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1.Introduction Let D be a bounded pseudoconvex domain in CU. A

conformal martingale diffusion (cmd in abbreviation) is by
definition a triple M=(Zt,§,PZ) of a stochastic process (Zt)Ost
with state space D, its life time & and probability measures
«{Pz}zeD such that M is a diffusion process on D and Zi and zizj,
1<i, j<n, are all local martingales under Pz’ z€D., In [FOl and
[01, it was shown that each symmetrizable cmd is in one-to-one
correspondence to a suitable pair (0,m) of closed positive
~current @ on D and positive Radon measure m on D.  Our aim of
this report is to characterize the subset of the boundary 9D of
D where a cmd does not approach in terms of these 0 and m.
This kind of attempt was essentially made in [DGI, where they
investigated the Shilov boundary S(D) of D in a probabilistic
way. Indeed, they have proved that 9D\S(D) is the subset of aD
where a certain Kahler diffusion does not approach if 8D is nice.
In [KT]1, their argument was extended to the more general domain
possessing a suitable family of bounded plurisubharmonic

functions. Moreover, it was taken advantage of in the study of

the complex Monge-Ampere equations (for details, see [KT,Section
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313. In this paper, we will see that one can weaken the
assumptions in [KT] and will obtain the much simpler expression
of the subset of 8D not approached by a cmd.

The organization of this paper is as follows. In Section 2,
we will state our main results. We will also give a brief
review on the relationship between cmds and pairs (8,m) in the
same section. Section 3 will be devoted to the proofs of the
theorems stated in the preceding section. _ In Section 4, we
will discuss an application of our results to the complex Monge-
Ampere equations.

We are grateful to Professors M.Fukushima and Y.Oshima for

their valuable comments.

2.Main results We begin this section with a brief review on

the correspondence between symmetrizable cmds and pairs (6,m) of
closed positive currents and Radon measures, following [FOI.
Assume that a cmd M is m-symmetrizable, m being an everywhere-
dense positive Radon measure on D:i.e. the transition function
p,(z,E) of M enjoys the property that IF Py (Z,E)m(dz)=

IE pt(z,F)m(dz) for every Borel subset E and F of D. The

M M

Dirichlet form éM of M is defined by Dom(& )=Dom(/-A), & (u,v)=

</-Au,/-Av>, where A is the infinitesimal generator of the

semigroup on L2(D;m) determined by pt and < , > is the inner

product in L2(D;m). if M is Cg—regular, i.e. C;(D) is dense in

M M 172

Dom(é ') with respect to the norm Il ={&§°C , )+< , >} , then

there exists a closed positive current 6 of bidegree (n-1,n-1)
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M_.6

such that 6§ =6 > 0 > 0

0 O(D), where Dom(¢& )=C0(D), & (u,v)=

ID duad®va8 and d=8+3, dc=/-1(§-8). Conversely, given (8,m) of

on C,(D)xC

closed positive current 9 on D of bidegree (n-1,n-1) and

everywhere-dense positive Radon measure m on D such that 69 is

closable on L2(D;m), there exists a C

(o]

0 regular, symmetrizable
cmd M related to (8,m) in the preceding manner (for details, see
[FO1 and [on. The pair (8,m) with the above property is
called an admissible pair. Thus we have established the one-
to-one correspondence between Cg-regular, symmetrizable cmds and
admissible pairs.

In order to state our results, we introduce some notatidns.
We will use PSH(D) to denote the sets of all plurisubharmonic
functions on D and PSHB(D) consists of all bounded ¢€PSH(D). We
put E(D)={@€PSHB(D)|¢<0 on D and ¢{(z)—0 as z—?D}. Throughout

this and next section, we assume that
(2.1) E(D)=¢.

©

For @EPSH(D)OLIOC(D) and a closed positive current 8 of bidegree

{n-1,n-1), a positive Radon measure ddC¢A9 on.D is defined by
C - C o

(2.2) ID ¥dd @AQ—ID pdd YADQ for every WGCU(D).

We are now ready to state our results.

(2.3)Theorem Let M=(Zt,§,Pz) be a Cg~regular, symmetrizable

cemd on D and (0,m) be ilts corresponding admissible pair. Define
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(2.4) FG:{ﬁGODI ddCun02dd® (~1og(-¢))A8 on DnU, Ffor some
WEPSHB(D), 9EE(D) and open UcC™ containing £}.

If M satisfies

(2.5) lelimtTg ZteaD]=1 ; q.e. ze€D,
then

. 8,_
(2.86) Pz[LtmtTg ZteaD\F 1=1 q.e. ze€D,

where "q.e.” means "excepl on a éM—aapacity zero set”.

0

(2. Remark i) It is obvious that I'" is open in 8D.

ii) Since D is a bounded domain, Zt is a uniformly integrable
fmartingale under Pz’ zeD.' Thus, by the martingale convergence

theorem, we see that limtTg Zt exists PZ—a.s. for each zeD.

