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1. Introduction
Let 4 be a family of flats in a t-dimensional finite projective geometry
PG(t,s) where s is a prime or pime power. Let ¢ (22) be a positive integer.
A family A 1is said to be an £ intersectional empty set (or 2-IE set) if the

intersection of any £ flats A, A - -5 Ay in ¢ is empty but the intersection

2

‘ofsome(l-l')flatsf,B, ...,B
-1

be a regular 2-IE set if all flats :Ln)-é have the same dimension, i.e.,dim(A) =

in ;{ is not empty. }‘ is also said to

v for all A :Ln;{ Furthermore, 5}0 is said to be a maximal (regulér) 2-IE set
if lflc!» > I}{l for all (regular) &-IE sets;{ in PG(t,s) where MI denotes the
cardinalty of 4. '

| Let V(n;s) denote an n-dimensional vector space over a Galois field GF(s).
A k-dimensional subspace C of V(n;s) is called an s-ary linear code with code
length n, k information symbols and the minimum distance d if the minimim dis-
tance (Hammming distance) of the code C is equal to 4, and iS denoted by
(n,k,d;'s)fqdde.



40

We now conSider_ the following problem.

Problem A.  Find a linear codes C (called an optimal linear code) whose

code length n is minimum among (¥,k,d;s)-codes for given integers k, 4 and s.
In this paper, we shall construct optimal linear codes using 2.;IE sets.

2. Prelimina}.y results

We shall give some properties of flats.in PG(n,s) in this section.

Let W be a p-flat in PG(n,s) and let b, (1 =1,2,...,u+l) be a basis of
* X
| the u-flat W. The (n - —1)-flat W defined by W = {n € PG(n,s) : Eb] = O over

GF(s) (1 = 1,2,...,u+1) is called the dual space of the u-flat W where a'

denotes the transpose of a. Especially the empty set will be defined as thef

dual space of the, space and vice versa. Then we can easily prove the following :

o)

: - * *
Proposition 1. Iet V and W beTany flats in PG(n,s) and let V and W

be the’dual space of V.and.W, respectively. -Then

1) v¢ W if and only ifv*) W
W VAW = TOW and (VAW =7V ®W

where V@ W denotes the flats generated by V and W.

A family of t-flats V. 1} in PG(h,s) is called a t-spread if every point
in FG(h,s) belong to one and only one t-flat {V,}.
Let @ be a primitiVe element of GF(sn+13. Then every point in PG(n,s)

- 1 where v =

is represented by the power ai of a'for some 1 = 0,1,...,v n+l

n+l

+ -
(Sr,l ;‘- 1)/(s-1). Ift +1divides n + 1, then a family of cyclically generated
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t-flats in PG(n,s), represented by

vV, = (o0 o8

3 a(w-l)6+j.'} (i=0,1,...,8 =1)

oo ey

EHl

- +
is a t-spread in PG(h,s) where w = (st+l -1)/(s-1)and 8 = (s L 1)/(s 1

Since ¢ 1s a primitive element of GF(q), q = st+l, every nonzero of elément of

GF(q) may be represented by @3° (j = 0,1,...,q — 2). Morever, the set of points

cci (1 =0,1,...,8 - 1) may be regarded as that of PG(k,q) where k + 1 =
(n +1)/(t +1). This implies that {vi}‘ defined above can also be regarded as

the set of all points of PG(k,q). Thus we have

Proposition 2 (cf.[2]). There exists a t-spread in PG(n,s) if and only if
t.#1 divides n + 1. Furthermore, there exists a t-spread {Vi} such that {Yi}

can be regarded as the set of all points of PG(k,q) where k +1 = (n + 1)/(t + 1).

A set L of vectors 215 855 - - -+, ém‘. in V(r;s) such that no t vectors
of L are linearly dependent, is called a t—linéarly independent set and a
t-linearly independent set L0 is said to be maximal if there exdsts no t-lineary
independent set such that |L| > ILO] . The cardinality of a maximal t-lineary
independent set L, is denoted by Mt(r,s) .

Attempts of obtaining Mt(r,s) have beén made by many research workers.
But, unfortunately, Mt(r,s) are patially obtained for some £, r and s but not

yet completely.



