2, \epsilon_3) = (2,0,1)\). In this case, the Griesmer bound (1.2) can be expressed as follows.
\[(1.2') \quad n \geq \omega v_k - (\varepsilon + \sum_{i=1}^{h} v_{\mu_i+1}) \]

where \(\omega, \varepsilon, h\) and \(\mu_i's\) denote integers determined by (1.1').

It is well known (cf. Baumert and McEliece (1973) and Hamada and Tamari (1980)) that for any integers \(k\) and \(q\), there exists some integer \(d_0\) (depending on \(k\) and \(q\)) such that there exists an \((n,k,d;q)\)-code meeting the Griesmer bound for any integer \(d \geq d_0\). From the actual point of view, it is desirable to obtain a solution of Problem A (or B) for comparatively small integers \(k, d\) and \(q\). Hence we shall confine ourself to the case \(\omega = 1\) and \((\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{k-2}) \neq (0,0,\ldots,0)\) in this paper. Problem B has been solved completely by Helleseth (1981) for the case \(\omega = 1\) and \(q = 2\) and by Hamada (1985) for the case \(\omega = 1, q \geq 3\) and \(\varepsilon_\alpha = 0\) or 1 \((\alpha = 0,1,\ldots,k-2)\).

The purpose of this paper is to generalize those results using characterization of min-hypers in a finite projective geometry. In Section 2, a connection between a min-hyper and an \((n,k,d;q)\)-code meeting the Griesmer bound (1.2) will be described and it will be shown that in order to solve Problem B for the case \(\omega = 1\) and \((\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{k-2}) \neq (0,0,\ldots,0)\), it is sufficient to solve Problem C, i.e., it is sufficient to find a necessary and sufficient condition for integers \(\varepsilon_0', \varepsilon_1', \ldots, \varepsilon_{t-1}', t\) and \(q\) that there exists an \((f,m; t, q)\)-min-hyper and to characterize all \((f,m; t, q)\)-min-hypers if there exist such min-hypers where \(t = k-1, f = \sum_{a=0}^{k-1} \varepsilon_a v_{a+1}\) and \(m = \sum_{a=1}^{t-1} \varepsilon_a v_a\). In Section 3, several constructive methods of min-hypers and a sufficient condition for the existence of a min-hyper will be given. In Section 4, we shall characterize certain min-hypers and using these characterizations, we shall obtain a necessary condition for the existence of some min-hyper. In detail, refer Hamada (1986a, 1986b and 1986c).
2. A connection between a min-hyper and an \((n,k,d;q)\)-code meeting the bound (1.2)

In order to solve Problem B for the case \(\omega = 1\), we shall use a min-hyper
which has been introduced by Hamada and Tamari (1978).

Definition 2.1. Let \(F\) be a set of \(f\) points in a finite projective geometry
\(\text{PG}(t,q)\) of \(t\) dimensions where \(t \geq 2\) and \(f \geq 1\). If (a) \(|F \cap H| \geq m\) for any
hyperplane (i.e., \((t-1)\)-flat) \(H\) in \(\text{PG}(t,q)\) and (b) \(|F \cap H| = m\) for some hyper-
plane \(H\) in \(\text{PG}(t,q)\), then \(F\) is said to be an \((f,m;t,q)\)-min-hyper where \(m \geq 0\) and
\(|A|\) denotes the number of elements in the set \(A\).

Example 2.1. (1) Let \(F\) be a \(\mu\)-flat in \(\text{PG}(t,q)\) where \(0 \leq \mu < t\). Then \(F\)
is a \(\{v_{\mu+1}', v_{\mu}; t,q\}\)-min-hyper where \(v_{\mu} = (q^\mu - 1)/(q - 1)\) for any integer \(\mu \geq 0\).
Because \(|F| = v_{\mu+1}'\), \(|F \cap H| = v_{\mu} \) or \(v_{\mu+1}'\) for any hyperplane \(H\) in \(\text{PG}(t,q)\) and
\(|F \cap H| = v_{\mu}\) for some hyperplane \(H\) in \(\text{PG}(t,q)\).

(2) Let \(F\) be a set of \(\epsilon_0\) 0-flats, \(\epsilon_1\) 1-flats, \(\ldots\), \(\epsilon_{t-1}\) \((t-1)\)-flats in
\(\text{PG}(t,q)\) which are mutually disjoint where \(0 \leq \epsilon_{\alpha} < q-1\) for \(\alpha = 0, 1, \ldots, t-1\).
Then \(F\) is a \(\{\sum_{\alpha=0}^{t-1} \epsilon_{\alpha} v_{\alpha+1}', \sum_{\alpha=1}^{t-1} \epsilon_{\alpha} v_{\alpha}; t,q\}\)-min-hyper.

Definition 2.2. Let \(\mathcal{B}_C(\epsilon_1, \epsilon_2, \ldots, \epsilon_{k-2}; k-1, q)\) denote a set of all \((n,k,d;q)\)-
codes meeting the Griesmer bound (1.2) in the case \(\omega = 1\) and \(d = q^{k-1} - \sum_{\alpha=0}^{k-2} \epsilon_{\alpha} q^\alpha\).
Let \(\mathcal{B}_F(\epsilon_0, \epsilon_1, \ldots, \epsilon_{k-2}; k-1, q)\) denote a set of all \(\{\sum_{\alpha=0}^{k-2} \epsilon_{\alpha} v_{\alpha+1}', \sum_{\alpha=1}^{k-2} \epsilon_{\alpha} v_{\alpha}; k-1, q\}\)-
min-hypers.

Definition 2.3. Two \((n,k,d;q)\)-codes \(C_1\) and \(C_2\) are said to be congruent if
there exists a \(k \times n\) generator matrix \(G_2\) of the code \(C_2\) such that \(G_2 = G_1PD\) (or
\(G_2 = G_1DP\)) for some permutation matrix \(P\) and some nonsingular diagonal matrix \(D\)
whose entries are elements of \(\text{GF}(q)\) where \(G_1\) is a \(k \times n\) generator matrix of \(C_1\).
The following theorem is due to the author (cf. Theorems 1, 2.3 and 2.4 in Hamada (1985)).

