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Integral representations of weighted Beppo Levi functions

Hiroaki AIKAWA (RFRAFHFEH HNILH)

§1. Introduction

It is well known_that functions in Sobolev spaces can be
represented as Bessel potentialé ([17; Chapter V, Theorem 3]). 1In
this paper we shall consider a similar problem for weighted Beppo
Levi functions.

Let 1 < p < ® and let w be a weight (nonnegative Lebesgue

measurable function) satisfying the Muckenhoupt Ap condition:

w1/(1_p)dx)p—1 < oo'

1 1
(A_) sup ( f wdx) ( J
P o 10ll, WQ»

where the supremum is taken over all cubes Q with sides parallel to
the axes and |Q| stands for the Lebesgue measure of Q (see [1]).

By Ap we denote the class of weights w satisfying (Ap). We write

£l = (f o |f(x)|pw(x)dx)1/p' tP(R®, w) = {f; Il < ®},
Lp,w R LY ,w

By BLm(Lp(Rn, w)), m ;'1, we denote the space of distributions whose
partial derivatives of m-th order all belong to Lp(Rn, w) (see [2]).

1/(1-p)

Since w is locally integrable by (Ap), it follows from

Holder's inequality and Kryloff's theorem [16; Chapitre VI, Théoréme
15] that a distribution in BL (Lp(Rn, w)) is.a locally integrable
m

function whenever w e Ap. Therefore we call a locally integrable

function in BLm(Lp(Rn, w)) a Beppo Levi function of order m with



oo

weight w. If w = 1, then we write simply el o’ tP(R™) and

L

BLm(Lp(Rn)) for ”f”_p ' Lp(Rn, w) and BLm(Lp(Rn, w)), respectively.
’ LY ,w

Hereafter we limit ourselves to the case 1 < m < n - 1.

For a multiindex a = (a;, «.., o ) we write |a| = o, + ¢=* +

! = Leeoeqg |
o, O a1 - and

a _ o u1". %n
D" =9 /8x1 X .

—1'le—n

By h we denote the Riesz kernel Y(m) with y(m) =

ﬂn/zf(%)/F(E%m) (cf. [17; p.1171). If |o| = m, then Dahm is not a

locally integrable function. It will be stated in Lemma 2 in §2
that Dahm is the sum of a principal value distribution Sq and a
multiple baé of the Dirac measure 8§ at the origin. It is prerd in
[1]1 that this kind of distribution is related to weights w in A_ as

p
follows:

(1) H(D“hm)*gn
L ,w L™ ,w

< const.|gl D for g e Lp(Rn, w).

Let 0D be the space of indefinitely differentiable functions

with compact support and Pm_1 the space of all polynomials of degree

smaller than or equal tom - 1. Let Cy = (—1)mm!/a!. Mizuta proved

Theorem A ([8; Theorem 5.2]). Let 2m < n and let f «

P, ‘
BLm(L (R7)). 1If

(2) there is a sequence {wj}j c D such that D“wj > D%*f in Lp(Rni
for |a| = m,

and g = I}y €4 (D% )*Df satisfies

(3) f L+ |x ™ P g(x)|dx < =,
R



then £ = hm*g + P a.e. on R" with some P « Pm_1.
We shall show that assumption (2) is superfluos and the theorem
extends to the case when 1 < m < n - 1 and f € BLm(Lp(Rn, w)) with

general w e Ap. More precisely, we shall prove

Theorem 1. Let w € Ap. Suppose that f e BLm(Lp(Rn, w)) and g

= E|a[=m Ca(D&hm)*Daf. I1f g satisfies (3), then f = hm*g + P a.e.
n . ‘

on R with some P e Poo1® Moreover this representation is unique in

the sense that if f = hm*u + P' a.e. on Rn, where P' ¢ P and u is

m-1

a signed measure such that
(4) [0 1xh™ a0 < =,
R

then p is absolutely continuous, du = gdx and P' = P.

Ohtsuka [13] proved Theorem 1 for m = 1 and w = 1 by using
extremal length (see also [12] for the definition and ﬁhe properties
of extremal length). 1In case m > 1, however, the theory of extremal
length is not applicable to BLm(Lp(Rn, w)), so our argument will
depend on the general theory of distributions and singular integrals

(see [1], [111, [16] and [17]).