(2.8)Corollary Let S(D) be the Shilov boundary of D, i.e. S{(D)

i8 the smallest closed subset S of 8D where supzeDIh(z)l=

Zeslh(z)l for every h holomorphic in D and continuous on D.
0

Let M and (9,m) be as in Theorem (2.3). Then S(D)caD\I"".

sSup

In [KT:Section 21, some cases that the identity S(D)=8D\F9
holds were discussed. We now consider sufficient conditions
for (2.5) to be satisfied. To see this, we prepare one more

notion. A cmd M is said to-be irreducible if
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2

IB u(y)pt(z,dy)=18(z)fD U(y)P (z,dy) for any ueL?(Dim) if and

only if m(B)=0 or 1, Py being its transition function.

2.9 Theorem Let M be a Cz—regular, symmetrizable cmd and
(0,m) be an admissible pair associated with it. M enjoys the

Vproperty (2.5) provided that either of the followings holds:

(a) M is irreducible,

(b) m<dd®ur@ holds on D for some uGPSH(D)nL:OO(D).

»3.Proofs

Proof of Theorem(2.3)

Let £er® and take wePSHB(D), ¢€E(D) and open UcCl

containing & as stated in the definition (2.4) of Fg.

We first claim that if gq=-1o0g9(-¢) and q(Zt)—,q(ZO)=mt+At is

Doob-Meyer's decomposition of the continuous semi-martingale

q(Zt) under Pz’ then

(3.1) PZ[llm At=+m]=1 q.e. z€D.

t1g

To see this, note that q(Zt) is represented as

(3.2) q(Z.)-q(Z,)=B(Km> ) +A

t 0 t t’

where B(t) is a 1-dimensional Brownian motion starting at 0 and
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<m>t is the quadratic variation process for m, . Since the

smooth measures associated with <m>
st

t and At are ququAG and

ddchG, respectively, and the 1
nd

measure is dominated by the
2% one (for the proof, see [KT:Lemmas 2.2,2.31), we have
<m>tsAt,t20. Therefore, if A§_<+m, then the right hand side of
(3.2) remains finite as t1¢g. On the other hand, by virtue of
Assumption (2.5), the left hand side of (3.2) tends to infinity
as trg. Thus, we obtain (3.1).
*_ 1/2 . .. %
Let w =w~(-¢) . It is trivial that w €PSHB(D). Take

an increasing sequence {Ok} of relatively compact open subsets

of D such that O,cD and D=v, _,0, and define D, =Uv0, . Note
that sup{¢(z)|z€0,3}<0 for each k and da- - 1722

1

1/2
4( ¢l

ddC(—log(—@)) on D, where for (1,1)-currents ¢i=

v'_az®a/Taz?, i=1,2, we denote wl2v? if 38 ,_a%nPa! 4% ) s
oB i oB oB
a positive measure for any neCn. Thus, by a straightforward

0

computation, it follows from the definition of I'" that there is

an 8k>0 such that

(3.3) dd®w*r02g, daCane on D,  for each k.

k

Due to [FO:Lemma 71, we see that skq—w* is locally in Dom(&M)

and 6M—quasi—continuous. Moreover, the same lemma and (3.3)

M

vields that ekq-w* is & -superharmonic on Dk' Therefore, by

virtue of [FO02:Theorem 9.31, we obtain

' * *
EZ[(ekq—w )(Zt AT)]S(Skq—w Y(z) q.e. z€D

K
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for every compact KeD and T>0, where EZ stands for the

expectation with respect to P, and t=inf{t>01Z,K}. Since

Ez[q(ZtKAT)-q(Z)]=EZ[AIKAT] q.e. z, letting KTDk and Tte, we
~ have
(3.4) E_[A_ 1<(2/8 ) lw" I <+,
Z tDk Kk «

If we set Bk={zt€Dk for every t€f0,%)}, then er=§ on Bk' Thus,

it follows from (3.1) and (3.4) that PZ(B }J=0, q.e. zZ. Noting

k

that {lim Z.€8DnUc U B,» we conclude that

t1g “t k=1
Pz[limtTg ZteaDnU]=0 q.e. zZ. This completes the proof, because
fe is covered with countable numbers of such U’'s.

