Conformal martingale diffusions and Shilov boundaries

Hiroshi Kaneko (Osaka University) (金子 宏) and

Setsuo Taniguchi (Kyushu University) (谷口説男)

Let D be a bounded pseudoconvex domain in \mathbb{C}^n . A 1. Introduction conformal martingale diffusion (cmd in abbreviation) is by definition a triple $M=(Z_+,\xi,P_z)$ of a stochastic process $(Z_+)_{0 < t}$ with state space D, its life time & and probability measures $\{P_z\}_{z\in D}$ such that M is a diffusion process on D and Z_t^i and $Z_t^iZ_t^j$, 1≤i,j≤n, are all local martingales under P_{7} , z∈D. In [FO] and [0], it was shown that each symmetrizable cmd is in one-to-one correspondence to a suitable pair (θ,m) of closed positive current θ on D and positive Radon measure m on D. Our aim of this report is to characterize the subset of the boundary ∂D of D where a cmd does not approach in terms of these θ and m. This kind of attempt was essentially made in [DG], where they investigated the Shilov boundary S(D) of D in a probabilistic way. Indeed, they have proved that $\partial D \setminus S(D)$ is the subset of ∂D where a certain Kähler diffusion does not approach if OD is nice. In [KT], their argument was extended to the more general domain possessing a suitable family of bounded plurisubharmonic functions. Moreover, it was taken advantage of in the study of the complex Monge-Ampère equations (for details, see [KT, Section

3]). In this paper, we will see that one can weaken the assumptions in [KT] and will obtain the much simpler expression of the subset of ∂D not approached by a cmd.

The organization of this paper is as follows. In Section 2, we will state our main results. We will also give a brief review on the relationship between cmds and pairs (θ,m) in the same section. Section 3 will be devoted to the proofs of the theorems stated in the preceding section. In Section 4, we will discuss an application of our results to the complex Monge-Ampère equations.

We are grateful to Professors M.Fukushima and Y.Oshima for their valuable comments.

2.Main results We begin this section with a brief review on the correspondence between symmetrizable cmds and pairs (θ,m) of closed positive currents and Radon measures, following [FO]. Assume that a cmd M is m-symmetrizable, m being an everywhere-dense positive Radon measure on D:i.e. the transition function $P_t(z,E)$ of M enjoys the property that $\int_F P_t(z,E)m(dz) = \int_E P_t(z,F)m(dz)$ for every Borel subset E and F of D. The Dirichlet form ϵ^M of M is defined by $Dom(\epsilon^M) = Dom(\sqrt{-A})$, $\epsilon^M(u,v) = \langle \sqrt{-Au}, \sqrt{-Av} \rangle$, where A is the infinitesimal generator of the semigroup on $L^2(D;m)$ determined by P_t and $\langle \cdot, \cdot \rangle$ is the inner product in $L^2(D;m)$. If M is C_0^∞ -regular, i.e. $C_0^\infty(D)$ is dense in $Dom(\epsilon^M)$ with respect to the norm $\|\cdot\| \equiv \{\epsilon^M(\cdot,\cdot) + \langle \cdot, \cdot \rangle\}^{1/2}$, then there exists a closed positive current θ of bidegree (n-1,n-1)

such that $\mathcal{E}^{M} = \mathcal{E}^{\theta}$ on $C_0^{\infty}(D) \times C_0^{\infty}(D)$, where $Dom(\mathcal{E}^{\theta}) = C_0^{\infty}(D)$, $\mathcal{E}^{\theta}(u,v) = \int_D du \wedge d^C v \wedge \theta$ and $d = \theta + \overline{\theta}$, $d^C = \sqrt{-1}(\overline{\theta} - \theta)$. Conversely, given (θ, m) of closed positive current θ on D of bidegree (n-1,n-1) and everywhere-dense positive Radon measure m on D such that \mathcal{E}^{θ} is closable on $L^2(D;m)$, there exists a C_0^{∞} -regular, symmetrizable cmd M related to (θ,m) in the preceding manner (for details, see [FO] and [O]). The pair (θ,m) with the above property is called an admissible pair. Thus we have established the one-to-one correspondence between C_0^{∞} -regular, symmetrizable cmds and admissible pairs.

In order to state our results, we introduce some notations. We will use PSH(D) to denote the sets of all plurisubharmonic functions on D and PSHB(D) consists of all bounded $\varphi \in PSH(D)$. We put $E(D) = \{\varphi \in PSHB(D) \mid \varphi < 0 \text{ on D and } \varphi(z) \longrightarrow 0 \text{ as } z \longrightarrow \partial D\}$. Throughout this and next section, we assume that

(2.1) $E(D)\neq \phi$.

