<table>
<thead>
<tr>
<th>Title</th>
<th>Remarks on Smoothings of Four-Spaces (Geometry of Moduli spaces and 4-dimensional Manifolds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KUGA, Ken'ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1987), 616: 23-29</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/99832</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
4. Remarks on Smoothings of Four-Spaces

Ken'ichi Kuga

One of the striking consequences of Michael Freedman's topological theory of 4-manifolds and Simon Donaldson's non-existence results of certain smooth 4-manifolds is the existence of an exotic smoothing of the euclidean 4-space \mathbb{R}^4. Then an example of a manifold with finitely generated homology groups admitting infinitely many smooth structures was found along the same lines $[G][K]$. More recently Taubes showed the existence of uncountably many smooth structures on $\mathbb{R}^4[T]$. Actually Taubes' argument applies to a fairly large class of open 4-manifolds, and it may now be possible to expect uncountably many smooth structures on every non-compact 4-manifold.

In this informal note, we give some remarks and observations concerning smooth structures on non-compact 4-manifolds which seem to indicate the complicated nature of the problem: In §1 we provide a natural construction which possibly produces uncountably many smoothings and discuss some problems on the construction; In §2 we give some observations which shows some difficulties to reasonably topologize the set of smooth structures on a non-compact 4-manifold.

§1 Given a non-compact 4-manifold V^4, consider the following construction which is an immediate generalization of Taubes' construction to arbitrary non-compact manifold and actually produces uncountably
many smoothings in many cases (e.g. when an end of V is diffeomorphic to $S^3 \times \mathbb{R}$).

1.1 Construction: Fix an exotic smoothing of \mathbb{R}^4, denoted R, which is standard on $(-\infty, 0) \times \mathbb{R}^3$, and a smooth properly embedded half-open ray A in V^4. Identifying an open tubular neighborhood of A with $(-\infty, 0) \times \mathbb{R}^3 \times \mathbb{R}$ so that the open end of A goes to $0 \times \mathbb{R}^3$, we can form an end connected sum of V^4 with R, denoted $V^4 \# R$, which is homeomorphic to V^4. Then we can define a continuously parametrized smooth submanifolds $V(r)$ of $V^4 \# R$ for $0 < r \leq \infty$ by setting $V(r) = V^4 \cup (\text{open ball of radius } r \text{ centered at the origin in } R)$, which are homeomorphic to V^4.

1.2 Remark: When the end of V is diffeomorphic to an end of a punctured definite 1-connected 4-manifold with non-standard intersection form, uncountably many distinct smoothings of V^4 can be obtained by taking continuously parametrized parallel ends as in [T]. It is not clear, however, that the above construction (where R is connected to V along the standard structure) yields uncountably many smoothings in these cases.

1.3 Remark: If the smooth structure on the end of V^4 is sufficiently complicated, the above construction fails. For example, set $V^4 = \#_{n=1}^{\infty} S^2 \times S^2$ a universal smoothing of \mathbb{R}^4 in [FT]. Then, for any choice of R, $V(r)'s$ are all diffeomorphic to V^4, i.e., the above construction cannot produce any new smoothing.

1.4 $P = \#_{n=1}^{\infty} S^2 \times S^2$: Also, if the end of V^4 is topologically complicated, the above construction might fail. A candidate to this is an infinite connected sum of $S^2 \times S^2$. More specifically, consider a countable sequence of small disjoint 4-balls D^4_n in the standard \mathbb{R}^4.

centered at points \((n,0,0,0)\), \(n = 1, 2, \ldots\), and take connected sums with countably many copies of \(S^2 \times S^2\), denoted \((S^2 \times S^2)_n\), at \(D^4_n\)'s. The resulting manifold \(P^4 = \#_{n=1}^{\infty}(S^2 \times S^2)_n\) is an open smooth 4-manifold with one end whose homology groups are infinitely generated. The following observation is an easy consequence of techniques in [FT] which shows the complicatedness of the smooth manifold \(P\).