Theorem 2.1. There is a one-to-one correspondence between a set $\mathcal{B}_C(\epsilon_0, \epsilon_1, \ldots, \epsilon_{k-2}; k-1, q)$ and a set $\mathcal{B}_F(\epsilon_0, \epsilon_1, \ldots, \epsilon_{k-2}; k-1, q)$ if we introduce an equivalence relation between two $(n, k, d; q)$-codes as Definition 2.3 where $(\epsilon_0, \epsilon_1, \ldots, \epsilon_{k-2}) \neq (0,0,\ldots,0)$.

Remark 2.1. (1) Theorem 2.1 shows that $\mathcal{B}_C(\epsilon_0, \epsilon_1, \ldots, \epsilon_{k-2}; k-1, q) \neq \emptyset$ if and only if $\mathcal{B}_F(\epsilon_0, \epsilon_1, \ldots, \epsilon_{k-2}; k-1, q) \neq \emptyset$.

(2) Let ϵ_α's, k and q be any integers such that $\mathcal{B}_F(\epsilon_0, \epsilon_1, \ldots, \epsilon_{k-2}; k-1, q) \neq \emptyset$ and let $F = \{ (b_1), (b_2), \ldots, (b_f) \}$ be any $\{f, m; k-1, q\}$-min-hyper where $f = \sum_{\alpha=0}^{k-2} \epsilon_\alpha \alpha + 1$, $m = \sum_{\alpha=1}^{k-2} \epsilon_\alpha \alpha$, b_α's being distinct nonzero vectors in a k-dimensional vector space over $GF(q)$ consisting of column vectors and (b) denotes a point in $PG(k-1, q)$, i.e., $(\psi_1) = (\psi_2)$ if and only if there exists some nonzero element σ in $GF(q)$ such that $\psi_2 = \sigma \psi_1$. Let $G = [b_1 \ b_2 \ \cdots \ b_f]$. Then we can obtain an $(n, k, d; q)$-code meeting the Griesmer bound (1.2) for the case $\omega = 1$ and $d = q^{k-1} - \sum_{\alpha=0}^{k-2} \epsilon_\alpha \alpha^2$ from the matrix G which is a $k \times f$ generator matrix of a q-ary anticode with code length f, dimension $\leq k$, and maximum distance $f-m$ (cf. Ch. 17-§6 in MacWilliams and Sloane (1977) in detail).

Definition 2.4. Let $E(t, q)$ denote a set of all ordered sets $(\epsilon_0, \epsilon_1, \ldots, \epsilon_{t-1})$ of integers ϵ_α's such that $(\epsilon_1, \epsilon_2, \ldots, \epsilon_{t-1}) \neq (0,0,\ldots,0)$ and $0 \leq \epsilon_\alpha \leq q-1$ for $\alpha = 0,1,\ldots,t-1$. Let $U(t, q)$ denote a set of all ordered sets $(\epsilon, \mu_1, \mu_2, \ldots, \mu_h)$ of integers ϵ, μ and μ_1's such that $0 \leq \epsilon \leq q-1$, $1 \leq h \leq (t-1)(q-1)$, $1 \leq \mu_1 \leq \mu_2 \leq \cdots \leq \mu_h \leq t-1$ and $0 \leq n_\lambda \leq q-1$ for $\lambda = 1,2,\ldots,t-1$ where n_λ denotes the
number of integers \(i \) in \(\{1, 2, \cdots, h\} \) such that \(\mu_i = \ell \) for the given integer \(\ell \).

Theorem 2.1 and Remark 1.2 show that in order to solve Problem B for the case \(\omega = 1 \) and \((\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_{k-2}) \neq (0, 0, \cdots, 0) \), it is sufficient to solve the

Problem C. Let \(t \) and \(q \) be a given integer \(\geq 2 \) and a given prime power.

(1) Find a necessary and sufficient condition for an ordered set \((\varepsilon_0, \varepsilon_1, \cdots, \varepsilon_{t-1}) \) in \(E(t,q)^T \) (or an ordered set \((\varepsilon, \mu_1, \mu_2, \cdots, \mu_h) \) in \(U(t,q) \)) that there exists a \(\{ \Sigma \varepsilon \varepsilon_v \varepsilon_{v_{a+1}}, \Sigma \varepsilon \varepsilon_v \varepsilon_{v_{a}}; t,q\} \)-min-hyper \((\) or \(a \{ \Sigma \varepsilon \varepsilon_v \varepsilon_{v_{a+1}} + \varepsilon, \Sigma \varepsilon \varepsilon_v \varepsilon_{v_{a}}; t,q\} \)-min-hyper \() \).

(2) Characterize all \(\{ \Sigma \varepsilon \varepsilon_v \varepsilon_{v_{a+1}}, \Sigma \varepsilon \varepsilon_v \varepsilon_{v_{a}}; t,q\} \)-min-hyperm \((\) or all \(\Sigma \varepsilon \varepsilon_v \varepsilon_{v_{a+1}} + \varepsilon, \Sigma \varepsilon \varepsilon_v \varepsilon_{v_{a}}; t,q\} \)-min-hyperm \() \) in the case where there exist such \(\mu_{i+1} \) in \(U(t,q) \).