For $\varphi \in PSH(D) \cap L^{\infty}_{loc}(D)$ and a closed positive current θ of bidegree (n-1,n-1), a positive Radon measure $dd^{C}\varphi \wedge \theta$ on D is defined by

(2.2)
$$\int_{D} \psi dd^{C} \varphi \wedge \theta = \int_{D} \varphi dd^{C} \psi \wedge \theta$$
 for every $\psi \in C_{0}^{\infty}(D)$.

We are now ready to state our results.

(2.3) Theorem Let $M=(Z_t, \xi, P_z)$ be a C_0^{∞} -regular, symmetrizable and on D and (θ, m) be its corresponding admissible pair. Define

(2.4) $\Gamma^{\theta} = \{ \xi \in \partial D \mid dd^{c} w \land \theta \geq dd^{c} (-\log(-\varphi)) \land \theta \text{ on } D \cap U, \text{ for some } w \in PSHB(D), \varphi \in E(D) \text{ and open } U \subset \mathbb{C}^{n} \text{ containing } \xi \}.$

If M satisfies

$$(2.5) P_{\mathbf{z}}[\lim_{t \to \mathbf{z}} Z_{t} \in \partial D] = 1 q.e. \ \mathbf{z} \in D,$$

then

$$(2.6) P_{z}[\lim_{t \uparrow \xi} Z_{t} \in \partial D \setminus \Gamma^{\theta}] = 1 q.e. z \in D,$$

where "q.e." means "except on a s^{M} -capacity zero set".

- (2.7)Remark i) It is obvious that Γ^{θ} is open in ∂D .

 ii) Since D is a bounded domain, Z_t is a uniformly integrable martingale under P_z , $z \in D$. Thus, by the martingale convergence theorem, we see that $\lim_{t \uparrow \xi} Z_t$ exists P_z -a.s. for each $z \in D$.
- (2.8) Corollary Let S(D) be the Shilov boundary of D, i.e. S(D) is the smallest closed subset S of ∂D where $\sup_{z \in D} |h(z)| = \sup_{z \in S} |h(z)|$ for every h holomorphic in D and continuous on \overline{D} . Let M and (θ, m) be as in Theorem (2.3). Then $S(D) \subset \partial D \setminus \Gamma^{\theta}$.

In [KT:Section 2], some cases that the identity $S(D)=\partial D \setminus \Gamma^{\theta}$ holds were discussed. We now consider sufficient conditions for (2.5) to be satisfied. To see this, we prepare one more notion. A cmd M is said to be irreducible if

 $\int_B u(y) p_t(z,dy) = \mathbf{1}_B(z) \int_D u(y) p_t(z,dy) \text{ for any } u \in L^2(D;m) \text{ if and only if } m(B) = 0 \text{ or } 1, \ p_t \text{ being its transition function.}$

(2.9) Theorem Let M be a C_0^{∞} -regular, symmetrizable and (θ, m) be an admissible pair associated with it. M enjoys the property (2.5) provided that either of the followings holds:

- (a) M is irreducible,
- (b) $m \le dd^{c}u \land \theta$ holds on D for some $u \in PSH(D) \cap L_{loc}^{\infty}(D)$.

3.Proofs

Proof of Theorem(2.3)

Let $\xi \in \Gamma^{\theta}$ and take $w \in PSHB(D)$, $\varphi \in E(D)$ and open $U \subset \mathbb{C}^n$ containing ξ as stated in the definition (2.4) of Γ^{θ} .

We first claim that if $q=-\log(-\phi)$ and $q(Z_t)-q(Z_0)=m_t+A_t$ is Doob-Meyer's decomposition of the continuous semi-martingale $q(Z_t)$ under P_z , then

(3.1)
$$P_z[\lim_{t \uparrow \xi} A_t = +\infty] = 1$$
 q.e. $z \in D$.

To see this, note that $q(Z_t)$ is represented as

(3.2)
$$q(Z_t)-q(Z_0)=B(\langle m \rangle_t)+A_t$$

where B(t) is a 1-dimensional Brownian motion starting at 0 and

<m>t is the quadratic variation process for m_t . Since the smooth measures associated with <m>t and A_t are $dq \wedge d^C q \wedge \theta$ and $dd^C q \wedge \theta$, respectively, and the 1st measure is dominated by the 2nd one (for the proof, see [KT:Lemmas 2.2,2.3]), we have <m>t < A_t, t < 0. Therefore, if $A_{\xi} < +\infty$, then the right hand side of (3.2) remains finite as t \(\frac{1}{2} \). On the other hand, by virtue of Assumption (2.5), the left hand side of (3.2) tends to infinity as t \(\frac{1}{2} \). Thus, we obtain (3.1).