1.5 Proposition: If \(Q^4\) is a smooth 4-manifold topologically homeomorphic to \(P\) (i.e. a possibly different smoothing of \(P\)). Then \(Q\) can be smoothly embedded into \(P\) in such a way that \(\text{int}(P - \text{Image}(Q))\) is topologically an open 4-ball.

Proof First observe that any smoothing of \(\mathbb{R}^4\), say \(U\), can be smoothly embedded into \(P\). In fact, one can construct a proper \(h\)-cobordism consisting of (small) 2- and 3-handles between \(P\) and \(U \# (\#_{n=1}^{\infty}(S^2 \times S^2)_n)\) which is topologically a product and smoothly a product near \(\bigcup_{n=1}^{\infty}((S^2 \times S^2)_n - D^4_n)\). The smooth Whitney tricks may be performed after removing self-intersections of Whitney disks by Norman tricks in \((S^2 \times S^2)_n - D^4_n\) in the middle level and we get a diffeomorphism \(U \# (\#_{n=1}^{\infty}(S^2 \times S^2)_n) \cong P\). Then we get an embedding of \(U \subseteq U - \text{(tubular neighborhood of a smooth proper half-open arc which joins } D^4_n\text{'s in } U\text{)}\) into \(P\).

Next consider the universal smoothing \(H\) of \([0, \infty) \times \mathbb{R}^3\) constructed in [FT]. As above we can smoothly embed \(H\) into \(P\), call the image \(H_+\), so that the end of \(H_+\) goes to the end of \(P\). (i.e. a proper embedding). Consider a smooth proper \(h\)-cobordism \(W^5\) between \(P\) and \(Q\) consisting of (small) 2- and 3-handles which is topologically a product (Note that we can extend the smooth structure on \(P\) and \(Q\) to \(W\), since the obstruction \(H^4(\text{relative}; \pi_3(\text{TOP/PL}) = 0)\). Then as in [FT], resmooth-
ing a neighborhood \(N \) of properly embedded half-open ray \(A \) in \(H_+ \) in \(P \) crossed with \([0,1]\) in \(W^5 \) by plugging \(Hx[0,1] \) into \(Nx[0,1] \) in \(W^5 \), smooth Whitney tricks may be performed after smoothing the cores of suitably chosen Casson Handles in the middle level using the resmoothing \(Hx(1/2) \). Then we get a diffeomorphism \((Q - (Nx(1))) \cup (Hx(1)) \cong (P - (Nx(0))) \cup (Hx(0))\), and hence a smooth embedding of \(Q \cong (Q - Nx(1)) \) into the latter manifold (\(P \) with \(Nx0 \) replaced by \(Hx0 \)) so that the compliment of the closure of the image is topologically homeomorphic to the open 4-ball. Finally this manifold, \(P \) with \(Nx0 \) replaced by \(Hx0 \), is actually diffeomorphic to \(P \), since \(Hx0 \) is absorbed into the universal smoothing \(H_+ \) originally embedded in \(P \).

§2 Since there are uncountably many smoothings of a non-compact 4-manifold (at least for many cases), the following seems to be a natural question: Can we find a reasonable (Hausdorff, etc.) topology on the set of smooth structures on a non-compact 4-manifold (\(\mathbb{R}^4 \), for example)?

Let \(S_4 \) be the set of smooth structures on \(\mathbb{R}^4 \). One can define a natural distance (admitting \(\infty \)), call Lipschitz-Shikata distance, on \(S_4 \) as follows: For \(U, V \in S_4 \), define \(d(U,V) \in [0, \infty] \) by \(d(U,V) = \inf \left(\inf \left(\log \max(|h|, |h^{-1}|) \right) \right) \), where \(d \) and \(\bar{d} \) run through all complete riemannian metrics compatible with the smooth structures \(U \) and \(V \) respectively, and \(h \) runs through all onto homeomorphism \(U \to V \), and \(|h| = \sup_{x \neq y, \in U} (\bar{d}(h(x), h(y))/d(x,y)) \in [0, \infty] \). (It is non-trivial that \(d(U,V) = 0 \) implies \(U = V \), which is a consequence of the following proposition.) One can readily generalize a result of Shikata [S] to non-compact manifolds and get:
2.1 Proposition: \(S^4 \) is a discrete space with respect to the Lipschitz-Shikata distance. In other words, if two exotic \(\mathbb{R}^n \)'s admit a sufficiently small lipeomorphism with respect to some riemannian metrics, then they are diffeomorphic.