3. Construction of several min-hyperm and a sufficient condition

Let \(\Lambda(t,q) \) be a set of all ordered sets \((\lambda_1, \lambda_2, \cdots, \lambda_n) \) of integers \(\eta \) and \(\lambda_i \)'s such that \(1 \leq \eta \leq (t+1)(q-1) \), \(0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_t \leq t-1 \), \(0 \leq m_0 \leq 2(q-1) \) and \(0 \leq m_\alpha \leq q-1 \) for \(\alpha = 1, 2, \cdots, t-1 \) where \(m_\alpha \) denotes the number of integers \(\eta \) in \(\{1, 2, \cdots, n\} \) such that \(\lambda_i = \alpha \) for the given integer \(\alpha \). Let \(\widetilde{U}(t,q) \) be a set of all ordered sets \((\sigma, \mu_1, \mu_2, \cdots, \mu_h) \) such that \(0 \leq \sigma \leq q \) and \((0, \mu_1, \mu_2, \cdots, \mu_h) \) in \(U(t,q) \) where \(U(t,q) \) denotes a set defined in Definition 2.4.

Definition 3.1. For each ordered set \((\lambda_1, \lambda_2, \cdots, \lambda_n) \) in \(\Lambda(t,q) \), let us denote by \(\mathcal{F}(\lambda_1, \lambda_2, \cdots, \lambda_n; t, q) \), a family of all sets \(U \bigcup_{i=1}^{n} V_i \) of a \(\lambda_1 \)-flat \(V_1 \), a \(\lambda_2 \)-flat \(V_2 \), \cdots , a \(\lambda_n \)-flat \(V_n \) in \(PG(t,q) \) which are mutually disjoint. As occasion demands, we shall denote \(\mathcal{F}(\lambda_1, \lambda_2, \cdots, \lambda_n; t, q) \) by \(\mathcal{F}(\sigma, \mu_1, \mu_2, \cdots, \mu_h; t, q) \).
where \(\sigma = m_0, h = n - m_0, \mu_i = \lambda m_0 + i \) \((i = 1, 2, \ldots, h) \) and \(m_0 \) denotes the number of integers \(i \) in \(\{1, 2, \ldots, n\} \) such that \(\lambda_i = 0 \).

Definition 3.2. Let \(V \) be a \(\theta \)-flat in \(PG(t,q) \) where \(2 \leq \theta \leq t \). A set \(S \) of \(m \) points in \(V \) is said to be an \(\underline{m} \)-arc in \(V \) if \(|S \cap H| \leq \theta \) for any hyperplane \(H \) in \(PG(t,q) \) such that \(V \cap H \) is a \((\theta - 1) \)-flat in the \(\theta \)-flat \(V \) where \(m \geq \theta \). In the special case \(\theta = t \), \(S \) is said to be an \(\underline{m} \)-arc in \(PG(t,q) \). Let \(m(t,q) \) denote the largest value of \(m \) for which there exists an \(\underline{m} \)-arc in \(PG(t,q) \).

Definition 3.3. Let \(U(\theta, \sigma; t, q) \) denote a family of all sets \(V \setminus S \) \(\theta \)-flat \(V \) in \(PG(t,q) \) and a \((q+\theta-\sigma) \)-arc \(S \) in \(V \) where \(2 \leq \theta \leq t \) and \(0 \leq \sigma \leq q \). Let \(M(\theta, \xi; \pi_1, \pi_2, \cdots, \pi_k; t, q) \) denote a family of all sets \((V \setminus S) U A U B \) of a set \(V \setminus S \) if \(A \setminus S \) \(\theta \)-flat \(S \) in \(U(\theta, \xi; t, q), \) a set \(A \) of \(\xi \) points in \(PG(t,q) \) and a set \(B \) in \(F_U(0, \pi_1, \pi_2, \cdots, \pi_k; t, q) \) such that \(V \cap A = \emptyset, (V \setminus S) \cap B = \emptyset \) and \(A \cap B = \emptyset \) where \(0 \leq \xi, \xi \leq q, \zeta + \xi \leq q, 2 \leq \theta \leq \pi_1, 0 \leq k \leq (t-2)(q-1), F_U(0, \pi_1, \pi_2, \cdots, \pi_k; t, q) = \emptyset \) in the case \(k = 0 \), \((0, \pi_1, \pi_2, \cdots, \pi_k) \in U(t,q) \) in the case \(k \geq 1 \) and \(A = \emptyset \) in the case \(\xi = 0 \).

Theorem 3.1. (Hamada(1986a)) (1) In the case \((\sigma, \mu_1, \mu_2, \cdots, \mu_h) \in \bar{U}(t,q) \), \(F_U(\sigma, \mu_1, \mu_2, \cdots, \mu_h; t, q) \neq \emptyset \) if and only if either (a) \(h = 1 \) and \(1 \leq \mu_1 \leq t-1 \) or (b) \(h \geq 2 \) and \(\mu_{h-1} + \mu_h \leq t-1 \).

(2) In the case \(2 \leq \theta \leq t \), \(U(\theta, \sigma; t, q) \neq \emptyset \) if and only if \(q+\theta-m(\theta, q) \leq \sigma \leq q \).

(3) In the case \(0 \leq \zeta, \xi \leq q, \zeta + \xi \leq q, 2 \leq \theta \leq \pi_1, 1 \leq k \leq (t-2)(q-1) \) and \((0, \pi_1, \pi_2, \cdots, \pi_k) \in U(t,q), M(\theta, \xi; \pi_1, \pi_2, \cdots, \pi_k; t, q) \neq \emptyset \) if and only if either (a) \(k = l, \theta + \pi_1 \leq t \) and \(q+\theta-m(\theta, q) \leq \xi \leq q \) or (b) \(k \geq 2, \pi_{k-1} + \pi_k \leq t-1 \) and \(q+\theta-m(\theta, q) \leq \xi \leq q \).

The following theorem gives three methods of construction of min-hypers.
Theorem 3.2. (Hamada(1986a)) Let $\mathcal{F}_0(\sigma, \mu_1, \mu_2, \ldots, \mu_h; t, q) \neq \emptyset$, $\mathcal{U}(\theta, \sigma; t, q) \neq \emptyset$ and $\mathcal{M}(\theta, \xi, \pi_1, \pi_2, \ldots, \pi_h; t, q) \neq \emptyset$ where $(\sigma, \mu_1, \mu_2, \ldots, \mu_h) \in \tilde{\Omega}(t, q)$.