Let $w^*=w^-(-\varphi)^{1/2}$. It is trivial that $w^*\in PSHB(D)$. Take an increasing sequence $\{0_k\}$ of relatively compact open subsets of D such that $\overline{0_k}\subset D$ and $D=\bigcup_{k=1}^\infty 0_k$ and define $D_k=U\cup 0_k$. Note that $\sup\{\varphi(z)|z\in 0_k\}<0$ for each k and $\mathrm{dd}^C(-(-\varphi)^{1/2})\geq \frac{1}{4}(-\varphi)^{1/2}\mathrm{dd}^C(-\log(-\varphi))$ on D, where for (1,1)-currents $\psi^i=\psi^i_{\alpha\overline{\beta}}\mathrm{dz}^\alpha\wedge\sqrt{-1}\mathrm{dz}^\beta$, i=1,2, we denote $\psi^1\geq\psi^2$ if $\sum_{\alpha,\beta=1}^n\eta^{\alpha\overline{\beta}}(\psi^1_{\alpha\overline{\beta}}-\psi^2_{\alpha\overline{\beta}})$ is a positive measure for any $\eta\in\mathbb{C}^n$. Thus, by a straightforward computation, it follows from the definition of Γ^θ that there is an $\epsilon_k>0$ such that

(3.3)
$$dd^{C}w^{*} \wedge \theta \geq \varepsilon_{k} dd^{C} q \wedge \theta$$
 on D_{k} for each k.

Due to [FO:Lemma 7], we see that $\mathbf{\epsilon}_k \mathbf{q} - \mathbf{w}^*$ is locally in $\text{Dom}(\boldsymbol{\epsilon}^M)$ and $\boldsymbol{\epsilon}^M$ -quasi-continuous. Moreover, the same lemma and (3.3) yields that $\mathbf{\epsilon}_k \mathbf{q} - \mathbf{w}^*$ is $\boldsymbol{\epsilon}^M$ -superharmonic on \mathbf{D}_k . Therefore, by virtue of [FO2:Theorem 9.3], we obtain

$$E_{Z}[(\varepsilon_{k}^{q-w^{*}})(Z_{\tau_{k}^{\wedge}T})] \le (\varepsilon_{k}^{q-w^{*}})(z)$$
 q.e. $z \in D$

for every compact KCD and T>0, where E_Z stands for the expectation with respect to P_Z and $\tau_K = \inf\{t>0 \mid Z_t \notin K\}$. Since $E_Z[q(Z_{\tau_K \wedge T})-q(z)]=E_Z[A_{\tau_K \wedge T}]$ q.e. z, letting $K^{\uparrow}D_k$ and $T^{\uparrow \infty}$, we have

(3.4)
$$E_{z}[A_{\tau_{D_{k}}}] \leq (2/\epsilon_{k}) \|\mathbf{w}^{*}\|_{\infty} \langle +\infty.$$

If we set $B_k = \{Z_t \in D_k \text{ for every } t \in [0, \xi)\}$, then $\tau_{D_k} = \xi$ on B_k . Thus, it follows from (3.1) and (3.4) that $P_Z(B_k) = 0$, q.e. z. Noting that $\{\lim_{t \uparrow \xi} Z_t \in \partial D \cap U\} \subset \bigcup_{k=1}^{\infty} B_k$, we conclude that $P_Z[\lim_{t \uparrow \xi} Z_t \in \partial D \cap U] = 0$ q.e. z. This completes the proof, because Γ^{θ} is covered with countable numbers of such U's.

Proof of Theorem (2.9)

We first assume that M is irreducible. Suppose that M is non-transient. Then M is recurrent and hence, due to [S] (also see [F]), $P_Z[\sigma_G \langle +\infty] = 1$ q.e. z for every open GCD, where $\sigma_G = \inf\{t > 0: Z_t \in G\}$. Take open subsets G_1 and G_2 of D such that $\operatorname{dist}(G_1, G_2) > 0$. Then it follows from the above fact and the strong Markov property that Z_t visits G_1 and G_2 infinitely often P_Z -a.s., q.e. z and which contradicts to the existence of $\lim_{t \uparrow \xi} Z_t$. Thus M is transient and hence (2.5) follows.