Proposition 3. Let m be a nonnegative integer. Then, there exists a set of
{(2 - m + (2 - 2)}-flats Y, (1=1,2,...,m) in PG(2(m+1)-1,s) such that
dim(Yil/\ Yizf\. .. (\Yir) =(L-r)m + (& -7 - 1) for ary flats Yij (G =1,

2,..,0) In (1} (LgkgM where 1rgtand w=1(e,s"0).

%
Proof. It follows from Proposition 2 that there exists an m-spread {Wi}
(1 =1,2,...,7) in PG(2(m+1)-1,s) where ¢ = (s*(™1) _ 1)/(s™L _ 1), Since

*
each m-flat W, can be regarded as a point in PG(2-1,s™71), there exists a maxi-

* * *
~mal f-linearly independent set {f,} (k = 1,2,...,m) in (W}, i.e., din(Y;
* * R .
@Yiz@. .. @Yi ) =rm +r - 1 for any flats {Yi'}(j =1,2,...,r) in

r J

" .
{Yk}“ Let Y, be the dual space of ¥ in PG(L(m+l)-1,s) for k = 1,2,...,7-

Then, it follows from Proposition 1 that {Y,} (k = 1,2,...,7) is a required

1

set, This completes the proof.

Corollary. There exists a regular 2-IE set with the cardinality = in .

PG(2(m + 1) - 1,s) where w is an integer given in Proposition 3.

Proposition 4. A necessary condition for W Hys o+ . 5 My that there
exist uy-flats W (1 = 1,2,...,2) in PG(k-1,s) such that WAV, ) - N,

= ¢, 1s that H1s By « . ., M, satisfy the following condition:

By Fu, L .+u2;(z—;19k-z.

*
Proof. Let W, (1 =1,2,...,2) be the dual space of Wi in PG(k-1,s). Then,

% *
1 1s easily shown that I {dim(W,) +1} 2 k. Since dim(wz) =k-2-y for
1=1 -

i=1,2,...,2, we have required result.
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3. Linear codé_s and linear programmings

Let N = “nj;j | = 1,2, ;% § = 1,2,...,%,) be the incidence matrix of
v, hyperplanes Hy 1= l,2,...,vk) and v, points QJ. G = 1,2,...,vk) in PG(k-1,s)
defined by

{1, if the ith hyperplane Hi contains the jth point Qj P
n ——
ij

0, otherwise,

where v, = (sk -1)/(s - 1).

It is known that Problem A is equivalentYthe following Problem.B (¢f. The-
orem 2.2 in [3]). ‘

Problem B. Find a set’ {xj} (L<Jz vk) of nonnegative integers'.{x'j‘} that

- _
i S
minimizes I xj subject to the inequalities:
J=1 '
v | |
jf-l (1 —vnﬁ)xj >d (1= 1,2,...,vk) (3.1)

for given integers k, d ard s.

Let & be a positive integer. It is easy to see that d can be expressed

uniquely by

d=1+8,+ 8s+. .. +8 l-2 k=1 (3.2)

where ej’_'s are integers satisfying 0 <

A
D

2 0.

Proposition 5 (ef. Theorem 2.2 in [3]). If {XJ.} G = 1;2,...,vk) is a set
of nonnegative integers satisfying the inequaliﬁies (3.1) and d is expressed
as (3.2), then
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v .
jfl‘ Xgpkhoguy H OV, L ke v (3.3)
_where v, = (s1 -1)/(s - 1) for 1 = 1,2,...,k.

We now glive a general construction of a solution of Problem B, that is,
a set of nonnegative integers satisfylng the inequalities (3.1) ard attain(/g\
the lower bound (3.3). -
Let g =s-1- 8 for 1 = 0,1,..., k — 2 and let 3 be a set which con-
sists of € p-flats VE (Ogpsgk-2,1-= 1,2,...,5}_1) where VJ:.‘L‘?'S are not nec-
essarily distinct. Given e; (1 = 0,1,...,k = 2), let Heg,eq,---55,_,) be the
family of all such B’s and let ;J.(B) denote the number. of flats in B which

contain the point Q 1n PG(k-1,s).

