ベクトル値関数のミニマックス問題について

新潟大 · 理 田中 環 (Tamaki Tanaka)

実数値関数 f について、次の同値性はよく知られた事である。

もし、この関数 f がベクトル値だったら、どのような鞍点の定義をすると、これに類似した結果が得られるのかを考える。 まず、 \mathbb{R}^n に半順序を決定する原点を頂点として含む acute な凸錐 Z_+ が与えられていて、ベクトル値関数 f: $X \times Y \longrightarrow \mathbb{R}^n$ を考えることにします。 ここで、 Z_+ が acute であるとは、 ClZ_+ $CH \cup \{0\}$ となる開半空間 H が存在する時をいう。 そして、ベクトル値関数に関する鞍点の概念を次のように定義する。

定義 1 (錐鞍点 cone saddle point)

点 $(x_0,y_0)\in X\times Y$ が f の Z_+ 一 鞍点であるとは、 すべての $x\in X$ と $y\in Y$ について、

(1) $f(x_0,y) * f(x_0,y_0) * f(x,y_0)$ が成り立つ時をいう。 また、 Z_+ - 鞍点全体をSで表す。 ただし、 $y_1 \ge y_2$ は $y_1 \in y_2 + Z_+$ を表し、そうでない時、 $y_1 * y_2$ と書く。

これは、 W.Rodder (1977)[8]の定義です。 さらに、 定義によって次の事柄がすぐ導かれる。

命題 1

点 $(x_0,y_0) \in X \times Y$ が f の Z_+ 一 鞍 点

さらに、 ベクトル 値関数 に関するミニマックスとマック スミニを次のように定義する。

$$g(x) \stackrel{\triangle}{=} \left\{ z \in f(x,Y) \mid (z + riZ_{+}^{0}) \cap f(x,Y) = \{z\} \right\}$$

$$h(y) \stackrel{\triangle}{=} \left\{ z \in f(X,y) \mid (z + riZ_{-}^{0}) \cap f(X,y) = \{z\} \right\}$$

$$\min_{x \in X} \inf_{y \in Y} f(x,y) \stackrel{\triangle}{=} \left\{ z \in g(X) \mid (z + Z_{-}) \cap g(X) = \{z\} \right\}$$

$$\max_{x \in X} \inf_{y \in Y} f(x,y) \stackrel{\triangle}{=} \left\{ z \in h(Y) \mid (z + Z_{+}) \cap h(Y) = \{z\} \right\}$$

$$y \in Y \times \in X$$

これは、Ext[·|·]を用いると、 次のように書き換えられる。

(3)
$$g(x) = Ext[f(x,Y) | riZ^0]$$

(4)
$$h(y) = Ext[f(X,y) | riZ_{+}^{0}]$$

(5)
$$\underset{x \in X}{\text{minimax}} f(x,y) = \text{Ext}[g(X) | Z_{+}]$$

(6) maximin
$$f(x,y) = Ext[h(Y) | Z_j]$$

 $y \in Y x \in X$

この時、

Ext[
$$f(x_0, Y) \mid Z_-$$
] c Ext[$f(x_0, Y) \mid riZ_-^0$] = $g(x_0)$
Ext[$f(X, y_0) \mid Z_+$] c Ext[$f(X, y_0) \mid riZ_+^0$] = $h(y_0)$

という関係から、

定義3 (弱錐鞍点 weak cone saddle points)

点 $(x_0,y_0) \in X \times Y$ が f の 弱 Z_+ 一 鞍 点 で あ る と は、

$$(7)$$
 $f(x_0, y_0) \in g(x_0) \cap h(y_0)$

が成り立つ時をいう。 また、 弱 Z_+ 一 鞍点全体を S^* で表す。 このように定義すると、 $S \subset S^*$ が成り立ち、 $riZ_+^0 = Z_+$ の 時、 $S = S^*$ が成り立つ(つまり、 錐 鞍点ならば 弱錐 鞍点である)。

