ooooboooao
614 0 19870 55-62

53

ON A THEORY OF FORMATION OF SNOW CRYSTAL

Etienne LABEYRIE and Yoshihiro SHIKATA

(BF R&)

There are developed celebrated theories to explain
why snow crystal is of hexagonal shape and how it grows
by K.HIGUCHI, M. KOMABAYASHI, T.KURODA, A.ONO and U. NAKAYA.

The main framework in them is on one hand to reduce
the problem to the non homogeneity of water molecule and on
the other hand to describe the growth by the GIBBS THOMPSON
type differential equation, assuming that the growth rate is
proportional to the vapor density and that the vapor density
on the boundary of the crystal is a linear function of the
cufvature of the boundary.

Computer simulations by KOMABAYASHI(also by A.SHIKATA
though not published) based on these theories yield essentially
figures of hexagon only with needles attached on the vertices
and hardly give that with branching, which is also common
among snow crystals.

Instead df starting from given equations, we start

with several facts obtained by exberiments and we investigate
what type of equations is necessary to have the branching,

in order to see what is the mechanism for it.
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In what follows we restrict ourselves only for two

dimensional theory of crystal formation.

We assume first that the growth rate of the crystal is
governed universally by a function w defined on the boundary
of the crystal, that is, denoting by n(P) the outer normal
to the crystal on its edge at P, we have

dn/dt = w
on the edge of the crystal universally.

Let bd(B)> denote the boundary of a domain B and
let ch(B) denote the characteristic function of B, then the
universality above suggests us that we need to have a universal
differential operator D on the mollified characteristic
function g¥ch(B) for a suitable mollifier g so that the
function w on the edge is written as

w = D(g¥%ch(@®)), for any B,
moreover, the operator should be a function of first and
second order derivatives and naturally be independent of
the choice of the coordinate, here we assume that the
function is a polynomial function.

Though a little rough, the reasoning is as follows:
Suppose we are given a homogeneous crystal B, then it is
represented by the characteristic function in the function
space on the plane, maybe mollified by a mollifier from
experimental reason. Since the function w for this crystal
is a function on the edge of the crystal, the operator to

make correspond w to g¥ch(B) in the function space should
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be a differential operator. On the other hand, if there
exists another crystal C in a neighborhood of B, the effect
of the crystal C on the growth of the crystal B is known

to be always non positive independent of fhe distance and of
the shape of C, therefore D(g) should have oﬁly negative zone
around the edge bd(B) of B for a sufficiently large class of
the mollifiers g, yielding that the operator D is a function

of at most second order derivatives

We determine explicitly above class of operators,
which may describe the growth rate on the edge.

For the determination we first remark that the
independence of the choice of the coordinate is equivalent to
the invariance under the action of the orthogonal group and
that the invariant differential operator in first and second
order derivatives is of the form H(L,det,grad), where det,

grad denotes the operator given by

det(f> = (f )2 - 4 (f ) (1 ),
Xy XX Yy

grad(f) = (£ )% + (£ )2
X Yy

respectively, and L denotes the Laplacian in xy coordinate.
In fact, when we denote by X,Y,Z ; U,V the second

and first derivatives

X)) = f , YD) = f , ZCf) = f .
XX . XY Yy

Uud = f , V() = ¢
X y
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respectively, then the invariance of an operator expressed as

a function HX,Y,Z;U,V) of X,Y,Z ; U,V implies

2Y( Hx + HZ > + (X + 7 )HY =0 ——==(1

v HU - U HV =0 —===(2)

Rewriting (2) by the polar coordinate R,A
U=R cos A, V = R sin A,
we have that
HA =0

indicating that H is only a function of grad on its first order
part. By a rotation of 45 degree of XZ coordinate around Y
‘axis in XYZ space, (1) is reduced to an equation of type (2>
and therefore we see that H is a function in L and det on its
second order part, in a similar way.

Consider a homogeneous crystal having its edge on
X axis, then the operator det vanishes away on the edge for
any mollifier g, thus we throw det away from the variable
in H. By a similar argument, we throw grad away too.

Thus we may conclude that the growth rate operator D

is obtained in a form H(L) of a function of the Laplacian L.