Proposition 6 (cf. Theorem 3.1 in [3]). ILet d be an integer given by
(3.2). If there exists a setf§ in Hegseys -0, ) such that na.ic{cj(B) :e

lgjgvk}ge

-1 + 1, then a set {xj} of nonnegative integers which is given by

{x.j = ek—l + 1 -~ z;j(‘ﬁ) : j= 1,2,...,vk}
“1s a solution of Problem B.

Note that there exists a set § in ey,eq5.--,€, ) such that max{cj%) :

1<J¢z Vk} =9 — 1 if and only if there exists an 2-IE setB in?(ao,al,---:ek_z)-
It 1s known in [3] that if there exists an ¢-IE set [ in K0,e ,...,5 5), then
.there exists an ¢-IE set B in'?(so,sl,...,ek_z) (cf. Lemma 4.1 in [3]). Therefore,

in this paper we shall investigate about 2-IE sets of 320,51, ...,sk_z) in details.

- Let E(k,s) be a collectién of ordered sets (g),e5,-- .,ek_z) of integers

such that 0 < e, < s-1fori=1,2,....k = 2. Consider a subset E_(k,s) of

i
E(k,s) for some t = 0,1,...,k — 2 satisfying the following condition:
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k-2 ;
(@ = g st+l
i= -
* ' (3.4)
k-2 '
(b) iﬁlai;t+2::lﬁarﬁ Bl+82+ . . +Bt+2§,(t+l)(k—l)—l

where By (1=1,2,...,t +2) are the first t + 2 integers in the following series:

k-2,k-2,...,k-2;k-3,k-3,...,k-3;...31,1,...,1
Proposition 7. A necessary condition for 2 (3 = 1,2,...,k - 2) that
there exists an 2-IE set 3 in ?(O,;l,.. .3€,_5) for a given positive integer £ (32)

1s that (g),65,--0,5 ) € El_é(k,s) - E,_5(k,s) where E_(k,s) = §.
Proof. See Theorem 4.1 in [3].

In the following, let £ be an integer such that 2 < £ < k - 2. Let (e,

sz,...,ek_z) be any element 1nE£_ where k = ¢m+1) -qm>0,0<qg g2~ 1).

2
Then it follows from (3.4) that (s-:l,ez,...,e:k_é) must be an ordered set satisfying

the condition:

(3.5)

o
| A
™
™
ItA
e
I
=

where § = [(%k - k - 2)/2]

]
~
e
|
-
Nt
=]
+
<
!
n
|
Ne]
Lo
»
(]
g
cr
[}
[}
ct
B
&
®
(4]
ct

integer not exceeding x.
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Now, we shall describe main theorems in this paper.

Theorem 1. Let (ey,&5,...55 ,) be an a_elemenﬁ inE ,-E 5

k-2
= ‘ .e- fies the
such that i=§+l € 0. If an ordered set ( €15€9s ’Ek—z) satisfies

following condition:
k-2

I g M2,

mt+l
s )
i=1 1

b
; q
then there exists an £-IE set f§ in J(0,eq,-..55, ,)-

Proof. Two cases must be considered (i.e., q=0and1<q< 2 - 1).
Case (I) when g = 0 (1.e., k= 2(m + 1)). Let T, (1 =1,2,...,m) be

{(2 - 1)m + & - 2}-flats obtained in Proposition 3. Consider a py-flat V*J‘
1z u $k-2, = 1,2,...,s:u) in Yt+j where t = Zg €; and g4 = 0. Then B=
{WﬁJ:‘} (lrspusgk2, j= 1,2,...5¢,) 1s 2 required set.

Case (IT) when 1 < q < 2 -1 (i.e., k=2(m+1) -q). Let G be any

{elm + 1) - g - 1}-flat in PG(2(m+l)-1,s). Let v}”q (lgugk-2,j=
1:2,-~-,€u+q) be a set of (u + q)-flats in PG(L(m#—l)-—l,s) which were obtained

in Case (I) of this theorem. Since dim(G f\V§+q) > u, we can obtain p-flats

U Lgugk-2,§=1,2,..,¢c) contained in G/\v‘;“q. Let B= (U}: Then,
B is required set, because G can be identified with PG(L(mt+l)-g-1,s).