XとYが空でない <u>compact</u> 集合 また、intZ₁ ≠ ø の 時、 f が <u>連 続</u> ならば、 $g: X \rightarrow P(f(X,Y)) \succeq h: Y \rightarrow P(f(X,Y)) \succeq h$ X,Y) は上半連続なコンパクト写像となる(cf. [6] and [13])。 従って、 g(X), h(Y) はコンパクト集合となり、 (3) - (6) に Yu の Cor. 4.6 [14] を適用する $g(X) \neq \phi$, $h(Y) \neq \phi$, minimax $f(x,y) \neq \phi$, maximin f(x,y)xeX yeY とが得られる。 さらに、intZ = o であっても、 $riZ_{\perp} \neq \emptyset$ なので、 Z を含むアフィン部分空間 [Z] 上で同様の議論を $f h \ \mathcal{L}(x, y) \neq \emptyset$, $x \in X \ y \in Y$ は保証され さて、次に(弱)錐鞍点はどんな時、存在するのかを考 まず、 Simons の coincidence 定理 (cf. [9]) を用いると、

<u>定理1</u> (intZ₊ ≠ ø でなくてもよい)

X と Y がある 2 つの Hausdorff 局所凸空間の空でない compact convex 部分集合とする。 $f: X \times Y \longrightarrow \mathbb{R}^n$ が各 $x \in X$ と $y \in Y$ について

- (8) { y ∈ Y | f(x,y) ∈ g(x) } 空でない convex
 (9) { x ∈ X | f(x,y) ∈ h(y) }
- (10) { $y \in Y \mid f(x,y) \in h(y)$ } open

f は少なくとも 1 つ弱 Z_{+} 一 鞍点を持つ。 更に、 $riZ_{+}^{0} = Z_{+}$ の時、 f は Z_{+} 一 鞍点を持つ。

又、 Browder の coincidence 定理を用いると (cf. [1] and [9])、

<u>定理2</u> (intZ₊≠φ でなくてもよい)

X と Y がある 2 つの Hausdorff 局所凸空間の空でない $compact\ convex$ 部分集合とする。 $f: X \times Y \longrightarrow \mathbb{R}^n$ が各 $x \in X$ と $y \in Y$ について

(12) { $y \in Y \mid f(x,y) \in g(x)$ } 空でない (13) { $x \in X \mid f(x,y) \in h(y)$ } closed, convex (14) { $(x,y) \in X \times Y \mid f(x,y) \in g(x)$ } closed in $X \times Y$ (15) { $(x,y) \in X \times Y \mid f(x,y) \in h(y)$ }

f は少なくとも 1 つ 弱 Z_{+} - 鞍点を持つ。 更に、 $riZ_{+}^{0} = Z_{+}$ の時、 f は Z_{+} - 鞍点を持つ。

証明 各x ∈ X とy ∈ Y について

 $T(x) = \{ y \in Y \mid f(x,y) \in g(x) \}$

 $U(y) = \{ x \in X \mid f(x,y) \in h(y) \}$

と置くと、仮定より T、 U は上半連続な空でない closed convex-valued map となる事がわかり、 Browder の coincidence 定理により、 $y_0 \in T(x_0)$, $x_0 \in U(y_0)$

となる (x_0,y_0) $\in X \times Y$ が存在する事がわかる。 したっがって、これから、 (7) 式が成り立つ。 よって、 f は少なくとも 1 つ弱 Z_+ - 鞍点 (x_0,y_0) $\in X \times Y$ を持つ。

さらに、この系として、連続関数についての存在定理を述べる事ができる。

系 1

 $X \ge Y$ がある 2 つの Hausdorff 局所凸空間の空でない compact convex 部分集合とする。 また、 $intZ_+ \ne \emptyset$ とする。 $f: X \times Y \longrightarrow \mathbb{R}^n$ が連続で各 $x \in X$ と $y \in Y$ について (12) と (13) がともに convex

f は少なくとも 1 つ弱 Z_+ - 鞍点を持つ。 更に、 $riZ_+^0 = Z_+$ の時、 f は Z_+ - 鞍点を持つ。

証明 仮定より g と h が上半連続なコンパクト写像となり、 f が連続なので(12)と(13)の閉性は明らかである。 また、 $g(x) \neq \phi$, $h(y) \neq \phi$ なので空でないこともわかる。 さらに、 (14)と(15)式の閉性も同様にして得られる。 よって、 定理2により、 f は少なくとも1つ弱 Z_+ - 鞍点を持つ。