1. If $F \in \mathcal{F}_0(\sigma, \mu_1, \mu_2, \ldots, \mu_h; t, q)$, then F is a $\{ \sum_{i=1}^{h} \mu_i + \sigma; \sum_{i=1}^{h} \mu_i; t, q\}$-min-hyper.

2. If $F \in \mathcal{U}(\theta, \sigma; t, q)$, then F is a $\{ \sum_{\alpha=1}^{\theta-1} (q-1)\nu_{\alpha+1} + \sigma; \sum_{\alpha=1}^{\theta-1} (q-1)\nu_{\alpha}; t, q\}$-min-hyper.

3. If $F \in \mathcal{M}(\theta, \xi, \pi_1, \pi_2, \ldots, \pi_h; t, q)$, then F is a $\{ \sum_{\alpha=1}^{\theta-1} (q-1)\nu_{\alpha+1} + \sum_{i=1}^{h} \pi_i + \xi + \sum_{\alpha=1}^{\theta-1} (q-1)\nu_{\alpha}; \sum_{i=1}^{h} \pi_i; t, q\}$-min-hyper.

Remark 3.1. Theorem 3.2 shows that in the case $q+\theta-m(\theta, q) \leq \sigma \leq q$, $h \geq (q-1)/2$, $\mu(\alpha-1)(q-1)+1 + \mu(\alpha-1)(q-1)+2 + \cdots + \mu(\alpha-1)(q-1)+\alpha = \theta-1$ for some integer α such that $2 \leq \alpha \leq t-1$, there exist at least θ $\{ \sum_{i=1}^{h} \mu_i + \sigma; \sum_{i=1}^{h} \mu_i; t, q\}$-min-hypers $F_1', F_2', \ldots, F_{\theta-1}$ and F_{θ} such that $F_1' \in \mathcal{F}_0(\sigma, \mu_1, \mu_2, \ldots, \mu_h; t, q)$, $F_\alpha \in \mathcal{M}(\alpha, \xi, \pi_1, \pi_2, \ldots, \pi_h; t, q)$ for $\alpha = 2, 3, \ldots, \theta-1$ and either $F_\theta \in \mathcal{U}(\theta, \sigma; t, q)$ or $F_\theta \in \mathcal{M}(\theta, \xi, \pi_1, \pi_2, \ldots, \pi_h; t, q)$ according as $h > (q-1)/2$ or $h = (q-1)/2$ where ξ_α and π_α are nonnegative integers such that $\xi_\alpha + \pi_\alpha = \sigma$ and $q+\alpha-m(\alpha, q) \leq \xi_\alpha \leq q$.

From Theorems 3.1 and 3.2, we have the following corollary which gives a sufficient condition for integers t, ξ, h, μ_1, μ_2, \ldots, μ_h and q (or integers k, d and q) that there exists a $\{ \sum_{i=1}^{h} \mu_i + \xi; \sum_{i=1}^{h} \mu_i; t, q\}$-min-hyper (or an $(n,k,d;q)$-code meeting the bound $(1.2')$ in the case $\omega = 1$).
Corollary 3.1. If either (a) $0 \leq \epsilon \leq q-1$, $h = 1$ and $1 \leq \mu_1 \leq t-1$ or (b) $0 \leq \epsilon \leq q-1$, $h \geq 2$ and $\mu_{h-1} + \mu_h \leq t-1$ or (c) $q+\theta-m(\theta,q) \leq \epsilon \leq q-1$, $h = (\theta-1)(q-1)$ and $\mu_{(\alpha-1)(q-1)+1} = \mu_{(\alpha-1)(q-1)+2} = \cdots = \mu_{(\alpha-1)(q-1)+q-1} = \alpha$ ($\alpha = 1, 2, \cdots, \theta-1$) for some integer θ such that $2 \leq \theta \leq t$, there exist a $(\Sigma v_{\mu_1+1} + \epsilon, \Sigma v_{\mu_i})_{i=1}^h$ t,q-min-hyper and an $(n,k,d;q)$-code meeting the bound $(1.2')$ where $k = t+1$, $\omega = 1$ and $d = \frac{q^k-1}{2} - \left(\epsilon + \sum_{i=1}^h \mu_i \right)$.

In the special case $q = 2$, we have the following corollary since $m(\theta,2) = \theta+2$ for any integer $\theta \geq 2$.

Corollary 3.2. If either (a) $\epsilon \in \{0,1\}$, $h = 1$ and $1 \leq \mu_1 \leq t-1$ or (b) $\epsilon \notin \{0,1\}$, $h \geq 2$ and $\mu_{h-1} + \mu_h \leq t-1$ or (c) $\epsilon \in \{0,1\}$, $2 \leq h \leq t-1$ and $(\mu_1, \mu_2, \cdots, \mu_h) = (1,2,\cdots,h)$, there exist a $(\Sigma v_{\mu_1+1} + \epsilon, \Sigma v_{\mu_i})_{i=1}^h$ t,q-min-hyper and an $(n,k,d;2)$-code meeting the Griesmer bound $(1.2')$ where $k = t+1$, $\omega = 1$, $d = \frac{q^k-1}{2} - \left(\epsilon + \sum_{i=1}^h \mu_i \right)$ and $v_{\mu} = 2^\mu - 1$ for any integer $\mu \geq 0$.

Helleseth (1981) showed that (1) a sufficient condition in Corollary 3.2 is also a necessary condition in the case $q = 2$ and (2) there is no $(n,k,d;2)$-code meeting the Griesmer bound $(1.2')$ except for $(n,k,d;2)$-codes constructed by Theorem 3.2, Remarks 3.1 and 2.1 in the case $q = 2$, $k = t+1$, $\omega = 1$ and $d = \frac{q^k-1}{2} - \left(\epsilon + \sum_{i=1}^h \mu_i \right)$. In terms of a min-hyper, his result can be expressed as follows.