This completes the proof.
- -2 |
Inthecase I €, =p 21, let us denote by § + e, (1 =1,2,...,p)
1=681. + T |

" p Integers such that

s+l €542 “}-2

§HL,641, ..., 0413642, 842,...,6+2; . .. 3k-2,k2, -

- . . .t = e,
eék 2. Put e +e2+ ep

éezg... o 1

A

where 1 < ?l
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Theorem 2. Let (51’6.2’ ...,sk_z) be an element in Ez,_z - E1_3 such that

k-2

1< I g, <2-2. Ifan ordered set (el,sz,...,ak_z) satisfies the follow-
i=6+1 1T .

ing condition:

k-2
I e g M, (2,5
1=1

5
£ e, <mn{M, _(2-p,s"), M, (L,
1=§-etl T e A %

sfn‘"l) - p}

k-2 B
where I g = pand T = [e/(% - p)](>1), then there exists an L-IE set B in
i=6+1 -

300,005 L)

Theorem 3. Let (e:l,ez,...,ek_z) be an element in E, , - E:j?‘_.3 su;h 'that
k-2 : .
L €, =42-1. If an ordered set (e,,€.,...,€ ) satisfies the following

o641 1 1527 k-2 »
condition:

k-2

I e <M (l,sm+l) s

— i="1

i=

then there exists an 4-IE set B in 3((0,31, .- ’Ek—z)

In order-to prove Theorems 2 and 3, we prepare two lemmas.
For simplicity, Put (£ - 1)m+ % -2 =u. Let V; (i =1,2,...,p) and
: V:j (J=p+1,p+2,...,2) are (u + ei)—f‘lats and (u = e )-flats in PG{l(m+l)

-1,s), respectively, such that U\ YAREE ﬂVp (\Vp+lﬂ IR AR
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Then it follows from proposition 4 that e; (i =1,2,...,4) must be integers

satisfying the condition:

el+e2+"_'+ep§ep+l+§p+2+"'+e£' (3.6)
Let e, (1 =1,2,...,2 - 1) be integers such that lgeSeys... 3¢ <m

and 0 <
=S S - - g1

+ +... ;
Sot2 e 1)5 ¢ 4}. Then it is easy to see that €5 €5 -+ 5 &

A

.Ze )?w;eg‘=nax{(el+e2~l-...+ep)-(ep_l_l

are integers which satisfy the inequality (3.6) and e+ < €2 ...

Put e +...+ep=eand[e/(£-‘p)]=‘r. Then we have

se .

[N te,
Lemma 1. If 1> 1and £ - p > 2, then there exists an ¢-IE set 3 consists

of (u+ ei)-flats V1 1i=1,2,...,p), (u- ej)—flats Q‘j (J=p+1l,p+2,...,

L - 41)’ (u - e,)-flats R (k=2,2+1,...;0 +p) and (u - e)flats T (n =1 +

P+1+p+2,...,1) in PG(2(m+l)-1,s) where m = M,(2,s" ") and A = min{r - p,

M,__p(l-p,sT)}.

E 3
Proof. Let Yj (J =1,2,...,7) be mflats given in the proof of Proposition

* #
3. Let Ui and V; be an (ei - 1)-flat and an (m - ei)—flat in Y., respectively,
* : :
such that Uiﬂvi =¢ for i = 1,2,...,p. Let Wbe the flat generated by Ul‘, U2,
RN Up, le., W= U1®U2@ .. ..@Up. Then, it is easy to see that W is an

‘ * * *
(e - 1)-flat where e = e, +e_. + . . . + ey because dim(Y'i @Yi @.. -@Y_i )
‘ 2

1 2
; 1 2
* % .
=m + &£ - 1 for any flats Yi (7 = 1,2,...,2) in'{Yk}. lete=(L-p)t+ ¢
J
(0<f<2-p). Then we can choose an (e — £ - 1)-flat W, and an (f - l)—flat

1
W, in W such that W, )W, = ¢. Then we can obtain a set of (t - 1)-flats D; (i
=p+1,p+2,...,§ +p) in W, such that dim(Dil@Dize .. .®Di'l_p) =e-f
-1=(% -p)t - 1 far any flats Dy s Dy e Diz-p in (D} (1=1,2,..0,8)
where £ = Ml_p(z-p,sT)

- 10 -



We now prove this lemma by separating two cases.