Proof of Theorem (2.9)

We first assume that M is irreducible. Suppose that M is
non-transient. Then M is recurrent and hence, due to [S] (also
see [F1), PZ[0G<+w]=1 q.e. z for every open GcD; where
oG=inf{t>0:ZteG}. Take open subsets G1 and G2 of D such that
1»Gy) 0. Then it follows from the above fact and the
strong Markov property that Zt visits G1 and G2 ;nfinitely often

dist(G

Pz—a.s., q.e. z and which contradicts to the existence of

Thus'M is transient and hence (2.5) follows.

limtTg Zt'
We now proceed to the proof of the 2nd assertion. Thus
assume that dm<dd“ua@ on D for some uePSH(D)nLTOC(D). Then

tsA%, where u(Zt)fu(ZO)= a martingale + A% is Doob-Meyer's

decomposition of the semi-martingale u(Zt). Therefore, for any
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compact KcD,

EZ[tK] < EZ[At 1 = EIZ[U(Z_c

« J-u(z)]l < u(z)+supy€Klu(y)! {+

K

This implies PZ[tK<+w]=l and hence (2.5) follows.

4.An application to the complex Monge—-Ampeére equation In this

section, we consider an application of our Fe to the complex
Monge-Ampére equation. All results we are going to discuss
have beeh already obtained in [KT] and what is new is that our
argument in this section is based on Theorem (2.3) which is more
general than [KT:Theorem 2.1] that played an essential role in
the investigation in [KT]1. Suppose that the bounded

N

pseudoconvex domain D possesses a family {p;};_, cPSHB(D)

satisfying the following conditions:

(4.1) p;<0 on D, i=1,...,N,
(4.2) H?=1pi(z)—40 as z—aD,
c._sN Ci, 2
(4.3) dd (—Zi=llog(-pi))2CD.dd lzl for some Cn,>0 on each

relatively compact D'cD with D'cD.

Due to [KT:Lemma 2.11, we see that p*=-m\_ (-p3!/?N is in ED).

i
Moreover, the argument similar to [O:Lemma 3] implies that

(9*,m*)5((ddcq*)n_l,(ddcq*)n) is admissible, where q*=—log(ep*)
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2

Toc(D) the closed positive current (dde)X of

and for ¢€PSH(D)NL

bidegree (k,k), 1<k<n, is defined inductively by

(4.4) fD nA(dd°¢)k=fD o ddSnaddSerk¥!

[0}

for every C0 (n-k,n-k)-form n on D. We denote by M*=(Zt,§,P;)

the CD regular, symmetrizable cmd associated with (G*,m*). By
virtue of Theorem (2.9), we notice that M* enjoys the property
(2.5) and hence

* e*
(4.5) PZ[llmtTg ZteeD\r 1=1 q.e. z€D.

Define an open subset I* of 8D by

F={£€aD| ddwAa8*2dm™ on UND for some wePSHB(D) and
open vech containing E}.
e*

Then el Combining this with (4.5), we have

(4.6) P;[lim Z,€8D\I"1=1 q.e. ze€D.

t1g

By the same argument as in the proof of [KT:Theorem 3.11, we

deduce from (4.6) the following:

(4. Theorem([KT:Theorem 3.1])  Assume that u, vePSHB(D) satisfy

that



154

(4.8) (ddu) "< ddCv) ™ on D,

(4.9 Liminf (u—v) (z)=20 for every 5680\?,

z-£, teD
(4.100  dd®curwr<C{m__(-p ) 1%d%"  on D

for some Cz0, >0 and open veC™ with vnaD=T. Then

(4.11) u(z)2viz) for svery ze€D.

(4.12>Corollary The complex Monge—-Ampeére equation:

(dd®u) *=fdz,
(4.13)

Lﬂmzeg,zeDu(Z):@(g) for every E€8D\T,
where feL?OC(D), =20, dz is the lLebesgue measure on D and

@€C(T), possesses at most one solution u€PSHB(D) satisfying
(4.1 dd®usc{m_ -p ) %ad®q" on VD
for some €20, «>0 and open VcC™ such that VnaD=T.

Before closing this éection, we give a comment on the

condition (4.14). We assume that f=0 and ¢=alconstant) in

(4.13). Then u=z=a is the only one solution to (4.13) satisfying

- 10 -



(4.14). In other words, for every non-trivial solution

UEPSHB(D) to (4.13) with f=0 and ¢=a, ddcu grows faster than

N

My

(—pi)}addcq*, >0, near . For example, let

oo 2. )
D={z=(z,,2,)€C%: 1z, IVlZ,I<1} and pi(z)=|zi|2-1, i=1,2. Then
F={|zla=1,tz21<1}U{|z1|<1,|z2|=1} and the condition (4.14) is

'equivalent to

o -1z, 5 _ -1z 15 _
(4.14) dd "u<C{ 5 Ot_2/—1dzlAdzl+ 5 a_2J~1dz2Ad22}.
(I-1z, 17 (1-1z,17)
J

_<d
Let g(x)-2j=0 C ;X

cd>0 and 2?=1 cj=1. By a straightforward calculation, we see

be a polynomial on Rl such that cjzo, 0<j<d,

that u(z)=g(|zll) satisfies (4.13) with f=0 and ¢=1 but does not

satisfy (4.14)"'.
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