Theorem 3.3. Let $(\epsilon, \mu_1, \mu_2, \cdots, \mu_h)$ be an ordered set in $U(t,2)$ and let $v_{\mu} = 2^\mu - 1$ for any integer $\mu \geq 0$ where $t \geq 2$.

(1) In the case $h = 1$, F is a $(v_{\mu_1+1}+\epsilon, v_{\mu_1})_{i=1}^h$ t,q-min-hyper if and only if
\(F \in \mathcal{F}_U(\varepsilon, \mu_1; t, 2) \).

(2) In the case \(h \geq 2, \mu_{h-1} + \mu_h \leq t-1 \) and \((\mu_1, \mu_2) \neq (1, 2), F \) is a \(\{ \Sigma \, v_{i+1}^j \, + \, \varepsilon, \Sigma \, v_i \, ; \, t, 2 \} \)-min-hyper if and only if \(F \in \mathcal{F}_U(\varepsilon, \mu_1, \mu_2, \ldots, \mu_h; t, 2) \).

(3) In the case \(t \geq 3, (\mu_1, \mu_2, \ldots, \mu_h) = (1, 2, \ldots, h) \) and \(t/2 < h \leq t-1 \) (i.e., \(\mu_{h-1} + \mu_h > t-1 \)), \(F \) is a \(\{ \Sigma \, v_{i+1}^j \, + \, \varepsilon, \Sigma \, v_i \, ; \, t, 2 \} \)-min-hyper if and only if \(F \in \mathcal{U}(h+1, \varepsilon; t, 2) \).

(4) In the case \(t \geq 4, (\mu_1, \mu_2, \ldots, \mu_h) = (1, 2, \ldots, h) \) and \(2 \leq h \leq t/2 \) (i.e., \(\mu_{h-1} + \mu_h \leq t-1 \)), \(F \) is a \(\{ \Sigma \, v_{i+1}^j \, + \, \varepsilon, \Sigma \, v_i \, ; \, t, 2 \} \)-min-hyper if and only if \(F \in \mathcal{F}_U(\varepsilon, 1, 2, \ldots, h; t, 2) \) or \(F \in \mathcal{U}(h+1, \varepsilon; t, 2) \) or \(F \in \mathcal{M}(\alpha, \xi_\alpha; \xi_\alpha, \alpha, \alpha+1, \ldots, h; t, 2) \) for some integer \(\alpha \) in \(\{2, 3, \ldots, h\} \) where \(\xi_\alpha \) and \(\xi_\alpha \) are any nonnegative integers such that \(\xi_\alpha + \xi_\alpha = \varepsilon \).

(5) In the case \(h \geq 3, (\mu_1, \mu_2, \ldots, \mu_{\theta-1}) = (1, 2, \ldots, \theta-1), \mu_\theta > \theta \) and \(\mu_{h-1} + \mu_h \leq t-1 \) for some integer \(\theta \geq 3 \), \(F \) is a \(\{ \Sigma \, v_{i+1}^j \, + \, \varepsilon, \Sigma \, v_i \, ; \, t, 2 \} \)-min-hyper if and only if either \(F \in \mathcal{F}_U(\varepsilon, \mu_1, \mu_2, \ldots, \mu_h; t, 2) \) or \(F \in \mathcal{M}(\alpha, \xi_\alpha; \xi_\alpha, \alpha, \alpha+1, \ldots, \mu_h; t, 2) \) for some integer \(\alpha \) in \(\{2, 3, \ldots, h\} \) where \(\xi_\alpha \) and \(\xi_\alpha \) are any nonnegative integers such that \(\xi_\alpha + \xi_\alpha = \varepsilon \).

(6) In the case \(h \geq 2, \mu_{h-1} + \mu_h > t-1 \) and \((\mu_1, \mu_2) \neq (1, 2), \) there is no \(\{ \Sigma \, v_{i+1}^j \, + \, \varepsilon, \Sigma \, v_i \, ; \, t, 2 \} \)-min-hyper.

Remark 3.2. Theorem 3.3 can be proved directly using the inductive structure of a min-hyper such as Proposition 3.1 in Hamada (1985).

Remark 3.3. In the case \(q \geq 3, \) there exists a \(\{ \Sigma \, v_{i+1}^j \, + \, \varepsilon, \Sigma \, v_i \, ; \, t, q \} \)-min-hyper except for \(\{ \Sigma \, v_{i+1}^j \, + \, \varepsilon, \Sigma \, v_i \, ; \, t, q \} \)-min-hypers constructed by Theorem 3.2 and Remark 3.1.
Example 3.1. (1) In the case $q = 3$, $h = 1$, $\mu_1 = 1$, $\varepsilon = 2$ and $t \geq 2$, let (v_0), (v_1) and (v_2) be any non-collinear points in $\text{PG}(t,3)$ and let $F = \{(v_1), (v_0 + v_1), (2v_0 + v_1), (v_2), (v_1 + v_2), (v_0 + 2v_1 + v_2)\}$. Then F is a $(v_2+2,1;t,3)$-min. hyper which contains no 1-flat (i.e., $F \not\in \mathcal{F}_U((2,1);t,3)$) where $v_2 = (3^2-1)/(3-1)$.

(2) In the case $q = 4$, $h = 1$, $\mu_1 = 1$, $\varepsilon = 2$ and $t \geq 2$, let (v_0), (v_1) and (v_2) be any noncollinear points in $\text{PG}(t,4)$ and let $F = \{(v_0 + v_1), (av_0 + v_1), (a^2v_0 + v_1), (v_2), (v_0 + v_1 + v_2), (v_0 + av_1 + v_2), (av_0 + a^2v_1 + v_2)\}$ where a is a primitive element of $\text{GF}(2^2)$ such that $a^2 = a + 1$ and $a^3 = 1$. Then F is a $(v_2+2,1;t,4)$-min. hyper which contains no 1-flat where $v_2 = (4^2-1)/(4-1)$.

