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5. Gauge Fields and Quaternion Structure

Mitsuhiro Itoh ( /% W . 20)

University of Tsukuba Inst. of Math.

( Dedicated to Professor M. Obata for his sixtieth birthday )

1. The aim of this lecture is to discuss geometry of the
moduli spaces of Yang-Mills connections over a four—manifoid with
a quaternion structure.

We let (M, h) be a compact connected Riemannian
4-manifold with covariantly constant almost complex structures

{1;}501,2,3

Only a complex flat 2-torus and a Ricci flat K 3 surface are such

satisfying I, I, = - I I, = Ij.

spaces.
Before dealing with Yang-Mills connections over such space
we exhibit its basic properties. Each almost complex structure

I, defines a covariantly constant 2-form 6, on M;

Bi(X,Y) = h(IiX, Yy), 1i=1,2,3. The base metric h induces

the metric on Ak = AkKT*M), k=1,2 for which we use the same

symbol. ‘The base space M carries the canonical orientation

compatible with the quaternion structre {Ii}. The base metric

together with this orientation gives the Hodge operator *
AZ(M)-—a-Az(M) which is involutive. So the bundle A2

splits into Az = Ai @ AE ( Ai is the subbundle of

self-dual ( or anti-self-dual ) 2~-forms ). Then over M

2

+ is trivial, in fact we have the decomposition;

A

Ay, = 1Rel elaez EBrReB.
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Now let P be a smooth.principal bundle over M with

an arbitrary compact simple Lie group G. Fix a positive
number £ > 2. The set of all Li—connections on P is
: : n N
denoted by C}{ = UJP. Denote by 04 = Q4P the subset
consisting of irreducible connections on P. 04 is an affine
space with model vector space Ql( %P)l = | Li l1-forms with
. N 1
values in O}P Yo Od = A + Q( %P)JL for some
smooth fixed connection ( 0f_ = Px o is the adjoint
P Ad A
bundle for the Lie algebra % of G ). 04 is dense and
open in 04 relative to the Li-norm.
Denote b %? = é; the group of L2 -gauge
Y P group o+1-9aug
transformations. é; acts on c}¢ smoothly by g(a) =
~ A
g_ldg + g—l.A.g. é? = é?/Z(G) acts freely on cﬂ{
where z (G) is the center of G.
A connection A is ASD ( anti-self-dual ) if and only
if its curvature F=F(pA) =d4daAa+ l/2 [AAA] satisfies

the ASD equations

F + *F = 0. (1. 1)
i = -1 ' A~
Since F(g(a)) = Ad(g 7)F(a), the solution space
- of the ASD equations (1. 1) is invariant under the gauge
Va'd
action so that we have the quotient Dl = c}{- /é? which

parametrizes the set of gauge equivalence classes of solutions.
We call it the moduli space of ASD connections.

For geometric structure of the moduli space over a general
compact oriented Riemannian 4-manifold ( M, h ) we have

already the following theorem.

2
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THEOREM (Atiyah,Hitchin & Singer [1]) The moduli space M

of anti-self-dual connections is a smooth Hausdorff manifold

with singularities. The dimension of the smooth part dimlRZW'
is given by  p (Y, ®C) [M] - dim G ( 1 - bl + bt )

where bl is the first Betti number and b’ is the
dimension of the space Hi(M) of self-dual harmonic 2-forms

on M.

REMARK. The Pontrjagin number pl( OotP®C) [M] is calculated
for each group as follws; 4 nk, G= SU(); 4(n-2)k,

G = Spin(n); 4(n+l)k, G = Sp(n); 16 k, G = Gy; 36 k, G = F2;

48 k, G = E6; 72 k, G = E7; 120 k, G = E8  where k is the
index of the buhdle P ([31).
2. The Riemannian structure on ﬁWZ and main theorems.

Since the Hodge operator depends on the conformal structure,
the moduli space must reflect geometric properties of the base space.
In fact we can define a hatural Riemannian structure on the moduli
space. Since Cﬁ{ is affine, the tangent space TA<}¢ =

Ql(fyp)z. On this tangent space an inner product is well

defined by
' M
(2. 1)
= V[ (-tr) (BA*Y),
M
B, Y € Ql(iﬁ—P)2 for G = SU(n). For a general G
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we must replace in (2. 1) -tr by some adjoint invariant
inner product. This inner product is gauge invariant.