- . '_ : 1 - +
Case (I) e (ep+l + €oe2 + .. .4 ef.—l) 2e, 1 (1.e.,e =e (ep+l

& 1)

p+2+' .. te

(1) Caseogejér-lforj=p+.l,p+2,...V,gwherep+l§g§z-l.

let BJ and Fj be an (e‘_I -1)-flat and 2 (t - 1 - ej)—flat in Dj’ respectively,
% *
such that Bj nFj = ¢ and put Qj = BJ‘@YJ' for j=p +1,p+2,...,8.

(11) Caseej=rforj=g+1,g+2,...,rwhereg+l§r§9.—1. Let
*

Q —D@Y*f =
J = j J OI‘J —g+l’g+2,.-.,r-

(111) Case‘t-!-léejéuforj=r+l,r+2,...,9..

Tet F;j bea(t-1- ej)-f]at obtained in €1) and.'l;et_a_(oj;m) (n.= 1,2,...,

T - ej) be a basis of FJ. for j=p+1,p+2,...,8 where.cp+l =0 and oy =

J-1

T -e. +2< ) ] =e - +e +...+te, ;)=
on (= ej) (p <J £g). Since e, =e (ep+l 042 1

- - j=g+1,g+2,...,T),
(L-p)t +°f (ep+l+ep+2+...+el_l)andej t(=g+lg+2,...,T)

L4

(T—epl_l)'l'....+(T-eg)+(t—eg+l)+...+(r—er)+(T—eI+l)
+...+('r—e2_1)+(‘t—e£)=(5L—p)1‘-—(ep-+l+ep+2+...+e2_1)-e£
implies

g -1
X (r—e)=(e£—f-t)+ T (ei-t).
1=+l J 1=r+l
= i = +2,...,4 -1
Put K, —(c+l)+§(c+2)+“‘+§(6.+e.-r) fori=r+1,r PR _
i i i7i
and put Ki= §<Gz+l)+a_1(cl+2)+. "+-a-'(02+él—f-‘if) where crr+1=0and_.ai=
i-1
z (ej-r)(r+251§_2—1).
j=r+1 -

- 11 -
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’ * * *
Let QJ = DJ‘@KJ@YJ' forj=r+1l,r+2,..., -1 and let Rk = Dk@Kl@

* * * .
W2®Yk fork=2,2+1,...0A +pandlet T =Y @Wforn=2X+p+LA+p+2,

cee,.
Ieﬁ v _ £ % ¥ * .
Vs> QJ., Rk and 'I'n be the dual space of Vi, Qj, Rk and Tn, respectively,

for each 1, .J5 k, and n. Let B= (v} UQ;IU ® Iy T} Then J3 is a required

set.
Case (II) e - (ep-i-l + eoe2 + ... +'e2_1) <e o (1.e., e = e!.—l)'
Similary, it can be shown that Lemma also holds in this case. This completes
the proof.

Lemma 2. There exists an 2-IE set [ consists of (u + ei)—flats \A 1=1,
2,...52 -1), (u- eJ)—f.‘lats QJ (J =2,2+1,...,7) in PG(L(m+1)-1,s) where T is
an integer which is given in Lemma 1.

Proof of this lemma is similar to that of lemma 1 and hence we omit
the proof of this lemma.

[Proof of Theorem 2]. Similary to the proof of Theorem 1, we shall prove

that of this theorem by separating two cases.
Case (I) when q‘ = 0. From Lemma 1, we can obtain (§ + ei)-flats V:L (1=1,
2,~--,P) and ﬁ-flats V}_; (Lgugs,j= ‘1’2""’5!-1) such that -
Vlnvzn. . ./\Vanp_'_zn. - -NUy = $

for any flats Uy, U ooy - - - Uy dn (). Let B= (W} (v}, Then it is

easy to see that § is a required set.

-12 -
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Case (IT) when 1 < q < £ — 1. Similary to case (II) in the proof of Theorem

1, we can easily prove this theorem. This completes the proof.

[Proof of Theorem 3]. Similary to the proof of Theorem 2, we can easily

prove this theorem and hence the proof of this theorem is omitted.
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