(3) In the case $q \geq 4$, $h = 2$, $\mu_1 = \mu_2 = 1$, $\varepsilon = q-2$ and $t \geq 2$, let V be any 2-flat in $\text{PG}(t,q)$ and let L_i ($i = 1, 2, \cdots, q+1$) be $q+1$ 1-flats in V passing through one point Q in V and let $F = L_1 \cup L_2 \cup \{P_3, P_4, \cdots, P_{q+1}\}$ where P_i ($3 \leq i \leq q+1$) denotes any point in $L_i \setminus \{Q\}$. Then F is a $(2v_2+(q-2),2;t,q)$-min. hyper such that $F \not\in \mathcal{F}_U(q-2,1,1;t,q)$.

From Theorem 2.6 in Hamada (1985), we have the

| Theorem 3.4. If there exists a $\{\sum_{a=0}^{t-1} \varepsilon_{a} \varepsilon_{a+1}, \sum_{a=0}^{t-1} \varepsilon_{a} \varepsilon_{a+t,q}\}$-min. hyper, |
|-------------|-------------|
| $t=1$ | $t=1$ |
| there exists a $\{\sum_{a=n}^{t-1} \varepsilon_{a} \varepsilon_{a+1-n}, \sum_{a=n}^{t-1} \varepsilon_{a} \varepsilon_{a-n+t,q}\}$-min. hyper for any positive |
| integer $n \leq t-2$. |

From Theorem 3.4, we have the following corollary which is very useful in proving the nonexistence of a min. hyper.

| Corollary 3.3. (1) If there is no $\{\sum_{a=0}^{t-1-n} \varepsilon_{a} \varepsilon_{a+1}, \sum_{a=0}^{t-1-n} \varepsilon_{a} \varepsilon_{a+t,q}\}$-min. |
|---------------|---------------|
| $t=1$ | $t=1$ |
| hyper for some positive integer $n \leq t-2$, there is no $\{\sum_{a=0}^{m-1} \varepsilon_{a} \varepsilon_{a+m+1} \}$ |
| $i=0, i+1, i_1, \cdots, i_{m-1} \sum_{a=0}^{m} \varepsilon_{a} \varepsilon_{a+t,q}\}$-min. hyper for any integers m and ε_i's |

- 12 -
such that $1 \leq m \leq n$ and $0 \leq \varepsilon_i^* \leq q-1$.

(2) If there is no \(\{ \sum_{i=1}^{m} \mu_{i+1} + \varepsilon, \sum_{i=1}^{m} \mu_i \}_{i=1}^{h} \)-min-hyper for some ordered set \((\varepsilon, \mu_1, \mu_2, \ldots, \mu_h)\) in \(U(t,q)\) such that \(\mu_h \leq t-2\), there is no \(\{ \sum_{i=1}^{m} \mu_{i+1} + \varepsilon \}_{i=1}^{h} \)-min-hyper for any integers \(0 \leq \varepsilon \leq q-1\) and \(\varepsilon_i^*\)'s such that \(1 \leq m \leq t-1-\mu_h\) and \(0 \leq \varepsilon_i^* \leq q-1\).

4. Characterization of certain min-hypers and a necessary condition

Recently, the author proved the following theorem using Propositions 3.1 and 3.2 in Hamada (1985).

Theorem 4.1. (Hamada(1985)) Let \(t\) and \(q\) be any integer \(\geq 2\) and any prime power \(\geq 3\) respectively and let \((\varepsilon, \mu_1, \mu_2, \ldots, \mu_h)\) be any ordered set in \(U(t,q)\) such that \(\varepsilon \in \{0,1\}\) and \(1 \leq \mu_1 < \mu_2 < \cdots < \mu_h \leq t-1\) where \(1 \leq h \leq t-1\).

(1) In the case \(h = 1\) and \(1 \leq \mu_1 \leq t-1\), \(F\) is a \(\{ \nu_{1+1} + \varepsilon, \nu_1 \}_{i=1}^{h} \)-min-hyper if and only if \(F \in \mathcal{F}_U(\varepsilon, \mu_1 ; t,q)\).

(2) In the case \(h \geq 2\) and \(\mu_{h-1} + \mu_h \leq t-1\), \(F\) is a \(\{ \sum_{i=1}^{h} \mu_{i+1} + \varepsilon, \sum_{i=1}^{h} \mu_i \}_{i=1}^{h} \)-min-hyper if and only if \(F \in \mathcal{F}_U(\varepsilon, \mu_1, \mu_2, \ldots, \mu_h ; t,q)\).

(3) In the case \(h \geq 2\) and \(\mu_{h-1} + \mu_h > t-1\), there is no \(\{ \sum_{i=1}^{h} \mu_{i+1} + \varepsilon, \sum_{i=1}^{h} \mu_i \}_{i=1}^{h} \)-min-hyper \(F\).

In order to generalize Theorem 4.1, it is necessary to characterize all \(\{ \varepsilon_2 + \varepsilon_0, \varepsilon_1 ; t,q \}\)-min-hypers for any ordered set \((\varepsilon_0, \varepsilon_1)\) in \(E(t,q)\) and to generalize Propositions 3.1 and 3.2 in Hamada (1985). In this section, we shall try to characterize all \(\{ \varepsilon_1 \v_2 + \varepsilon_0, \v_1 ; t,q \}\)-min-hypers for any ordered set \((\varepsilon_0, \varepsilon_1)\) in \(E(t,q)\) such that \(\varepsilon_1 \in \{1,2\}\), \(\varepsilon_0 \in \{0,1,2\}\), \(t \geq 2\) and \(q \geq 3\) and to generalize
Proposition 3.1 in Hamada (1985). In the case $\mu_1 \geq 2$ and $0 \leq \epsilon \leq q-1$, we have the following theorem from the proof of Proposition 3.1 in Hamada (1985) since $v_{\mu-1} + (q-1) < v_{\mu}$ for any integer $\mu \geq 2$.