On the other hand ¥ is a subspace in the ambient space,

that is, in the space of gauge orbits of connections 85 =
~
04/%; on P. The inner product « , ) descends
A dj{‘m
on B = /’é? and its restriction on the smooth part
of m provides a Riemannian structure there. Then we have

the following theorem when we assume that the base space is Kahler.

THEOREM ([ 71,[ 81]) Let U° be the smooth part of the
moduli space 6%% of ASD connections on a fixed bundle P
— M. Then it admits an integrablkalmost complex structure

. . . . . o
for which the canonical Riemannian structure is Kahler.

. . . . s _ _
Its complex dimension is dim C 7 = l/2 pl( %P@)c)
'dim.]R G (1-qgq+ pg ), where g, the irregularity of M =
l/2 b1 and pg, the geometric genus, is given by dimc
0
H ( M; O’(KM)).
REMARKS (i) If a Kahler surface ( M, h ) has positive scalar
curvature or the line bundle K is holomorphically trivial,

A~ M

then M5 = M0 B, i.e., NI _ g \MmS
consists only of reducible ASD connections ([ 71).

(ii) The anti-self-duality of connections is equivalent to the
stability of holomorphic vector bundles over an algebraic surface.
So,‘%qngé is in one to one correspondence with the moduli

74 of stable vector bundles with corresponding rank and

st

Chern classes.
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The theorem says that if the base space holonomy is unitary,
then the moduli space holonomy is also unitary. So we can

consider the following problem:

Suppose ( M, h ) has holonomy in group Su(2) = sp(l).
Is the holonomy of the Riemannian structure < , > on 4”6

symplectic ?
This problem can be written as

Suppose that the base space is hyperké&hler. Is it true that

the moduli space is also hyperk&hler ?

DEFINITION A manifold ( N, g ) is hyperk&dhler if there exists
a quaternion structure {I,}._ on N which is covariantly
i“i=1,2,3

constant with respect to the Levi-Civita connection.

A hyperkdhler manifold is Ricci flat K&hler and has
a holomorphic symplectic structure so that the canonical line
bundle K¢ is holomorphically trivial.

Over a compact hyperkdhler 4-manifold the moduli space of

ASD connections has dimension dim an = pl( %P(EC ) [M] -
4 ¢(M) dim R G where e (torus) =0 and e (K3 surface)
= 1. So the dimension is divisible by 4. On the other hand

we have another circumstantial evidence for the problem:

THEOREM ( Mukai [14]) Let M be a complex 2-torus or a K 3
surface. If M is algebraic, then the moduli space of stable

5
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sheaves has a holomorphic symplectic structure.

We have actually the following affirmative answer.

THEOREM([ 91). Let P—s M be a principal bundle with
a compact simple Lie group G and - 9%  the moduli space
of ASD conneétions on P. Then the smooth part @%F of TN

is hyperk&hler if the base space is hyperkahler.

REMARKS (i) The theorem holds for an arbitrary compact simple

Lie group, for instance G = SO(n).

(ii) Let A be an ASD connection over a compact hyperkdhler
4-manifold. If it is irreducible, then a neighborhood at - [A]
gives a smooth structure on the moduli space gt . So, the

smooth part #1° coincides with 6W£f\§§

(iii) Einstein-~-Hermitian metrics on a holomorphic vector bundle
are defined over a compact Kahler manifold. In terminology of
U(n) -principal bundle we can formulate the Einstein-Hermitian
connection on the bundle, equivalent to the definition of Einstein-

Hermitian metric ([9 ]).
We have for Einstein-Hermitian connections

THEOREM([9 ]) The moduli space of irreducible Einstein-Hermitian
connections over a compact hyperkidhler 4-manifold admits

a hyperkahler structure.

