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ABSTRACT

We outline current knowledge about producing directed analogues
of the usual undirected triple systems. Algorithms for directing and
orienting block designs are emphasized. We also mention some open

problems involving orientation of designs.

1. Background

A triple system B[3,\v] is a pair (V,B); V is a v-set of elements, and B is a col-
lection of 3-element subsets of V called blocks or triples; each 2-subset of elements
appears in precisely X triples. Triple systems have been very widely studied in com-
binatorial design theory. Mendelsohn [11,13] suggested the extension to designs which
are balanced for directed pairé, instead of the usual balance required for undirected
pairs of elements. With this in mind, define a Mendelsohn triple system (MTS)
MBJ[3,\;v] to be a collection B of “‘cyclic triples” on a v-set V of elements; a cyclic tri-
ple (a,b,c) is said to contain the ordered pairs (a,b),(b,c),(c,a), and each ordered pair is
contained in precisely A\ cyclic triples. Such systems are also called ‘“‘cyclic triple sys-
tems”, but we adopt the current notation, suggested by Mathon and Rosa [12], to
avoid confusion with systems having a cyclic automorphism. Observe that graph-
theoretically, blocks in a MTS are cyclic tournaments of order 3; a different directed
analogue, suggested by Hung and Mendelsohn [11], takes blocks to be transitive tour-
naments of order 3. A directed triple system (DTS)DB[3,\;v] is a collection of “‘transi-
tive triples’” on a w-set V of elements; a transitive triple <a,b,c> is said to contain

the ordered pairs (a,b),(a,c),(b,c), and every ordered pair is contained in precisely A
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transitive triples. These are also called “‘transitive triple systems”, but again we prefer
the present name to avoid confusion with triple systems having transitive automor-
phism group.

Existence questions for Mendelsohn and directed triple systems have been settled
[11,13], and hence one might consider extending the large body of current knowledge
about triple systems to their ordered analogues. However, it seems more sensible to
explore the relationship between triple systems and the ordered versions, in the hope
that a number of extensions may be straightforward. With this in mind, observe that
if one simply pretends that cyclic triples or transitive triples are just 3-subsets, one
produces a B[3,2\;v] from a MB[3,\;v] or a DB[3,\;v]; the triple system so obtained is
called the underlying triple system. Naturally, for some systems this process can be
reversed. When a triple system B[3,2X\;v] can be rewritten as cyclic triples to produce
a MB([3,\;v], we say the system is orientable, and we refer to the process of producing
the required cyclic triples as orientzng. Similarly, when a triple system can be written -
as transitive triples to produce a DB[3,\;v], we say the system is directable, and we

refer to the production of transitive triples as directing.

Mendelsohn [13] showed that there exist B[3,2;v]’s which are not orientable; in
fact, for every v=0,1 (mod 3), v>9, there is an orientable B[3,2;v] and a non-orientable
B[3,2;v] [1]. Turning to directing, however, the situation is dramatically different:
every B[3,2;v] is directable [3]. In the remainder of this paper, we study algorithms for

directing and orienting, and at the same time consider the extension to higher X.

2. Directing triple systems

Colbourn and Colbourn [3] established that every triple system with \=2 can be
directed, by describing an efficient algorithm for directing such a triple system. This
algorithm was later modified by Colbourn and Harms [5] to show that every B[3,2\;v]
is directable. The idea in the algorithm is straightforward. First, modify each 3-subset
to form a transitive triple in any way at all. In the configuration which results, each
ordered pair appears between O and 2\ times. An ordered pair appearing s times for
s#\ is termed a conflict, and the severity of the conflict is maz(s—A\A—s). The
directability of the system is established by showing that the severity of some conflict
can be reduced, while no conflicts are introduced and none become more severe.
Repetition of this process eventually eliminates all conflicts. As a simple example, sup-
pose <a,b,c> is a transitive triple and (a,b) appears more than X\ times; replacing
<a,b,c> with <b,a,c> reduces the severity of the conflict. Not all substitutions are
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this trivial, but Colbourn and Harms show that in every case there is a sequence of

substitutions which reduce the severity.

Computational experience with this algorithm showed that, despite its polynomial
running time, it does a lot of unnecessary work -- triples are reordered at one step only
to be returned to their original order at some later step. It is therefore of interest to
direct the system one block at a time, never backtracking to correct an earlier
incorrect decision. Harms and Colbourn [8,9] developed an algorithm with this

behaviour. We sketch this simpler method here.

