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We will discuss three groups of probiems in finite extremal set
theory in this synoptic. Henceforth, we assume everything finite unless
otherwise stated. ' :

1. Apartially ordered set P is ranked if there exists a function r:

P-{0,1,2,...1suchthat r(x)=0 for minimal elements x in P and r(y)
=r(x)+ 1 if y covers x in P. Wecall r(x) the rank of x. Let P, denote

the set of all rank k elements. P is said to be Sperner if maxy | Pk | = max

{ 1Al : A is an antichain in P}. The common value is called the Sperner
number. An order-filter F =< ay,ap,...,3 > generated by ay,ay, ...,

3, is the set of elements b above some a;. We are now only interested in
the case when r(a))=r(ay)=.. =r(g)=t

Let BN denote the Boolean algebra of order n, which consists of
all 2" subsetsof (1,2,...,n} orderedby inclusion. In B, if r(a,)=

..=r(g) =1, then we denote <ay,...,a > by C(nkK).
~ Lih [4] generalizes Sperner's classical result to show

‘Theorem 1. C{n,k) is Sperner and its Sperner number is
n _ n-k
Mn/21 [n/21 )

~ Avranked partially ordered set P has the LYM property if every
antichain A in P satisfies the inequality:
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LYM is stronger than Sperner. Griggs [2] strengthens Lih's results to show,
among other things, the following theorem.



Theorem 2. C(n,k) is LYM and the maximum-sized antichains in
C{n,k) are ‘
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2. Cy/o(n-1) forodd n and i21/2(n+3), and

3. Cyso(ne2) foreven n and k=1.

Lih [4] also gives the conjecture that if F=<a,...,a >C B" and
all ay's areofafixedrank t, then F is Sperner.

Griggs [2] shows that this conjecture is false. However, the most
sweeping counterexamples are given by Zha [5], which shows that Lih's

conjecture is false for every t z 4 Nevertheless, Zhu [6] establishes the
truthwhen t=2 and n isodd

Problem 1. Islih's conjecture true when (i) t =3, nodd, and (ii)
t=2,3 and n even?

Zha [S] proves several positive partial results. For instance, the
conjecture holds if t=2, n even, and 3; na'j #¢ forany i and j.

‘Problem 2. Characterize those F's which make Lin's conjecture
ture when tz4 '

2. Let P be a partially ordered set, not necessarily ranked. A
subset S C P is called a cutset if every maximal chain has nonempty
intersection with 5.

Problein 3. Relate maximum and minimum sizes of a minimal
cutset, in the sense of set inclusion, with other parameters of P.

The most concrete example is to let P be BM. Here the minimum is
trivial, which is 1. However, it seem rather difficult to answer the
following. '

Problem 4. Find the maximum size of a minimal cutset in BN,

We originally conjectured that the answer was 271 The minimal
cutset attaining this number consists of all subsets containing either 1 or
2, but not both.



Recently the following counterexample of 33 elements was found
for n=6.

5=05 6, 12, 14, 24, 35, 36, 45, 46, 123, 125, 126,
135, 136, 145, 146, 235, 236, 245, 246, 345, 346, 1234, 1256,
1345, 1346, 1456, 2345, 2346, 2356, 2456, 12456, 13456.

3. Covering a polygon with the minimum number of rectangles is a
computationally difficult problem. Its practical applications include the
creation of a mask for etching an integrated circuit.

We assume polygons and rectangles are aligned with the coordinate
axes, and are finite subsets of unit squares in a grid, with integer vertices.
A rectangular cover for a polygon R is a collection of rectangles contained
within R, whose union is R. A minimum cover is one with the minimum
number of rectangies.

Chvatal originally conjectured that the number of rectangles in a
minimum cover of R is equal to the maximum number of squares in R with
no two in a common rectangle. This is false. The strongest positive result
is that the duality holds when the polygon is vertically convex. This is done
by Gydri [3], who reduced this duality to a duality concerning intervals on
the real line. Franzblau and Kleitman [1] reproves Gydri's resuits by an
algorithmic argument, which considers only intervals with integer
endpoints. This prompts us to formulate similar problems for sets.

Let 5 and G be families of nonempty subsets of X. We say that G
generates S if every element of S is the union of some elements of G.
Trivially, 5 generates S. The interesting question is how small can a

generating set of 5 Dbe? On the other hand, iIf 5y, So, . . ., Sm is 2
sequence of elements of S such that Sy \ U Sj cj=, 0 k-t # o for
k=2 3, ...,m, then the sequence is called an increasing sequence.

Obviously this length is smaller than the size of a generating set.

Problem 5. Characterize S such that the minimum size of a
generating set is equal to the length of a longest increasing sequence in S.

Without a full characterization, interesting sufficient conditions
for S are nice to know. Franzblau and Kleitman's result can be regarded as
the case when every element of S isof the form (i, i+1,. .., i+j]
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