Let Wy 4 = 2ﬂn/2/r(§) be the surface area of the unit sphere in
R" and let a, = m/(a!wn_1). Mizuta proved

Theorem B ([8; Theorem 3.1]). Let £ ¢ BL_(LP(R™)) satisfy (2).
If

(5) f n (1 + yxl)m-n'Daf(X)'dX < » for any o with |a| = m,
, R ! .



then

a0
(6) f(x) = z|a|=m aafRn (szjy?nf(Y)dy + P(x) a.e. on Rn,

where P e Pm-1‘

In case m = 1 Ohtsuka [13; Theorem 29] proved that (2) can be
dropped. We shall extend Ohtsuka's result to higher order Beppo
Levi functions with weight w in Ap.

Theorem 2. ‘Let w ¢ Ap and let f e BLm(Lp(Rn, w)). If f

satisfies (5), then (6) holds.

It is easy to see that w(x) = (1 + |x|)rp belongs to Ap if and
only if - n < rp < n(p - 1). Hence this theorem includes Kurokawa
{4; Theorem 2.6].

In case g = 2|a|=m ca(Dahm)*Duf does not satisfy (3), the
'weighted Beppo Levi function f cannot be represented as the sum of a
Riesz potential and a polynomial. However, a certain modification
of the Riesz kernel (cf. [3; Chapter IV]) will enable us to

represent f as the sum of a modified Riesz potential and a

polynomial, and to show

Theorem 3 (cf. [14], [4; Theorem 3.2)]). Let w € Ap. If £ €
BLm(Lp(Rn, w)), then there is a sequence {wj}j c D such that

1i In%s - p%w, | = 0.
i 7 D ' o 0

Ty Zlal:m LY, w

In the rest of this section we deal with w € Ap for which every



g € Lp(Rn, w) satisfies (3). 1In order to simplify the notation we

denote by A the class of all weights w G’Ap such that every g e

p,m
1P(R", w) satisfies (3). We shall show that w e Ap - if and only if
14
(7) J n (1 + |X|)(mfn)p/(p—1)w(x)1/(1—p)dx < o,
R
See Theorem 7 in §5. Since w(x) = (1 + le)rp belongs to Ap - if
14
and only only if m - n/p < r < n(1 - 1/p), it follows that Ap n 1S @
14

proper subclass of Ap. If w € Ap o’ then Theorem 1 gives a
r

decomposition

B, (LP(R", w)) = 1 (LP(R", w)) @ p .,

where Im(Lp(Rn, w)) = {hm*g; g e Lp(Rn, w)}. We shall consider‘a

condition for f € BLm(Lp(Rn, w)) to belong to Im(Lp(Rn, w)). For
this purpose we introduce a notion which describes the behavior at

of a weighted Beppo Levi function.

Definition. Let fj and f e BLm(Lp(Rn, w)). We say that fj
converges to f in the BLm(Lp(Rn, w)) sense if-

lim,._ T Ip%t. - D%l =0,
jre flaf=m j P, w

l. . f- = - . n-

1mj*m j f a.e. onR

We say that f vanishes at « in the BLm(Lp(Rn, w)) sense if there is

a sequence {wj}j c D converging to f in the BLm(Lp(Rn, w)) sense.
We shall show

Theorem 4. Let w € Ap me Then f € BLm(Lp(Rn, w)) belongs to
r



Im(Lp(Rn,,w)) if and only if f vanishes at « in the BLm(Lp(Rn, w))

sense.

Corollary 1. Let w ¢ Ap o If f e BLm(Lp(Rn, w) ) and
14

1im'X|+oo f(x)’='0, then f e Im(Lp(Rn, w)), and hence f vanishes at =

in the BLm(Lp(Rn, w)) sense.

We shall give a criterion for f e« BLm(Lp(Rn, w)) to vanish at «

in terms of the integrability of f in case w = VP is a weight

introduced by Muckenhoupt and Wheeden [11].

Lemma A ([11; Theorem 4]).  Let 1 < p < n/m and 1/p* = 1/p -

m/n. Suppose that V > 0 satisfies

1 p* 1/p* 1‘J -p' 1/p!
(8) sup( f v¥ dx) ( Y/ dx) < o,
o 1ell, IR

where p' = p/(p-1) and the supremum is taken over all cubes Q with

sides parallel to the axes. Then

n
”(hm*g)V”Lp* < const.”gV"Lp for g € LP(r ' Vp).

Obviously, Holder's inequality yields that if V satisfies (8),

then VP e Ap. Hence we can easily deduce from (1) and this lemma

that VP ¢ A . We shall show
p,m
Theorem 5. Let 1 < p < n/m, 1/p* = 1/p - m/n and V satisfy
(8).

(i) A function f in BLm(Lp(Rn, Vp)) vanishes at « in the



‘ ' * *
BLm(Lp(Rn, vP)) sense if and only if f e LPT(R®, vPT).