The computer simulation using the growth equation
dn/dt = H@) (gxch)
with the simple characteristic function does not give the

branching type crystal. This might be explained also from
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experimental reason that the growing crystal can never be
homogeneous and can not be represented by the characteristic
function.

In order to meet the transient stage, we then
introduce a status function s and a effect function E: the
status function s(B) (P, t) is a function in the position P
and in time t defined for a crystal B, which represents the
status of B determined by the effect of existing crystals,
and the effect function E®B,C) (P,t> is a function in t and P
which evaluates the effect of a crystal C on B and is
determined by s(B) and s (C).

We may assume that s, E and the characteristic
function are related by

ds/7dt = E, s@ (0 = ch@®.

In a similar way as for the growth rate operator,
we can deduce that the effect E(B,C) of C on B is obtained
from the action of a differential operator on the functions
s(B);s(C). For the determination of the effect operator,
we can assume again from experiments that it is additive,
thus the possible type of operators is much more restricted
than in the case of the growth rate operator and a similar
argument reduces it to that which is expressed by a linear
function K of the Laplacian. Hence we have that

EB,OM®,t) = KA @ + s> P, 1.

With the preparations above, we consider the growing
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process of a crystal.

Also from practical reason, we assume that the process
is stepwise, that is, we assume a sequence of pairs B(i),
s(i) (P) (i=0,1,..) of crystals and status functions in discrete
time is given successively in such a way that for i=0

B = B, s(0) = g¥ch(B)
and that the normal vector to bd(B(id) of the length
eH @) (s (id>
for a short time unit e determines the next crystél
B(i+1) = B{) + CD
and finally that
sU+D (P) = si) (P) + eK(@) (s (i) + g¥ch(C i)

gives the status function sd{i+1) for B({i+1).

Suppose we have a growth of needle type up to i=m
then we may consider i1 is topologically equivalent to the
length of the needle and the growth rate H(L)s (i) is monotone
on each side of the needle. This situation may correspond
to the case of codimension zero catastrophy of R.THOM, thus
we see that the higher catastrophy may be necessary for the

branching.

Observation tells us that both needle and branch
grows at the same time, therefore we see that H{@)s (i) has
to increase first till a maximum, decrease next to a minimum

and increase again towards the end of the needle so as to
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give a branch at the maximum point, while the growth is
suppressed at the minimum. The situation may correspond

to the catastrophy of codimension one.

On the other hand,‘though a little rough again, we see
that the function s(i) (P) increases first and after maximum
decreases until the end of the needle, and its Laplacian
behaves in the other way, provided that the needle growth is
not quick. In fact, the equation for the status function is
nothing but the heat equétion in the limit, because K() is
equivalent to the Laplacian itself, therefore we may use the
fundamental solution u(t,x) of the heat equation to investigate
the process, which is interpreted as successive attaching of
unit crystals of a certain temperature. We see that s({i) and

the second derivative of s(i) in P is a sum of the terms
2ve u(je,ve (j—x)),
3 2.-1 . . .
v e ] "u(je,ve(j—x)) (approximately)

for j=1 to i, respectively, where v is the speed of the growth
in needle direction, assumed to be constant and small. Thus
we see the first derivative is monotone and positive at one end
and negative at the other end of the needle, also by a similar

argument, we have roughly the conclusion.

Hence we see that the growth rate H({.Ds for branching

is hardly realized by L(s) only, which can be monotone or have
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only one minimum at most, depending on conditions. On the
contrary, we see that H() should contain at least second order
term of L(s) or a term obtained by a multiplication of at least

first order term of s(i) to L(s), for the branching growth.

For the simulation purpose this 1is sufficient and
for finding the mechanism problem this, especially the latter
possibility suggests us that the diffusion described by the
Laplacian multiplied by a non linear term, which may‘be
interpreted as the diffusion efficiency, plays the main role
to give the branching, indicating that the heat diffusion,
for instance, decides the shape of snow crystal in a generic

sense.

We admit the present note is a little rough and we
sincerely hope to publish a completed version in near future

unified by the idea of the superpotential.
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