(iv) The framed moduli space ‘%z of anti-instantons over the
standard 4-sphere S4 is a smooth complex manifold if the rank of

G 1is sufficiently large relative to the index k of the bundle ([3]).
There is a one to one dorrespondence between ‘%Z and the moduli

6
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. 4
space of based anti~instantons over S at the north pole «.

Since the ASD equations are conformally invariant and S4 =

4 . s . .
R U {«} is the conformal compactification, we obtain

THEOREM ( [10] ) The moduli space 7/_ of based anti-instantons
over the 4-sphere carries a quaternion structure induced naturally

from R4 which yields a hyperk&hler structure on 4%&.

(v) Besides the Euclidean BA there are many nontrivial
examples of open ( complete ) hyperkahler 4-manifold, Eguchi-
Hanson metric, Taub-~Nut metric, Multi-center Taub-Nut metrics

and ones recently constructed by Kronheimer by using the momentum
map ([12]). We can discuss the moduli spaces of ASD connections
modulo based gauge transformations. These spaces carry a hyper-

kahler structre.
3. The momentum map and the proof of the main theorem.

There are two ways for the proof of the main theorem. One is
the momentum map method due to originally Marsden-Weinstein([13,11,6,12]).
Another is the Hodge decomposition method together with the Kuranishi
map . In [9] we developed a proof of the theorem by adopting
the latter method. While the caluculation is not so simple in
the latter case, we can get explicitly the Riemannian curvature
tensor in terms of the Green operators associated with the Laplacians
of the deformation elliptic compleces.

Here we will use the momentum map to show the theorem.

Each almost complex structure Ii of the base space M

7
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induces naturally an endomorphism on Al and hence an endo-

morphism on the product bundle Al@)Qé for which we use the
s .

same symbol. So the space of irreducible connections

A
carries almost complex structures {Ii}i=l,2,3’ since TACJ =
Ql( @P)z. Then we have a skew symmetric bilinear form w,

on % %P)Q;
- ‘ 1,
wi( a, B ) = ( Ii o, B )I a, B e Q (%P)fl.

( 3. 1)

Note that every gauge transformation is symplectic with respect to
each W, .

Let A Dbe an irreducible connection on a bundle P-—Eﬁ> M.

Now we would like to define a momentum map u = ( Myr Hys Mg ) e
N ,
A — QO( %P)®3; The self-dual curvature F_(A) =
3 .
2 0
* =
1/,( F + *F ) belongs to Qi ( %@) i@a (Q (<yp)®,ei).
= 0 _ .
Denote by F; = Fi(A) e 0 ( %P) the 6, - component of F;
. _ 3 _ -2
that is, F (&) = ]} io1 F; ®6y ( F, = leil h(F,,0,),

here the map h : ( A2®<§P) x A2-_€>Q% is the natural
bilinear bundle map given by contraction with the base metric h ).

We define a map u which should be a momentum map by
7 0 * 0
My ot 04 — (7 ( %P)) = the dual of Q (¢§P),
< ui(A), ¢ > = |ei12 Jﬁ '(—tr)(Fi(A), ¢ ) dv, ( 3. 2)
M

o ea’(gy), i=1,2, 3,

8
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In the left hand side < , > is the dual pairing.
’ A
The moduli space 7&(\&3 of irreducible ASD connections on P
is then described as éﬁlﬂﬁ = u-l(O)/g .

We show the following

THEOREM (a) The map u = ( HyrHgrHg ) defined at ( 3. 2)
is a momentum map, namely it satisfies
. 0 -
(1) < d(ui)A(B), ¢ > = wi( B, VA¢ ), ¢ £ Q ((gp),
1 ;
B e Q ( @P)l. N ( 3.3)

(b) Moreover (ii) u 1is C; -equivariant;

Fa¥a
-1 .
ui(g*(A)) = ad(g ") * pi(A), g € C; »i=1, 2, 3,
( 3.4 )
-1 N
(iii) the zero set u ~(0) is a submanifold of vcx{ and at
each A ¢ u—l(O) the tangent space to u-l(O) coincides with
Ker ( dup, ) and
(iv) gauge transformations é? act freely on u_l(O) and
at each A in u—l(O) there exists a slice s, (C u—l(O)
s
for the action of C; .
(c) There exist symplectic forms { &1,62,&3 } on the reduced
A —-— ~ .
phase space ﬁﬁln&3 = U 1(0)/&? satisfying w*wi = 3% Ws s

N
i=11 2, 3, where j o+ ou 1(0)———5>cy( is the canonical embedding

- ~ )
and T : u 1(0)_f>,%1n@ is the natural projection.