Proof Fix an isometric imbedding of \(V \) into the euclidean space \(\mathbb{R}^m \) for sufficiently large \(m \) (Nash imbedding theorem is valid for non-compact manifolds), and take a tubular neighborhood \(N \) of \(V \) in \(\mathbb{R}^m \) so that the fibers of \(\pi : N \rightarrow V \) are orthogonal to \(V \) in \(\mathbb{R}^m \). Then, as usual, the continuous \(\mathbb{R}^m \)-valued function \(f = i \circ h : U \rightarrow V \subseteq \mathbb{R}^m \) (where \(h : U \rightarrow V \) is a small lipeomorphism), is approximated by a \(C^\infty \) \(\mathbb{R}^m \)-valued function \(f_t(x) = \int_U f(y)g_t(x,y)dy, x \in U \), for \(t > 0 \), a coordinatewise integration over the riemannian manifold \((U,d)\), where \(g_t(x,y) \) is given by \(g_t(x,y) = g(d(x,y)/t) / \left(\int_U g(d(x,y)/t)dx \right) \) and \(g \) is a non-negative \(C^\infty \) function: \(\mathbb{R} \rightarrow [0,\infty) \) with compact support and \(g = \text{constant near } 0 \in \mathbb{R} \).

Consider the composition \(F(x,t) = \pi \circ f_t(x) \) for \(x \in U \), \(t > 0 \), and \(F(x,0) = h(x) \), for \(x \in U \), where \(\pi \) is the orthogonal projection of \(N \) onto \(V \). Although this composition is not defined everywhere, there is a positive number \(t(L) \) for each compact subset \(L \) of \(U \) such that \(F(x,t) \) is well-defined on \(U[x,0,t(L)] \), i.e., \(f_t(x) \in N \) for \(x \in L \), \(0 \leq t \leq t(L) \). Furthermore, Shikata's proof in [S] shows that there is a positive constant \(c \) (independent of the manifolds \(U, V \) or the choice of isometric imbedding of \(V \)) such that if \(|h| \) and \(|h^{-1}| \) are both \(< c \), and if \(t(L) > 0 \) is sufficiently small (depending on \(L \)), then \(F \) defines a \(C^\infty \) embedding of (neighborhood of \(L \))\(x(t) \) for \(0 < t \leq t(L) \).

Hence we can find codimension 0 compact submanifolds \(M_n, L_n \) of \(U \) for \(n = 1, 2, \cdots \), and a deceasing sequence \(t_1 > t_2 > \cdots \) of positive numbers \(0 < t_n < t(L_n) \) such that: (i) \(\bigcup_{n=1}^\infty M_n = \bigcup_{n=1}^\infty L_n = U \),
\(M_0 \subseteq L_n \subseteq M_{n+1} \); (ii) \(F|_{L_n}(x(t)) \) is a \(C^\infty \) embedding of \(L_n \cong \mathbb{R}^n \) into \(\mathbb{R}^n \) for \(0 < t \leq t_n \); (iii) \(F(M_n(x[0,t_n])) \subseteq F(L_n(x(t_n))) \subseteq F(M_{n+1}(x(t_{n+1}))) \).