(ii) If f e BLm(Lp(Rn, vP)) satisfies
[Rn [£(x) |V (x)Tdx < =,

for some q > 0 and some r, 0 < r < p*, then f vanishes at « in the

BLm(Lp(Rn, Vp)) sense.

This theorem yields the implication
B (LP(R","vP)) n (v 1¥R", vH))

g>0
O<r<p*

* * i .
c BL (LP(R", VvP)) n LPT(RY, vPT) = 1_(LP(R", VvP)).

By virtue of (1), Theorem 1 and Lemma A we readily have an

improvement of [11; Theorem 91}.

Corollary 2. Let m, p, p* and V be as in Theorem 5. Then

there is a positive constant C depending only on m, p and V such

that
l£v < cy Ip%s)vl
* == —
for f e BLm(Lp(Rn, vPY)y n (U 4R, vH)).
a>0
0<r<p*

§2. Preliminaries

We collect some basic results on the theory of distributions.

We shall mainly use the notation of [16]. We write



<T, ¥> = (V)
for a distribution T and a test function Y, 1In ordér to avoid
confusion, we write
<Tyr V> 7
if ¥ involves two variables x and y, and the distribution T acts on
Y(+, y) for each fixed y. As in [16; Chapitre VII] we define the
Fourier transform of ¥ € § and that of T ¢ §' by

Fo(y) = ®(y) = [ e 2MX Yy (y)ax,

Rn

<F, ¥> = <T, ¥> = <T, P> for ¥  §,

where § is the space of indefinitely differentiable functions
decreasing rapidly at ® and §' is the space of tempered
distributions. We note that the Fourier transform defined here

corresponds to the inverse Fourier transform in [17]. By ¢' and D'p
L

we denote the space of distributions of compact support and that of
distributions T of the fbrm

a » : n
T = Zlu[;k D fu’ where k > 0 and fa € Lp(R ).

Schwartz [16; Chapitres VI and VII] proved

Lemma B. (i) If 1 < p £ g £ «©, then
EY ¢ D' _c D' _ c §' c D',
P 19
(ii) If 0 < 1/r =1/p + 1/g - 1 £ 1, then the convolution S*T

exists and belongs to D' for S e D' _ and T e D' _.
A LP 14

(iii) If S and T belong to D',, then 7S and 7T belong to
L

2

n ~ o
* — .
lOC(R ) and F(S*T) = FSe<7T.

L

We can easily give another condition for the convolution of a



function and a measure to be defined.

Lemma 1. (i) Let % be a real number. Suppose that f €
Lloc(Rn) and |f(x)| < const. x|£ for |x| > 1. If a signed measure U
satisfies

J n (1 + IXI)Zdlul(x) < o,
R

1

n . .
s m
1OC(R ): moreover

then f*uy is well-defined and belongs to L

DB(f*u) =(DBf)*U = f*(DB

u) for any multiindex B.
(ii) Let 0 < m < n. If a signed measure M satisfies (4), then

1

n .
1oc(R ). If u does not satisfy (4),

hm*u exists and belongs to L

then h *[u| = « on rR™.

We need several results from the theory of singular integrals.
Consider the class consisting of all distributions T of the form

(%)
|x| ™

i.e., <T, ¥> = c¥P(0) + lim€+o I Qié% Y(x)dx for ¥ e D,
Ix|>e |x]

(9) T = ¢6§ + v.p.

where c is a constant; € is a homogeneous function of degree 0,
which is indefinitely differentiable on the unit sphere and
J Q(x)do(x) = 0.
|x =1
Lemma C ([17; Chapter III, Theorem 6]). A distribution T in §'
is written as (9) if and only if the Fourier transform 7T is a
homogeneous function of degree 0, which is indefinitely

differentiable on the unit sphere.



10

The Muckenhoupt Ap condition is related to distributions of the

form (9) as follows:

Lemma D ([{1]). Let w € Ap and let T be a distribution of the
form (9). Then

const.”g” for g € LP (R, w).

(10) Ioxgll
Lp,w

LP

fi~

W

From Lemmas C and D we can derive a generalization of (1).

Lemma 2 (cf. [8; §31). Let m > 1 and & > 0. If |a] = m and
|B] = %2, then the distribution
' B
a, X
T =D (T;TH:H:I)(

in particular D“hm, is of the form (9) and satisfies (10).

By D' we denote the class of distributions of the form
L ,w

z|uiék qua' where k > 0 and £ « PR, w).

We shall'have

Lemma 3. Let S and T be distributions of the form (9) and w €

A . Then

(i) S and T belong to D'q for any g > 1.
L

(ii) The convolution S*T exists and is of the form (9).