Theorem 4.2. Let $(\epsilon, \mu_1, \mu_2, \ldots, \mu_h)$ be any ordered set in $U(t,q)$ such that $\mu_1 \geq 2$ and $F_U(\epsilon, \mu_1^{-1}, \mu_2^{-1}, \ldots, \mu_h^{-1};t,q) \neq \emptyset$ and let δ_j's be any nonnegative integers such that $\sum_{j=1}^{q+1} \delta_j \leq \epsilon$. If there exists a $\{ \Sigma v_{\mu_i+1}^h + \epsilon, \Sigma v_{\mu_i}^h ;t,q\}$-min-hyper F such that (a) $F \cap G \in F(\mu_1^{-2}, \mu_2^{-2}, \ldots, \mu_h^{-2};t,q)$ for some $(t-2)$-flat G in $PG(t,q)$ and (b) $F \cap H_j \in F_U(\delta_j^{-1}, \mu_1^{-1}, \mu_2^{-1}, \ldots, \mu_h^{-1};t,q)$ for any hyperplane H_j $(1 \leq j \leq q+1)$ which contains G, then $F \in F_U(\epsilon, \mu_1, \mu_2, \ldots, \mu_h; t,q)$.

Remark 4.1. Let $(\epsilon, \mu_1, \mu_2, \ldots, \mu_h)$ be an ordered set in $U(t,q)$ such that $h \geq 2$ and $\mu_1 \geq 2$. Then it follows from Theorem 3.1 that (1) $F_U(\epsilon, \mu_1^{-1}, \mu_2^{-1}, \ldots, \mu_h^{-1};t,q) \neq \emptyset$ if and only if $\mu_{h-1} + \mu_h \leq t$ and (2) $F_U(\epsilon, \mu_1, \mu_2, \ldots, \mu_h; t,q) \neq \emptyset$ if and only if $\mu_{h-1} + \mu_h \leq t-1$. Hence in the case $\mu_{h-1} + \mu_h = t$, there is no $\{ \Sigma v_{\mu_i+1}^h + \epsilon, \Sigma v_{\mu_i}^h ; t,q\}$-min-hyper F which satisfies conditions (a) and (b) in Theorem 4.2. In order to show that there is no $\{ \Sigma v_{\mu_i+1}^h + \epsilon, \Sigma v_{\mu_i}^h ; t,q\}$-min-hyper in the case $\mu_{h-1} + \mu_h = t$, it is sufficient to show that (a) $F^* \in F(\mu_1^{-2}, \mu_2^{-2}, \ldots, \mu_h^{-2};t,q)$ for any $\{ \Sigma v_{\mu_i+1}^h + \epsilon, \Sigma v_{\mu_i}^h ; t,q\}$-min-hyper F^* and (b) $F^{**} \in F_U(\epsilon, \mu_1^{-1}, \mu_2^{-1}, \ldots, \mu_h^{-1};t,q)$ for any $\{ \Sigma v_{\mu_i+1}^h + \epsilon, \Sigma v_{\mu_i}^h ; t,q\}$-min-hyper F^{**}.

From Theorem 4.2, Remark 4.1 and Corollary 3.3, we have the

Corollary 4.1. (1) If $F^* \in F_U(\epsilon, 1; t,q)$ for any $\{ v_2 + \epsilon, v_1 ; t,q \}$-min-hyper F^*, then $F \in F_U(\epsilon, \mu_1; t,q)$ for any $\{ v_{\mu_1+1} + \epsilon, v_{\mu_1} ; t,q \}$-min-hyper F where $t \geq 3$,
0 \leq \varepsilon \leq q-1 and 2 \leq \mu_1 \leq t-1.

(2) Let \((0, \mu_1, \mu_2, \ldots, \mu_h)\) be an ordered set in \(U(t, q)\) such that \(h \geq 2, \mu_1 = 2\) and \(\mu_{h-1} + \mu_h \leq t\). If \((\alpha) \ F^* \in \mathcal{F}(\mu_1, \mu_2, \ldots, \mu_h; t, q)\) for any \(\{ \sum_{i=1}^{h} \mu_{i-1}^*; t, q\}\)-min-hyper \(F^*\) and \((\beta) \ F^{**} \in \mathcal{F}(\mu_1, \mu_2, \ldots, \mu_h; t, q)\) for any \(\{ \sum_{i=1}^{h} \mu_{i-1}^{**}; t, q\}\)-min-hyper \(F^{**}\), then \(F \in \mathcal{F}(\mu_1 + m, \mu_2 + m, \ldots, \mu_h + m; t, q)\) for any \(\{ \sum_{i=1}^{h} \mu_{i-1}^{**}; t, q\}\)-min-hyper \(F\) in the case \(0 \leq m \leq \frac{(t-1-\mu_{h-1} - \mu_h)}{2}\).

and there is no \(\{ \sum_{i=1}^{h} \mu_{i-1}^{**}; t, q\}\)-min-hyper \(F\) in the case \(t-1-\mu_{h-1} - \mu_h\) \(< m \leq \frac{(t-1-\mu_{h-1} - \mu_h)}{2}\).

In the case \(h \geq 2, \mu_1 = 1\) and \(\mu_h \geq 3\), we can prove the following theorem using a method similar to the proof of Proposition 3.1 in Hamada (1985).