Consider the function \(\overline{F}(x,t) = (F(x,t),t) \in \mathbb{R} \times (0,\infty) \) for \((x,t)\) in a neighborhood of \(X = \bigcup_{n=1}^{\infty} (L_n(x[0,t_n])) \) in \(\text{Im}(\overline{F}) \). Then \(\overline{F} \) \(C^\infty \) embeds \(X - \text{Im}(\overline{F}) \) into \(\mathbb{R} \times (0,\infty) \) (differentiability of \(\overline{F} \) is assured by the compactness of support of \(g \) in the definition of \(f(x) \)). One can construct a \(C^\infty \) vector field \(\mathcal{X} \) on \(\mathbb{R} \times (0,\infty) \) by partition of unity argument with the following properties: (i) \(dp_2(\mathcal{X}) = d/dt \) (where \(p_2 \) is the projection \(\mathbb{R} \times (0,\infty) \rightarrow (0,\infty) \)); (ii) \(\mathcal{X} = d\overline{F}(\partial/\partial t) \) on \(\mathbb{R} \times (0,\infty) \); (iii) \(\mathcal{X} = \partial/\partial t \) outside a neighborhood of \(\bigcup_{n=1}^{\infty} (F(L_n(x(t_n)))) \times (0,t_n) \).

Fixing a number \(t_0 > t_1 \), let \(\Pi : V \times (0,\infty) \rightarrow V \) be the projection along the \(C^\infty \) flow \(\mathcal{X} \) onto \(V = \text{Im}(\overline{F}(x_0)) \), i.e. \(\Pi(y,t) \) is the unique intersection of \(V \) with the trajectory of \(\mathcal{X} \) through \((y,t)\). Then the desired diffeomorphism \(\tilde{h} : U \rightarrow V \) may be written as the union \(\tilde{h}(x) = \bigcup_{n=1}^{\infty} \Pi_n \mathcal{F}(L_n(x(t_n)),x(t_n)) \), which is well-defined from the construction. \(\square \)

2.2 Remark: The above argument is valid for any non-compact manifolds of any dimension (the constant \(c \) depends only on the dimension).

2.3 Remark: The Lipschitz–Shikata distance is, hence, too strong.

There are some candidates for defining weaker topologies on \(S_4 \).

Consider the following spaces of embeddings: (i) \(E_1 \) = topological embeddings of the unit open 4-ball into a universal smoothing \(U \) of \(\mathbb{R}^4 \) in \([FT]\); (ii) \(E_2 \) = topological embeddings of the unit open 4-ball into \(P = \bigoplus_{n=1}^{\infty} S_n^2 \times S_n^2 \) described in 1.4; (iii) \(E_3 \) = \(C^\infty \)-proper embeddings of the universal smoothing \(H \) of the half-space \([0,\infty) \times \mathbb{R}^3 \) in \([FT]\) into \(H, f : H \rightarrow H \). Then we have projections \(p_1 : E_1 \rightarrow S_4 \), defined by \(p_1(f) = \text{Image of } f \) with the induced smooth structure, for
i = 1, 2, and \(p_3(f) = \text{Int}(H - \text{Image}(f)) \) (\(p_1 \) and \(p_3 \) are surjective by [FT], and \(p_2 \) is surjective from the argument in Proof of 1.5). Hence any topology on \(E_1 \) induces a quotient topology on \(S_4 \). It seems, however, not easy to make this topology Hausdorff. For example, if we put compact-open topology on \(E_1 \), the only open sets of \(S_4 \) will be the whole set and the empty set.

2.4 Remark: It would be nice if one could define a reasonable topology on \(S_4 \) with possibly accessible homotopy groups. Related to this is the following naive question: Is there a reasonable topology on \(S_4 \) such that the singular complex \(S(S_4) \) is identifiable with the Kan complex \(\text{DIFF}(\mathbb{R}^4) \) of sliced families of smooth structures on \(\mathbb{R}^4 \) \((S_4 \text{ is the set of vertices } \text{DIFF}(\mathbb{R}^4)^0) \)? Again, this topology cannot be Hausdorff, since a universal smoothing \(U \) is contained in any neighborhood of any element and the only neighborhood of the standard structure is the whole set.

References