(iii) If £ e LP(R™, w), then (S*T)*f = S*(T*f) € PR, w).

(iv) If U e D', then (S*T)*U = S*(T*U) € D', .
P, w P, w

- 10 -



11

satisfies the Muckenhoupt

p

It is proved in [1] that every w € A
A condition: .
There are positive constants C, § > 0 such that given any cube
Q and any measurable subset E of Q,
w(E) |E],6 J n
< = .
(a,) wio) < C(|Q|) , where w(A) Awdx for A ¢ R
We shall denote by A, the class of weights w satisfying (A ). Then
A, = U;>1 Ap (see [1]1). We collect some properties of A_ and A
weights.
Let LA and Wy belong to A_. Then the weights max{w1:

Lemma 4.
Wyl mln{w1, wz} and w,+w, belong to A_.
If L is a cone with vertex at the
there are no nonnegative functions

Lemma 5. Let w e A_.
«©, Moreover,

then w(L) =

1.

< r <

origin,
u and v such that
w <<u+ VvonlL,
q r
u-dx + v'dx < » for some q, r, 0 < g <
L L
= 0.

(11)
If a polynomial P belongs to LS(Rn, w) for some s > 0, then P

Lemma 6. Let w € Ap. Then
(i) j o (1 + Ix[)—nlg(x)[dx < » for g e LP(R", w).

(ii) j L s xDTPPex)ax < o,



12

§3. Proof of Theorems 1 and 2

Proof of Theorem 1. 1In this proof we let o, B and y be

1 on a

multiindicies of length m. Take ¥ € 0 such that V¥

neighborhood of the origin and let h& = Whm and h& = (1—W)hm. Since
h; € Lq(Rn) for any q » n/(n-m) and h& e £', it follows from Lemma B

(i) that hm e p'  for any q > n/(n-m). Since p%h belongs to D'
19 m L9

for any g > 1 by Lemmas 2 and 3, we have from Lemma B (ii) .that the

convolution hm*Dahm is well-defined and belongs to D'

for any gq »
Lq

n/(n-m). We observe that

B

a LG B, _ anB.
D (hm*D hm) =D hm*D hm = hm*D D hm.

Noting that Dahm € D'Z, we obtain from Lemma B (iii) that
L

i}

- 20 z o a
f(hm*z|a|=m c D" h ) f([lulzm c,D h *D"h_)

= 14| =m e, {(2mix)®(2m|x[) ™2 = 1,
because )
(2r]x|)2™ = F((-m)™) = 7 (T c p%%) = J o (2mix)%®
- B lal=m “a lo]=m “a :
Accordingly
' 20, _ ) 0. _
(12) hm*2|al=m C(XD hm = Xlalzm C(XD hm*D hm = 6.

By (3) and Lemma 1 we obtain that the convolution hm*g is

n

well-defined and belongs to Lloc(R ). We infer from Lemmas 2, 3 and

(12) that

B

Y * 7 [ < ARG ‘S N a *uY R0
D'D'(h *g) = D°h *D'g = D"h_ ((Z|a|=m c,D h )*D'D"f)

it

B8 20 Ye _ B Ye _ nBRY
(D hm*ZIOLI:m COLD hm)*D f = D”6*D'f = D »D f.

- 12 -



Since B is arbitrary, it follows that

D't = DY(h_*g) + P, for any v with |y| = m,

-

where P, € P However DYf € Lp(Rn, w) and

Y m-1°

p¥(h, *g) = o] =m ¢, D'h * (D% *D%) < LP(R", w)
by Lemma 3, and hence PY must be identically 0 by Lemma 5.
p't = D¥(h _*g) for any v with |y| = m, it follows that
f = hm*g + P,
where P € Pm—

1°

The uniqueness of the representation readily follows

13

Since

from the

following proposition, which may be of some independent interest.

Proposition 1. Let 0 < m < n and let U be a signed measure

satisfying (4). If hm*u coincides with some polynomial P,

0 and hence P must be 0.

then u

Proof. We define a sequence of signed measures Uj of compact

support by uj(E) = u({xeE; |x]|<3}). Since

ljm

it follows that ”j + U in §'. We claim that hm*uj -+ hm*u

Let ¥ ¢ §. Take ¥ e D such that ¥(x) =1 for |x| < 1 and

vau(x)| < const.J (1 + |xH™™ajul(x) for

X3 X|>3

Y= P+ (1)Y= Vs V.
It is easy to see that h *[¥, [(x) = O(|x|™"™") as [x| » o.

decreases rapidly, we have [¥,(y)| < const.lyl—n_1. Let |

Then

- 13 -

Y e S,

in §'.

write

Since V¥

x| > 2.