しかし、定理 1、 2 の仮定を満足する連続関数は具体的によくわからない。 そこで、 次のような具体的な関数について考えることにする。 この場合、 弱 Z₊ - 鞍点でなく Z₊ -

鞍点の存在性がいえる。

定 理 3

XとYがある2つの Hausdorff t.v.s. の空でない

 $\underline{compact}$ 部分集合とする。 $f: X \times Y \longrightarrow \mathbb{R}^n$ が

(16) f(x,y) = u(x) + v(y)

となる2つの連続関数 u と v の和である時、

f は少なくとも1つ Z_{+} 一鞍点を持つ。 更に、 S^{W} \neq ø で、

(17) minimax $f(x,y) = Ext[V^W \mid Z_+]$ $x \in X y \in Y$

(18) maximin f(x,y) = Ext[V^W | Z₋]
y∈Y x∈X
が成り立つ。 ただし、V^W は弱 Z₊ - 鞍点値全体

を表す。

証明 (16)より、すぐに $S = A_0 \times B_0$ ただし、

 $A_0 = \{ x \in X \mid u(x) \in Ext[u(X) \mid Z_+] \}$

 $B_0 = \{ y \in Y \mid v(y) \in Ext[v(Y) \mid Z_j] \}$

であることがわかる。よって、 S^w≠ø 。また、

 $Ext[V^{\mathbf{w}} \mid Z_{+}]$

 $= \operatorname{Ext}[\operatorname{Ext}[\operatorname{u}(X) \mid \operatorname{ri}Z_{+}^{0}] + \operatorname{ri}Z_{+}^{0} + \operatorname{Ext}[\operatorname{v}(Y) \mid \operatorname{ri}Z_{-}^{0}] \mid Z_{+}]$

= $\operatorname{Ext}[u(X) + \operatorname{ri}Z_{+}^{0} + \operatorname{Ext}[v(Y) \mid \operatorname{ri}Z_{-}^{0}] \mid Z_{+}]$

= $Ext[u(X) + Ext[v(Y) | riZ_{-}^{0}] | Z_{+}]$

= $\underset{x \in X}{\text{minimax}} f(x,y)$

となり、(17)が得られる。(18)も同様である。

さて、最初の話題に戻って、ベクトル値関数 f が (弱) 錐 鞍点を持つとしたら、どのような関係が成立するのか考える。

定 理 4

を満たすとする。

従って、

(22)
$$V^{W} \subset \left(\underset{x \in X}{\text{minimax}} f(x,y) + Z_{+} \right) \cap \left(\underset{y \in Y}{\text{maximin}} f(x,y) + Z_{-} \right)$$

$$k > C,$$

(23)
$$\exists z_1 \in \underset{x \in X}{\text{minimax}} f(x,y), z_2 \in \underset{y \in Y}{\text{maximin}} f(x,y)$$

s.t. $z_1 \leq f(x_0,y_0) \leq z_2$

証明 $intZ_{+}$ # の場合の証明を付けておく($intZ_{+}$ = ϕ の場合の証明を付けておく($intZ_{+}$ = ϕ の場合の証明を付けておく($intZ_{+}$ = ϕ の場合は [13] の Th. 4.3 を見よ)。 仮定より g(X) が空でないコンパクト集合なので、 [12] の Cor. 3.1 により g(X) + Z_{+} = $Ext[g(X) \mid Z_{+}]$ + Z_{+} = minimax f(x,y) + Z_{+} $x \in X$ $y \in Y$

同様にして、

$$h(Y) + Z_{-} = \underset{y \in Y}{\text{maximin }} f(x,y) + Z_{-}$$

この時、 f は弱 Z_+ - 鞍点 $(x_0,y_0) \in X \times Y$ を持つので、 (7)