It is derived from this theorem that if we let v be the
Levi-Civita connection of the canonical Riemannian metric on

2~ ~
Anfd then &i's are covariantly constant ( Vo, =0 )

9
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since we have observed that each almost complex structure on
A
Nn B induced from each I, is integrable ([ 8 ] ).
A
Hence Mme = ol equipped with the canonical Riemannian

metric is hyperkahler.

Now we must to show the above theorem. We prove at first

that the differential of yu satisfies ( 3.3 ).
A

1
For any B € TAC/‘{ = Q (OJP)'Q

< (dui)A(B), ¢ > [eilz ~fM (—tr)((dAB)i, ¢)dv

J; (-tr ® h) ( dAB, ¢®6i)dv.

Here the integrand is calculated as

(-tr @ h ) { dAB( ¢®ei)dv (-tr) ( dABA*(¢®ei))

= (-tr) ( dAeA(¢®ei)) d( —tr(BA(¢®ei))) +
(-tr)(BA(vA¢Aei)).

Hence

<(duy),(8), ¢ > = - JM (—tr) (BA** (V,0A8,))

- JM (~tr@h) (8,* (V,0A8,))dv.

If we use the following formula which is easily obtained, then

we have ( 3. 3 ).

10
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FORMULA. *(aht;) = -TI.(, oe A®Y, i=1,2, 3.
( 3.5)
~
The g -equivariance of | is derived since the curvature
F(A) 1is g -equivariant and the inner product on Ql(gp)g is
invariant under the action of é . To prove (iii) and (iv)

we can make use of the slice lemma argument and also the fact that

the second cohomology space Hi vanishes for each irreducible
ASD connection A. But we omit the detail. The statement (c)
is a direct consequence of [11].

4. Further remarks on the theorems.

The base space is assumed first to be a general compact
oriented 4-manifold. We defined before the canonical Riemannian
structure < , > on the smooth part 6%? of the moduli space
of ASD connections on a certain bundle. The Riemannian curvature
tensor R of this metric can be calculated ([ 8 ]). Namely,

~ 1

s ol
for tangent vectors X, Y ¢ T[A]ﬁﬁl ( = Hy,

first cohomology space ) the value of the tensor, <R(X,Y)Y,X>

the

is written as

+ +
<R(X,V)Y,X> = 3 ( {X,¥Y}, G, {X,¥}) - ( [XAY]",G,[XAY]")
(4.1).
+
+ (1xax17,6, [vavl™) .

Here « . ) is the inner product given at ( 2.1 ) and
the linear map GA denotes the Green operator of the Laplacian

associated to an ASD connection A. The definition of the

11
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, 1 and [ A ]+ is . given in [ 8 ].

bilinear mappings {
Now let the base space ( M, h ) be a compact hyperk&hler

4-manifold and P—=M a bundle with a compact simple G.

We saw in [ 9] that each tangent space Hi is invariant

under the operation of the quaternion structure {Ii}i—l 2 3 and

el 14

hence the space Hi becomes a Hamiltonian vector space.

Note that each I, is an isometry with respect to « , ).

Then by some observation we derive from (4.1l) the following

curvature identity.
THEOREM([ 91).

<R(X,Y)Y,X> + 23 <R(X,IiY)IiY,X> = 0, X, Ye H ( 4.2)
i=1

From this we can immediately show that the Ricci curvature
of the smooth part of the moduli space vanishes. - |

The formula ( 4.2 ) asserts moreover that the left hand side
of it represents a "quaternionic" bisectional curvature of l-dimen-

X, I X} and V

sional MH-linear subspaces V, = {X, I 3 ¥

X

and this bisectional curvature vanishes.

X, I

1 2

The above formula gives further Riemannian geometrically
a strong restriction to the smooth part 427?. So the following

problem still remains:
Does every hyperkéhler manifold satisfy this curvature identity ?