14

hm*lwzl(x) < const.f |x - ylm_nlyl—n—1dy
ly |>1

- const. | m—n—1{ X m-n —n—1d }.
»O ° x| ‘[.lx‘—1<|z|<2_1 ' Ilz[>2—1 ‘TET 2| =l ’

We see that the first integral is not greater than

2—1

1 t~2dt < const.|x|,
[x]

const.J

and that the second integral is a finite value independent of x.

Therefore hm*lwzl(x) = O(]x|m_n) as |x| » . Accordingly -

lJW(hm*(u—uj))dxl < const.[ |x|m_nd|u|(x) + 0

X|>]

by (4) and Fubini's theorem. Thus hm*uj > h_*u in S'.
z * _ —Ma 1 n
Now we see that 7(h_ uj) = (2m|x]) fiy e Lioc(R ). 1In fact,

. ] ] 1 ' *
since “j e &' ¢ DLq for any g > 1, it follows that hm/z and hm/2 My

belong to D'Z, and from Riesz's composition formula that hm*uj =
L

hyyo* (o). e infer from Lemma B (iii) that

P * - 7 * * - . o« - -MaA

Since the total variation of uj is finite, it follows that ﬁj is a
. ~MaA 1 n

bounded function, so that (27|x|) Ay e Lloc(R ).

Noting that uj + u and hm*uj > hm*u = P in §', we obtain that

A A -ma . -1 3 e
fiy >0 and (2m]x]|) muj > F(P) = Plmrr 308 in S'.

For any ¥ e § vanishing on a neighborhood of the origin we have ¢ =

(2m]x|)™(x) e § and

i, ¥ = lim, . <fl., ¥> = lim. Jﬁj(x)w(x)dx

] Jj Jreo

_1’11A -
uj(x)w(x)dx = (P(5== 5;)5, P> = 0.

1}

limy J(2W|x[)

This implies that {i is supported on {0}. Hence we can write

- 14 -
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-1 9
2mi 9x

i = P'( ) §

with some polynomial P'. By the inverse Fourier transform we have u
= P', i.e., U is absolutely continuous and dd = P'dx. Since U
satisfies (4), it follows that (1 + lxl)m_nP'(x) is integrable, so

that P' must be identically zero. Hence U = 0 and P = 0.

Remark 1. The above proof works even if m is not an integer.

In case m is an integer, du = gdx, g € Lp(Rn, w) and P € Po_qr it is

possible to give a simple proof. 1In fact by (12) and Lemma 3

a Qo Q Q
9 = Lg|=n %P Bp*D (Bp*9) = Ljg|y P Bp*D P = 0.

Proof of Theorem 2. By using polar coordinates and integration

by parts, we can prove

-
1

(13) Dofam @ D% (

(see [15; Lemma 6.2]). Let |B| = IY| = m. Applying Lemma 1 to % =

m-n, f= xa/[xln and du = Ddex, we obtain that

) for each a and Y.

We infer from Lemma 2 and (13) that

o B x% a_yY
) *D f) = ZIOLIT-IH auD ( Xln)*D D'f

a
X
n
x|

DBDY(Z|a|=m au'(l

_ Bna, x® Ye _ B a, x% Y
= 2la'=m aaD D (m)*D f =D (Z‘al:__m a(xD (len))*D £

- pfs*ps = pPpYs.
Now the same argument as in the proof of Theorem 1 completes the

proof.

- 15 -
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§4. Proof of Theorem 3

Let us begin with modifying the Riesz kernel. The following
technique is found in [3; Chapter IV] and [9, 10]. Observe that if
y # 0, then hm(x - y¥) has a multiple power series expansion in Xqr

Xor seer X4 convergent in a neighborhood of the origin. We write
hm(x - y) = Zv=o av(xl V).

where, for fixed v and y # 0, aV(x, y) is a homogeneous polynomial
in %4 to X of degree VvV and continuous in x, y jointly for y # 0

(cf. [3; Lemma 4.1]). We now set

h (x - y) if |yl < 1
km(Xl y) =
‘ h (x - y) - ™20 a (x, v) if |yl > 1
m v=0 Gy ¥r ¥ :
Obviously Dikm(x, y) = Dghm(x - y) for |al 2 m. Since

-n

x| "y if 2|x| < |yl

Ikm(x, y)| < const.