Theorem 4.3. Let \((\varepsilon, \mu_1, \mu_2, \ldots, \mu_h)\) and \(\theta\) be an ordered set in \(U(t, q)\) and an integer respectively such that \(h \geq 0 \geq 2, \mu_1 = 1, \mu_\theta \geq 3\) and \(\mu_{h-1} + \mu_h \leq t\) and let \(r\) be the number of integers \(i\) in \(\{1, 2, \ldots, h\}\) such that \(\mu_i = 1\) and let \(\delta_j's\)

\[\sum_{j=1}^{h} \delta_j = \varepsilon.\]

If there exists a \(\{ \sum_{i=1}^{h} \mu_{i-1}^\varepsilon; t, q\}\)-min-hyper \(F\) such that \(\alpha) \ F \cap G \in \mathcal{F}(\mu_{\tau+1} - 2, \mu_{\tau+2} - 2, \ldots, \mu_h - 2; t, q)\) for some \((t-2)\)-flat \(G\) in \(PG(t, q)\) and \(\beta) \ F \cap H_j \in \mathcal{F}(\mu_{\tau+\delta_j}, \mu_{\tau+1} - 1, \mu_{\tau+2} - 1, \ldots, \mu_h - 1; t, q)\) for any hyperplane \(H_j (1 \leq j \leq q+1)\) which contains \(G\), then \(F\) consists of a \(\mu_\theta\)-flat, a \(\mu_{\theta+1}\)-flat, \ldots, a \(\mu_h\)-flat and a set \(X\) in \(PG(t, q)\) which are mutually disjoint.

Remark 4.2. A set \(X\) in Theorem 4.3 is not necessarily unique. For example, either \(X \in \mathcal{F}(1, 2; t, 2)\) or \(X \in \mathcal{U}(3, 0; t, 2)\) in the case \(q = 2, \varepsilon = 0, h \geq 3, \mu_1 = 1, \mu_2 = 2\) and \(\mu_3 \geq 3\).
Remark 4.3. Theorem 4.3 shows that in the case $h > \theta \geq 2$, $\mu_1 = 1$, $\mu_\theta \geq 3$ and $\mu_{h-1} + \mu_h = t$, there is no $\bigcup_{i=1}^{h} \nu_i + 1 + \varepsilon_i$, $\bigcup_{i=1}^{h} \nu_i ; t, q$-min-hyper which satisfies two conditions (a) and (b) in Theorem 4.3 since there exist a ν_{h-1}-flat and a ν_h-flat in $PG(t, q)$ which are mutually disjoint if and only if $\mu_{h-1} + \mu_h \leq t$.

Since there is no space to give the proof of the following theorem, we shall describe only results. In detail, refer Hamada (1986a, 1986b and 1986c) in which the proofs of theorems in Sections 3 and 4 and more general results are given.

Theorem 4.4. (Hamada (1986b and 1986c)) Let t and q be an integer ≥ 2 and a prime power ≥ 3 respectively and let $v_2 = q+1$.

1. In the case $0 \leq \varepsilon < \sqrt{q}$, F is a $\{v_2 + \varepsilon, 1 ; t, q\}$-min-hyper if and only if $F \in \mathcal{F}_U(\varepsilon, 1 ; t, q)$.

2. In the case where either (a) $q = 3$ and $\varepsilon = 2$ or (b) $q = p^{2r}$ and $\sqrt{q} \leq \varepsilon \leq q-1$ for a prime p and a positive integer r, there exists a $\{v_2 + \varepsilon, 1 ; t, q\}$-min-hyper F such that $F \not\in \mathcal{F}_U(\varepsilon, 1 ; t, q)$.

3. In the case where q is a prime and $(q+1)/2 \leq \varepsilon \leq q-1$, there exists a $\{v_2 + \varepsilon, 1 ; t, q\}$-min-hyper F such that $F \not\in \mathcal{F}_U(\varepsilon, 1 ; t, q)$.

4. In the case $t = 2$, (a) there is no $\{2v_2, 2 ; t, q\}$-min-hyper for any prime power $q \geq 3$ and (b) there is no $\{2v_2 + 1, 2 ; t, q\}$-min-hyper for any prime power $q \geq 4$ and (c) there is no $\{2v_2 + 2, 2 ; t, q\}$-min-hyper for any prime power $q \geq 5$.

5. In the case $t \geq 3$ and $q \geq 3$, F is a $\{2v_2, 2 ; t, q\}$-min-hyper if and only if $F \in \mathcal{F}(1, 1 ; t, q)$.

6. In the case $t \geq 3$ and $q = 3$, F is a $\{2v_2 + 1, 2 ; t, 3\}$-min-hyper if and only if either $F \in \mathcal{F}(0, 1, 1 ; t, 3)$ or $F \in \mathcal{U}(2, 1 ; t, 3)$. In the case $t \geq 3$ and $q \geq 4$, F is a $\{2v_2 + 1, 2 ; t, 3\}$-min-hyper if and only if $F \in \mathcal{F}(0, 1, 1 ; t, q)$.

- 16 -
(7) In the case $t \geq 3$ and $q \geq 5$, F is a \(\{2v_2+2,2;t,q\}\)-min-hyper if and only if $F \in \mathcal{J}(0,0,1,1;t,q)$. In the case $t \geq 3$ and $q = 3$ or 4, there exists a \(\{2v_2+2,2;t,q\}\)-min-hyper F such that $F \notin \mathcal{J}(0,0,1,1;t,q)$.

References

7. N. Hamada, Characterization of min-hypers in a finite projective geometry and its applications to error-correcting codes, Submitted for publication (1986a).
8. N. Hamada, Characterization of \(\{2(q+1),2;t,q\}\)-min-hypers and \(\{2(q+1)+1,2;t,q\}\)-min-hypers in a finite projective geometry, Submitted for publication (1986b).
9. N. Hamada, Characterization of \(\{(q+1)+2,1;t,q\}\)-min-hypers and \(\{2(q+1)+2,2;t,q\}\)-min-hypers in a finite projective geometry, Submitted for publication (1986c).
13. F. Tamari, On an \(\{f,m;t,s\}\)-max-hyper and a \(\{k,m;t,s\}\)-min-hyper in a finite projective geometry \(PG(t,s) \), Bulletin of Fukuoka University of Education 31 (III) (1981), 35-43.