We now proceed to the proof of the 2^{nd} assertion. Thus assume that $dm \le dd^C u \land \theta$ on D for some $u \in PSH(D) \cap L^{\infty}_{loc}(D)$. Then $t \le A^u_t$, where $u(Z_t) - u(Z_0) = a$ martingale $+ A^u_t$ is Doob-Meyer's decomposition of the semi-martingale $u(Z_t)$. Therefore, for any

compact K⊂D,

$$\mathrm{E}_{\boldsymbol{Z}}[\tau_{\boldsymbol{K}}] \leq \mathrm{E}_{\boldsymbol{Z}}[A_{\tau_{\boldsymbol{K}}}] = \mathrm{E}_{\boldsymbol{Z}}[u(\boldsymbol{Z}_{\tau_{\boldsymbol{K}}}) - u(\boldsymbol{Z})] \leq u(\boldsymbol{Z}) + \sup_{\boldsymbol{y} \in \boldsymbol{K}}|u(\boldsymbol{y})| < +\infty$$

This implies $P_z[\tau_K \langle +\infty]=1$ and hence (2.5) follows.

4.An application to the complex Monge-Ampère equation In this section, we consider an application of our Γ^{θ} to the complex Monge-Ampère equation. All results we are going to discuss have been already obtained in [KT] and what is new is that our argument in this section is based on Theorem (2.3) which is more general than [KT:Theorem 2.1] that played an essential role in the investigation in [KT]. Suppose that the bounded pseudoconvex domain D possesses a family $\{p_i\}_{i=1}^{N} \subset PSHB(D)$ satisfying the following conditions:

(4.1)
$$p_i < 0$$
 on D , $i = 1, ..., N$,

(4.2)
$$\pi_{i=1}^{N} p_{i}(z) \rightarrow 0$$
 as $z \rightarrow \partial D$,

(4.3)
$$dd^{C}(-\sum_{i=1}^{N} \log(-p_{i})) \ge C_{D}, dd^{C}|z|^{2}$$
 for some $C_{D}, >0$ on each relatively compact D'CD with \overline{D} 'CD.

Due to [KT:Lemma 2.1], we see that $p^* = -\pi_{i=1}^N (-p_i)^{1/2N}$ is in E(D). Moreover, the argument similar to [O:Lemma 3] implies that $(\theta^*, m^*) \equiv ((dd^C q^*)^{n-1}, (dd^C q^*)^n)$ is admissible, where $q^* = -\log(-p^*)$

and for $\varphi \in PSH(D) \cap L^2_{loc}(D)$ the closed positive current $(dd^C \varphi)^k$ of bidegree (k,k), $1 \le k \le n$, is defined inductively by

(4.4)
$$\int_{D} \eta \wedge (\mathrm{dd}^{C} \varphi)^{k} = \int_{D} \varphi \, \mathrm{dd}^{C} \eta \wedge (\mathrm{dd}^{C} \varphi)^{k-1}$$

for every C_0^{∞} (n-k,n-k)-form η on D. We denote by $M^* = (Z_t, \xi, P_Z^*)$ the C_0^{∞} -regular, symmetrizable cmd associated with (θ^*, m^*) . By virtue of Theorem (2.9), we notice that M^* enjoys the property (2.5) and hence

(4.5)
$$P_z^*[\lim_{t \uparrow \xi} Z_t \in \partial D \setminus \Gamma^{\theta^*}] = 1$$
 q.e. $z \in D$.

Define an open subset $\tilde{\Gamma}$ of ∂D by

 $\tilde{\Gamma}$ ={ $\xi\in\partial D$ | dd^C w $\wedge\theta^*\geq dm^*$ on U $\cap D$ for some w \in PSHB(D) and open U $\subset \mathbb{C}^n$ containing ξ }.

Then $\tilde{\Gamma} \subset \Gamma^{\theta^*}$. Combining this with (4.5), we have

(4.6)
$$P_z^*[\lim_{t \uparrow \xi} Z_t \in \partial D \setminus \tilde{\Gamma}] = 1$$
 q.e. $z \in D$.