All 4-dimensional hyperkahler manifolds do indeed satisfy it.

12
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With respect to this problem we have the result of M. Obata.

He obtained the following fact in [ 15, Theorem 3. 1 ].

Let (N, g ) be a hyperk8hler manifold with a quaternion structure

{1.}, . Then its Levi-Civita connection and hence its
i“i=1,2,3

Riemannian curvature tensor can be expressed in terms of only

derivatives of the components of I with respect to the complex

2
coordinates associated to I

1°
In the final part we should mention the moduli space of

ASD connections with group G = S0(3). et P—M be an

SO(3) bundle over a compact oriented 4-manifold. Then the moduli

space of ASD connections on P has the virtial real dimension

dim L = -24 -3 (1-b  +b" ),
where L = pl(P)[M]. We remark that the second Stiefel—Whitney
class WZ(P) € HZ(M;ZZ) and the first Pontrjagin class pl(P)
€ H4(M;Z) classify SO(3)-bundles over a 4-manifold M. If
wz(P) =0, then P comes from an SU(2)-bundle and pl(P) =

- 4 c,(P). See [ 4] and [ 5] for basic references on

SO0 (3)-bundles and the moduli space of SO(3)-connections.

THEOREM. Let M be a complex 2-torus or a K 3 surface.

(1) Suppose P-—>M Dbe an SO(3)-bundle with w2(P) # 0.

If ;pl(P)[M] is o0dd, then P does not admit any ASD connection
with respect to an arbitrary base metric on M.

(ii) On the complex 2-torus there exists an SO(3)-bundle P

with w, 0 and pl(P)[M] = =2 such that relative to

2

an appropriate flat Kihler metric the moduli space of ASD connections

13
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of

on P ( more precisely each its connected component )

carries a structure of complex flat 2-torus.

Proof. (1) Assume that one has an ASD connection on P. Then
this connection must be irreducible because any reducible connection

splits P into L &1 for a complex line bundle L and

. » 2
a rank one real trivial bundled, and hence py(P)M] = ¢, (L)
[M] is even. Then the moduli space of ASD connections contains
only irreducible ones. So with respect to a base Kahler metric

defining the hyperkahler structure on M the moduli space carries
a hyperkdhler structure from the main theorem in sect. 2, while

its virtual dimension is not divisible by four.

(ii) From the property of the intersection form of the complex
2-torus we have a complex line bundle L satisfying cl(L)2 =

p, (P), cl(L)mod2 = w,(P) and cl(L)A [wh] = 0 ( w, is
the K&hler form of the standard flat metric h ). - Then the S0(3)-

bundle associated to the vector bundle L&l is equivalent

with P and admits a reducible ASD connection with respect to h.
So, if we denote Z/(q) by the moduli space of g-ASD connections
on P for a base metric g on M, then 9%/L(h) 4is non-empty.
Making use of the argument developed in [ 5, Ch 31 we can show
that for a generic base metric ML) is a smooth manifold with
no singularities. Now we choose a base Kéhler metric h' on M

so that ¢, (F)A [w ¥+ 0 for any holomorphic line bundle F

h']

satisfying cl(F)2 = pl(P) and cl(F) = wz(P). Since

mod?2

the ASD equations *g FA = - FA : depend smoothly on the base

metric g, /(') is non-empty. The condition ¢, (F)A [mh.]
=0 then implies that AN.(h") consists of only irreducible

h'-ASD connections. Since cl(M) = 0, one has a Ricci flat

14
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Kdhler metric h, on M with [ whl] = [ wh.] which yields

a hyperkdhler structure on the complex 2-torus M. Therefore
Zbﬁ(hl) is endowed with a hyperkihler structure and its dimension

is -2 & = 4. Moreover we can obtain that it is compact and also

locally homogeneous, because the compactness argument in [ 4]

is applicable and any nontrivial infinitesimal deformation of

ASD connections is induced by the action of an infinitesimal

isometries of (‘M, hl ) ( see [2 , sect 21 ). So, the

moduli space QWZ(hl) is a complex flat 2-torus.
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