(cf. [3; Lemma 4.2]), we can easily prove from Lemma 6 (i)

Lemma 7. Let w e Ap. If g € Lp(Rn, w), then

jRn ko (%, y)gly)dy € L] (&™),

a ,
D (fRn km(x, yig(y)dy) = (Dahm)*g for la[ 2 m.
This lemma and the same argument as in Theorem 1 yield

Theorem 6. Let w € Ap. If f BLm(Lp(Rn: w)), then

- 16 -
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a ¢
£ = JR“ ko (x, v)gly)dy + P, g = Z|a|=m cy(D"h )*D°f,

where P ¢ Pm—1'
Let £ be the space of all indefinitely differentiable functions

on Rn. We show

Lemma 8. Let f € Im(Lp(R? w)) n &, Then for € > 0 and r > 0

there is a function ¥ e D such that

(14) z|@|=m D% - p%¢l < € and SUP| 4| ¢x |v(x) - £(x)] < €.

Lp,w
Proof. First we treat the case when f = hm*g with g € D. Let
R >r and supp g ¢ {y; |y| < R}. Take ¥ € D such that 0 ¢ ¥ < 1 and
v(x) = 1 for |x| < 3R and put wj(x) = Y(x/j). We observe that
0 < ¥y <1, ¥y(x) =1 for |x| < 3Rj,
(15)

1k
Zﬂzozlulzksup<IkaID“wj(x)|) = z§=ozla|=ksup(lx! D™ (x)]) < =.

- *
Let hm’j(x) = wj(x)hm(x). Then hm,j g € D and

h  .*g(x) = f Y. (x-y)h _(x-y)g(y)dy
Ml lyl<e 3~ 7 1

h (x-y)g{y)dy = h *g(x) for [x| < 2Rj

J|YI<R

by (15). . Let o be a multiindex of length m. We have
o dere N S .
D hm’j g(x) = D h_*g(x) for |x| < 2R3,
and hence
S a % Ay 4 n
D hm,j g ~>D hm g on R .

In view of (15) and Leibniz's formula we have

- 17 -
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]Dahm'j(x—y)] < const.|x|™™ for |x| > 2R and |y| < R,
14

and hence

Qo -n

A

ID"h_ .*g(x) - Dahm*g(x)l < const.|x]|

m, 3 for |x| » ZR.

Now it follows from Lemma 6 (ii) and the dominated convergence

theorem that
J o |Dahm'j*g(x) - D“hm*g(x)lpw(x)dx
R

Q

| %h ,5*a(x) - p*h _*g(x) |Pw(x)ax + o,

J!x|>2R n

so that Du(h .*g) > Da(h *g) in LP(r", w). Therefore Y = h_ .*g
m,J m m,J
satisfies (14) if j is sufficiently large.

Next we consider the general case. From the uniqueness in

C ok . _ (RN
Theorem 1 f is written as‘f = h *g with g = z|a|=m c,(Dh )*Df e

LP(R®, w) n €. It is easy to find ¥ € D such that 0 < ¥ < 1,

Ip%h_ = - p%fl < Mvg - < /2
2|a|=m | o (bg) f'Lp,w < const.llyg gULp e/2,

and

SUP |y | ¢y Ih *(bg) (x) - h_*g(x)| < e/2.
From the first part there is a function ¥ e 0 such that

a a
z|a|=m I*y - D hm*(wg)”Lp,w < €/2,

SUP|y | 1P(x) - By *(¥g) ()| < e/2.

This ¥ satisfies (14).

Proof of Theorem 3. Let g be as in Theorem 6. It is easy to
find a sequence {g.}. c D such that ”g. - gl -+ 0. Since g. has
373 J Lp,w J

compact support, hm*gj exists and by Lemma 7
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13

= *
JRn km(x,.y)gj(y)dy = hm gj + Pj

with some Pj € P 7 Now Lemma 8 gives a sequence {wj}j c D such

m_
that

$i o1 Ip%h_*g. - p%v. | < 1/3.
|a|"m m ] ] Lp,W

We infer from Theorem 6, Lemmas 2 and 7 that

Vi1 Ip%t - p%v.|
|0"—m j L W

— o ~ o

= La|n P (IRn kn(x, YIg(y)ay) - o*0l .
‘ Qo ¢

= Z|u|=m | (0% )*g - D wjn

Lp,w

Q .
Il (D hm)*(g-gj)”Lp,w + 1/3 » 0.