By the same argument as in the proof of [KT:Theorem 3.1], we deduce from (4.6) the following:

(4.7) Theorem ([KT:Theorem 3.1]) Assume that $u, v \in PSHB(D)$ satisfy that

$$(4.8) \qquad (dd^{c}u)^{n} \leq (dd^{c}v)^{n} \qquad on D,$$

(4.9)
$$\liminf_{z\to\xi,\ \xi\in D}(u-v)(z)\geq 0$$
 for every $\xi\in\partial D\setminus\widetilde{\Gamma}$,

$$(4.10) dd^{c}(u+v) \le C \{ \pi_{i=1}^{N} (-p_{i}) \}^{\alpha} dd^{c} q^{*} on D \cap V$$

for some $C \ge 0$, $\alpha > 0$ and open $V \subset \mathbb{C}^n$ with $V \cap \partial D = \widetilde{\Gamma}$. Then

$$(4.11) u(z) \ge v(z) for every z \in D.$$

(4.12) Corollary The complex Monge-Ampère equation:

$$(dd^{c}u)^{n}=fdz,$$

(4.13)

$$\lim_{z \to \xi, z \in D} u(z) = \varphi(\xi)$$
 for every $\xi \in \partial D \setminus \widetilde{\Gamma}$,

where $f \in L^{\infty}_{loc}(D)$, $f \ge 0$, dz is the Lebesgue measure on D and $\varphi \in C(\widetilde{\Gamma})$, possesses at most one solution $u \in PSHB(D)$ satisfying

$$(4.14) dd^{c}u \leq C\{\Pi_{i=1}^{N}(-p_{i})\}^{\alpha}dd^{c}q^{*} on V \cap D$$

for some $C \ge 0$, $\alpha > 0$ and open $V \subset \mathbb{C}^n$ such that $V \cap \partial D = \widetilde{\Gamma}$.

Before closing this section, we give a comment on the condition (4.14). We assume that $f\equiv 0$ and $\phi\equiv a$ (constant) in (4.13). Then $u\equiv a$ is the only one solution to (4.13) satisfying

(4.14). In other words, for every non-trivial solution $u \in PSHB(D)$ to (4.13) with f=0 and ϕ =a, dd^Cu grows faster than $\{\pi_{i=1}^N(-p_i)\}^\alpha dd^Cq^*$, $\alpha>0$, near $\widetilde{\Gamma}$. For example, let $D=\{z=(z_1,z_2)\in\mathbb{C}^2:|z_1|\vee|z_2|<1\}$ and $p_i(z)=|z_i|^2-1$, i=1,2. Then $\widetilde{\Gamma}=\{|z_1|=1,|z_2|<1\}\cup\{|z_1|<1,|z_2|=1\}$ and the condition (4.14) is equivalent to

$$(4.14)' \quad \mathrm{dd}^{\mathsf{C}} \mathsf{u} \leq \mathsf{C} \{ \frac{(1 - |z_2|^2)^{\alpha}}{(1 - |z_1|^2)^{\alpha - 2}} \sqrt{-1} \mathrm{d}z_1 \wedge \mathrm{d}\overline{z}_1 + \frac{(1 - |z_1|^2)^{\alpha}}{(1 - |z_2|^2)^{\alpha - 2}} \sqrt{-1} \mathrm{d}z_2 \wedge \mathrm{d}\overline{z}_2 \}.$$

Let $g(x) = \sum_{j=0}^{d} c_j x^j$ be a polynomial on \mathbb{R}^1 such that $c_j \ge 0$, $0 \le j \le d$, $c_d > 0$ and $\sum_{j=1}^{d} c_j = 1$. By a straightforward calculation, we see that $u(z) = g(|z_1|)$ satisfies (4.13) with f = 0 and $\phi = 1$ but does not satisfy (4.14).

References

- [DG] A.Debiard et B.Gaveau, Frontière de Silov de domains faiblement pseudoconvexes de Cⁿ, Bull. Sci. Math. 100 (1976), 17-31.
- [F] M.Fukushima, On recurrence criteria in the Dirichlet space theory, to appear in Stochastic Analysis (Research note), ed. by K.D.Elworthy.
- [FO] M.Fukushima and M.Okada, On conformal martingales and pluripolar sets, J. Funct. Anal. 55 (1984), 377-388.
- [FO2]M.Fukushima and M.Okada, On Dirichlet forms for plurisubharmonic functions, to appear.

- [KT] H.Kaneko and S.Taniguchi, A Stochastic approach to the Silov boundary, to appear in J. Funct. Anal.
- [O] M.Okada, Espace de Dirichlet généraux en analyse complexe,J. Funct. Anal. 46 (1982), 396-410.
- [S] M.Silverstein, Symmetric Markov processes, Lecture Notes in Math., 426, Springer, 1974.

H. Kaneko

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka 560, Japan

S.Taniguchi Department of Applied Science Faculty of Engineering Kyushu University Fukuoka 812, Japan