が成り立ち、

$$f(x_0,y_0) \in \left(g(X) + Z_+\right) \cap \left(h(Y) + Z_-\right)$$

となって、 (20) が得られる。 同様にすれば、 (21) - (23) は明らか。

最後に、これらをまとめると次のようになる。

____ 定理5

XとYがある2つの Hausdorff t.v.s. の空でない

 $\underline{compact}$ 部分集合とする。 $f: X \times Y \longrightarrow \mathbb{R}^n$ が

$$(16) f(x,y) = u(x) + v(y)$$

y∈Y x∈X

となる 2 つの <u>連続 関数</u> u と v の和である時で、 Z₊ は

$$(24) riZ_{+}^{0} = Z_{+}$$

を満たすとする。

(d) minimax f(x,y) c maximin $f(x,y) + Z_ x \in X y \in Y$ $y \in Y x \in X$ $x \in X y \in Y$ $x \in X$ $x \in X y \in Y$ $x \in X$ $x \in X y \in Y$ $x \in X$ $x \in X y \in Y$ $x \in X$ $x \in X y \in Y$ $x \in X$ $x \in X y \in Y$ $x \in X$ $x \in X$ x

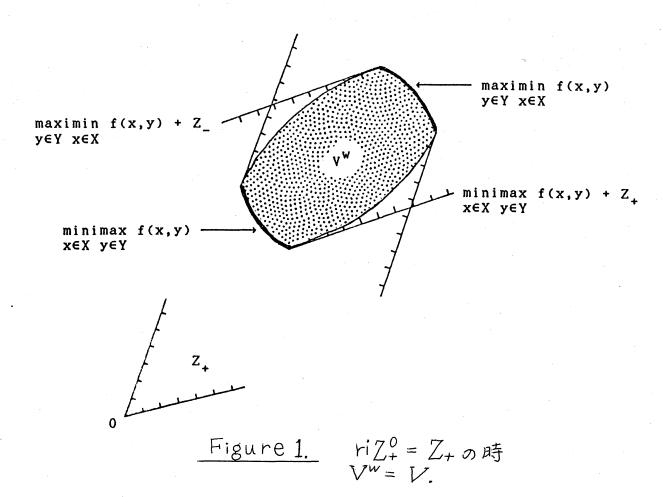
証明 (d)だけを示す。 (b)により

minimax $f(x,y) = Ext[V | Z_+] \subset V$ $x \in X y \in Y$

maximin $f(x,y) = Ext[V | Z_] \subset V$ $y \in Y \times i X$

が成り立ち、(c)により(d)は明らかに成り立つ。

次の Figure 1. は定理 5 の主張を解釈する事に役立つ であろう。



References

- [1] F.E.Browder, Coincidence theorems, minimax theorems and variational inequalities, Contemporary Math., Vol.26 (1984), 67-80.
- [2] I.Ekeland and R.Temam, "Convex Analysis and Variational Problems", North-Holland, Amsterdam, 1976.
- [3] K.Fan, Some properties of convex sets related to fixed point theorem, Math. Ann., Vol.266 (1984), 519-537.
- [4] R.Hartley, On cone-efficiency, cone-convexity, and cone-compactness, SIAM J. Appl. Math. Vol. 34 (1978), 211-222.
- [5] M.I.Henig, Existence and characterization of efficient decisions with respect to cones, Math. Progr. Vol.23 (1982), 111-116.
- [6] J.W. Nieuwenhuis, Some minimax theorems in vector-valued functions, J. Optimization Theory Appl. Vol. 40 (1983), 463-475.
- [7] R.T.Rockafellar, "Convex Analysis", Princeton Univ. Press,
 Princeton, N.J. 1970.
- [8] W.Rödder, A generalized saddle-point theory: Its application to duality theory for linear vector optimum problems, European J. Operational Res. Vol.1 (1977), 55-59.
- [9] S.Simons, Cyclical coincidences of multivalued maps, J.

 Math. Soc. Japan, Vol.38 (1986), 515-525.
- [10] T.Tanino and Y.Sawaragi, Duality theory in multiobjective programming, J. Optimization Theory Appl. 27 (1979), 509-529.

- [11] T.Tanino and Y.Sawaragi, Conjugate maps and duality in multiobjective optimization, J. Optimization Theory Appl. Vol.31 (1980), 473-499.
- [12] T.Tanaka, On cone-extreme points in \mathbb{R}^n , to appear in Science Reports of Niigata University, Vol.23 (1987).
- [13] T.Tanaka, Some minimax problems of vector-valued functions, submitted.
- [14] P.L.Yu, Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, J. Optimization Theory Appl. Vol.14 (1974), 319-377.