I
[

)

n

The theorem is proved.
§5. Proof of Theorem 4

Lemma 9. If ¥ € D, then ¥ = hm*g € Im(Lp(Rn, w)), where g =

Lalem c, D *0% e LP(RY, w) n &,

Proof. Since Dahm is of the form (8) and Daw has compact

support, it follows that g(x) = O(le_n) as IXI + », so that g
satisfies (3) and hm*g = o(1) as |x| + o, By Theorem 1 we have ¥ =

hm*g + P with some P € P

Po_1° However P must be equal to zero, for

P(x) = ¥(x) - hm*g(x) > 0 as [x| » =,

Lemma 10. A function f = hm*g + P in BLm(Lp(Rn, w)) vanishes at

© in the BLm(Lp(Rn, w)) sense if and only if there is a sequence
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{gj}j c LP(R®, w) n € such that

(16) ”gj - g” + 0 and hm*gj > f a.e. on R".

Lp,w

Proof. First suppose that {gj}j c LP(R", w) n & satisfies

(16). Then by Lemma 8 there is a sequence {wj}j c D such that

[ R .
2‘a[=m "D hm gj D Wj”Lp < 1/3,
W

* _ .
SUP |y | 5 lhm gj(x) wj(x)l < 1/5.
. , p,.0n .
We easily see that wj converges to f in the BL (L7 (R", w)) sense.
Conversely suppose that {wj}j c D converges to f in the
BLm(Lp(Rn, w)) sense. We infer from Lemmas 2 and 9 that wj = hm*gj’

g.e tP(R", w) n € and

J
lg. - gl = Iy c (D% ) *(p%¥, -p%f)
3 P, w lo|=m “a m j Py
converges to zero. Thus {gj}j satisfies (16).
For E c R" we define a capacity R (E) by
‘ m,p,w
— 3 p . *
Rm,p,w(E) = lnf{”g”Lp,w’ g 2 0, hm g 2 1 on E}.

The next theorem combines conditions (3) and (7), the capacity
R D, wW and the vanishing property of Beppo Levi functions.
14 14

Theorem 7. The following statements on w € A_ are equivalent:

p

A .
(a) w-.e p,m

(b) For every g e LP(R"™, w) the convolution hm*g exists and
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belongs to LloC(Rn).
(c) 1f ”g.” »+ 0, then hm*g. + 0 in measure on any ball.
. ] Lp,w J .
(c') If ”g.” P > 0, then hm*gj + 0 in measure on some ball.
LY, w

(d) The constant function 1 does not vanish at « in the
BLm(Lp(Rn, w)) sense.

(e) There is a set of positive R ~capacity.

m,p,w

(f) 1If |E| > 0, then Ry, p,wlB) > O.

(g) w satisfies (7).

Proof. The equivalence between (a) and (b) readily follows
from Lemma 1. The implications (c) => (c¢') and (f) %> (e) are
obvious. We have (f) => (c¢) from [6; Theorem 4] and (g) => (a) from
Holder's inequality. We shall complete the proof by showing (b) =>
(£) = (g), (e) = (b) and (c') = (d) = (a).

(b) => (f): Suppose that there is a measurable set E such that

|E|] > 0 but Rm, p o E) = 0. By [6; Theorem 3] we find a nonnegative
14 14

function g in LP(R™, w) such that h *g = ©» on E. Since lE| > 0, it
follows that hm*g is not locally integrable, so that (b) does not
holds.

(f) => (g): Since the unit ball B has positive capacity, it
follows from [6; Theorem 14] that there exists a measure u
concentrated on B such that u(B) > 0 and h *u e Lp|(Rn, w1/(]_p)).

Noting that hm*u(x) 2 const.u(B)hm(x) for |xl > 1, we obtain

Jx | | IR ) T P ax ¢ e,
x| >1

which is equivalent to (7).

(e) => (b): If (b) does not hold, then there is a nonnegative
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function g in Lp(Rn, w) such that hm*g = » on R, By definition

n - P _
0 & Ry o W (B) LRy o (RY) & infy ”tg”Lp,w = 0.

Thus (e) does not hold.

(c') => (d): If 1 vanishes at « in the BLm(Lp(Rn,'w)) sense,
then there is a sequence {gj}j c LP(R®, w) such that

”gj”Lp . + 0 and hm*gj > 1 a.e. on R"
14

by Lemma 10. This contradicts (c').