Given a ‘B[3,2>\;v], first fix an ordering for the elements; for convenience, let the
elements be {0,1,...,1}-—1} and use the natural ordering. Partition the blocks into seg-
ments; the segment S(7) for element ¢ contains all blocks in which 7 is the smallest ele-
ment. The algorithm operates by processing the segments S(v—1) down to S(0), form-
ing transitive triples for each segment in turn. The key observation is that in process-
ing S(7), no pairs involving 7 are directed yet, and moreover that the pairs appearing
with ¢ in blocks of S(¢) induce a multigraph of maximum degree 2X\. Directions for the
edges in this multigraph can be chosen arbitrarily to maintain ‘“balance” on edges
{j,k} with j,k>7, and it is then relatively straightforward to handle all pairs contain-

ing ¢. The details appear in (8], and a worked example in [9].

Directing a triple system by either algorithm gives many selections for edge direc-
tions which can be made arbitrarily; hence, it appears plausible that a triple system
underlies very many different directed triple systems., One avenue that remains unex-
plored here is to use probabilistic techniques to show that every triple system is direct-
able -- this may be generalizable to producing many distinct directed triple systems on
the same underlying system. Little progress in this direction has been made, although
there is one very appealing related conjecture: every triple system underlies six disjoint
directed triple systems [10]. If true, this is of course best possible, since any triple can
only be directed as a transitive triple in six different ways. This conjecture seems

plausible, but is far from settled.

Finally, it deserves mention that every triple system having a cyclic automorphism
underlies a directed triple system having a cyclic automorphism [7]. It seems reason-
able to expect that one can require other group properties to carry over in the direct-

ing process.
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3. Orienting triple systems

Orienting triple systems is a completely different matter. In this case, there are
systems which cannot be oriented. Take, for example, the unique B[3,2;6] with blocks
{012, 013, 024, 035, 045, 125, 134, 145, 234, 235}. Consider any block, say {012}. In an
orientation, this block must appear as (0,1,2) or (0,2,1); there are only two choices.
Moreover, if there is an orientation containing, say, (0,1,2), there is a second orienta-
tion obtained by changing each cyclic triple (a,b,c) to (a,c,b); hence, there is an orien-
tation containing (0,2,1). Thus we assume without loss of generality that {012} is
oriented as (0,1,2). Given this, {013} must be oriented as (0,3,1); similarly, {024} as
(0,2,4) and {125} as (1,5,2). These in turn imply the orientation of more triples: (0,5,3),
(1,3,4), (0,4,5), and (2,3,4). But now we require that {235} be oriented both as (2,3,5)
and as (2,5,3), an obvious impossibility. At no step was a choice made, and hence the
original design cannot be oriented. This process applies in general, and is an efficient
method for determining whether a B[3,2;v] is orientable; in the general case, three out-
comes of the forcing procedure outlined above are possible: all triples are oriented
(design is orientable), a contradiction as above is encountered (design is not orientable),
or some triples are oriented without contradiction but there remain blocks whose orien-
tation is not forced. It is easy to see in the latter case that we can omit the blocks
already oriented; the orientability of the whole design depends entirely on the orienta-
bility of those which remain. This is an interesting method because it involves no
backtracking, despite the initial appearance that backtracking may be required. In
this regard, it is very similar to determining satisfiability of logical formulas with two
literals per clause; M. Colbourn [6] has observed that orientability can be checked

easily using an algorithm for 2-satisfiability.

One might hope again that the results for A=2 generalize to higher \; here, how-
ever, Colbourn [2| has proved that determining orientability is NP-complete, even for
A=4. This has two important consequences: it shows that orienting for higher X\ differs
substantially both from directing and from orienting with A=2. The second conse-
quence is that is establishes the existence of infinitely many triple systems with A=4
which are non-orientable. The spectrum of non-orientable triple systems with A=4

remains undetermined, however.

The NP-completeness result really limits what one might hope to do for higher X;
nevertheless, it appears possible that some reasonable necessary conditions or sufficient

conditions might be developed for orientability.
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4. Open Problems

The main point of this brief introduction is to outline the state of current

knowledge. Perhaps the most important aspect is to state carefully some interesting

open problems, some of which are currently being studied by the author and others.

1.

2.

8.

9.

Prove by probabilistic techniques that every triple system can be directed.

Extend #1 to prove that every triple system underlies a ‘‘large number’’ (exponen-
tially many?) directed triple systems.

Prove that every triple system underlies six block-disjoint directed triple systems
(see [10]).

Prove that every B[4,2;u] underlies a directed block design in which blocks are

transitive tournaments of order four, or find a counterexample (see [4]).

Extend #4 to block size k>4 using transitive tournaments of order k (this seems
very ambitious).

Extend #4 to higher even \.
Show that orienting for every fixed even A>4 is NP-complete.
Determine the spectrum of non-orientable B[3,\;v] for all even X\>>4.

Develop reasonable necessary conditions for orientability for X>>4.

Most of these problems will be difficult, but all are nice extensions to the current state

of affairs.
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