(d) => (a): Suppose that there is a nonnegative function g in
Lp(Rn, w) such that (3) aoes not hold. Mollifying g, we may assume
that g ¢ Lp(Rn, w) n £, We shall prove that 1 vanishes at « in the

BLm(Lp(Rn, w)) sense. By Lemma 10 it is sufficient to show that if €
> 0 and R > 0, then there is g; ¢ Lp(Rn, w) N &€ such that

Ihm*g1(x) - 1| < € for |x| < R,
g, < €.
L Lp,w
Take R1 > R such that

1 - €« hm(x-y)/hm(y) <1+ € for |x| < R and |y| > R, -
Since (3) does not hold and g e Lp(Rn, w), we find a function ¥ € D

such that 0 < ¥ < 1, supp ¥ c {y; |y| > R1} and g; = ¥Yg satisfies

h *g,(0) = 1 and ”g i < €. We observe that
m 1 1 P !
Y
1 - € < h *g,(x)/h *g,(0) = h *g,(x) < 1 +¢ for. |x| < R.

Hence g, has the desired property. Thus the theorem is completely

proved.

Proof of Theorem 4. Suppose that f = h *g « Im(Lp(Rn, w)).
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Take a nonnegative function ¥ in 7 such that Jde = 1. Letting
D, L , p,,N e
wj(X) = j7¥(jx), we observe that g9 = g*wj e L"(R, w) n & satisfies
(16). Hence f vanishes at « in the BLm(Lp(R?, w)) sense by Lemma 10.
P,.n ,

Conversely suppose that f = hm*g + P e BLm(L (R, w)) vanishes
at ® in the BLm(Lp(Rn, w)) sense. Since hm*g vanishes at ® in the
BLm(Lp(Rn, w)) sense from the only if part of the theorem, it
follows that P = £ - h_*g vanishes at « in the BLm(Lp(Rn, w)) sense.

Hence there is a sequence {gj}j c LP(R", w) such that

- 0 and hm*gj > P a.e. on rR"

lg. |
3P

P
by Lemma 10. On account of (c) of Theorem 7 we have P = 0. The
proof is complete.

For the proof of Corollary 1 we prepare

Lemma 11. Let L be a cone with vertex at the origin. Then

Rm,p,w(L) is equal to 0 or «; Rm,p,w(L) = 0 if and only 1f
R (R?) = 0. The constant 1 vanishes at ® in the BL_(LP(R", w))
rPew m
n .
if ly if R R = 0.

sense if and only i m,p,w( )

Proof. If 0 < R (L) < ©, then there would exist a

m,p,w

nonnegative'function g in Lp(Rn, w) satisfying (3) and hm*g 2 1 on
L by Theorem 7. Since L is not m-thin at « in the notation of [5],

this contradicts

*g(x) =0

lim inflxl+mr xel, hm
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([5; Theorem 3.3]). By Theorem 7 we can easily prove the remainder.

Proof of Corollary 1. Suppose that f = hm*g + Pand P # 0.
Then we would find € > 0, R > 0 and a cone L with vertex at the

origin such that
h *|g|(x) > |[£(x) - P(x)| > ¢ if [x| 2 R and x e L.
By definition

R (L) <R

m,p,w m,p,w({X; |x|<R}) + Rm;p,w({xeL; |x|> R}) < o

and hence by Lemma 11 Rm b w(L) = 0. This contradicts (f) of
14 (4

Theorem 7.
§6. Proof of Theorem 5

" Proof of Theorem 5. First suppose that £ vanishes at ® in the

BLm(Lp(Rn, Vp)) sense.  Thus f is written as hm*g with g € Lp(Rn,
vP). On account of Lemma 10 there is a sequence {gj}j c PR, vP)
satisfying (16) with w = vP. Since

h_*g. < . .V < .
¢ - gJ)V”Lp* < const ”gj ”Lp < const

by Lemma A, Fatou's lemma leads to

vaHLp* < liminfy,, ”(hm*gj)V”Lp*J< .,

The if part of (i) is included in (ii). Now we shall prove (ii)
by contradiction. Suppose that f = hm*g + P, g e Lp(Rn, Vp), P e
Pm_1 and P # 0. Then we would find € » 0, R > 0 and a cone L with

vertex at the origin such that

|p(x)] 2 2¢ for x ¢ {x e L; |x| > R}.
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D9
oy

* .
We observe that VP L u + v on L, where

u(x)

*
vix)P" if | £(x)]2e vix)P* if |h *9(x) |26 or |x|<R

= ’ V(X) =

0 otherwise 0 otherwise

*
Since VP ¢ A and 0 < r/p* < 1,

J ur/p*dx = J viax éle—qj n }flqudx < @y
L {xeL; |£(x)]2€} R
J vdx = J Vp*dx + f Vp*dx
L {xeL; Ihm*g(‘x)l;e} |x| <R
< s‘p*f n lhm*glp*vp*dx + f vP¥ax < e,
R | |x|<R

we have a contradiction by Lemma 5. The theorem is proved.
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