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Introduction

The aim of this talk is to describe the results of
Noguchi [14]1, Let X be a connected Zariski open subset of a
compact reduced complex space X such that X is complete.
hyperbolic and hyperbolically imbedded into X (cf. [7, 161,
Let N be a Zariski open subset of a compact complex manifold
N such that 8N = N-N is a hypersurface with only normal
crossings: in some case, we consider the_ case of 3N = ¢,
Here we study the structure of the moduli space Hol(N, X) of
all holomorphic mappings f£: N > X of N into .X. Especially

interesting is the case where X is the quotient I'\D of a



symmetric bounded domain D by a torsion-free arithmetic sub-
group ' of the identity component Aut0
transformation group Aut(D) of D, It is known that TI'\D is
. complete hypefbolic and hyperbolically imbedded into the
Satake compactification FYB of I'\D <(cf. [10, 2, 8, 91).
Besides the interesting results of [20, 21, 181, the present
work is motivated by the results on the Parshin-Arakelov
theorems fof curves [17, 1] and Abelian varieties [5], Cf,.
also [13])., Let n: Y > N be a fiber space over N which is
smooth over N, such that the fibers Yx = n-l(x) with xeN are
curves with a given genué g or g-dimensional Abelian
varieties with principal polarization. Then, roughly speak-
ing, the fiber space naturally induces a holomorphic mapping
f: N » F\Sg , where Sg denotes Siegel’s generalized upper
half space. Then the deformation of n: Y » N as fiber space
over N with degeneration at most over 3N and the total space
of such fiber spaces correspond respectively to the deforma-
tion of the holomorphic mapping f and the moduli space
Hol(N, I'\S ). Thus it is quite natural to deal with the
case where N and I'\D are non-compact. In the case where N
is compact, there is an earlier work for a fiber space of

Abelian varieties by [11].

§1. Holomorphic mappings inte hyperbolically imbedded

spaces

The natural topology of Hol(N, X) which we endow with

is the compact-open topology. We first prove an extension
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(D) of the holomorphic -
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and convergence theorem.

Theorem (1.1), Let X be a hyperbolic complex space and

hyperbolically imbedded into X. Let N be a complex manifold

N minus a hypersurface with only normal crossings. If a

seguence {fu}:=1 of fveHol(N, X) converdges to a holomorphic

mapping £f: N » f, then there are unigque holomorphic exten-

sions fv: N> X of fv and f: > X of £, and {?v} converges

Rl

N
uniformly on compact subsets of N to

As for the extension theorem, this generalizes the
result of [7],7but the method of the proof is different. It
will play a fundamental role in our arguments, In the proof

of Theorem (1.,1) we use the following lemma (cf. [14] for

the details).

Lemma (1.2) (cf. [19]1), Let B(R) be the open ball of

the m-dimensional complex vector space c™ with radius R and

center 0, Let S be an analytic subset of pure dimension k
of B(R) such that 0eS. Then we have

X
Vol(snB(r)) 2 L2k

£

for

< r < R, Moreover, if the equality holds for some

0
r > 0, then S is a linear gubspace of C",

In what follows, we assume that N and X are compact,
and that X 1is a Zariski open subset of X, complete hyper-

bolic and hyperbolically imbedded into X. Combining Theorem
(1.1) with the Douady theory [3], we have
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Theorem (1.3). Hol(N, X) carries a structure of a com-

plex space with universal property, such that its underlying

topology coincides with the compact-open topology, and
®: (f, x)eHol(N, X)XN = f(x)eX

is a holomorphic mapping, which is proper for every fixed

XeN. Moreover, Hol(N, X) is a Zariski open subset of a com-

pact complex space.

Sketch of the proof. Let Hol(N, X) be the space of all

holomorphic mappings from N into X with compact-open topol-

ogy. Then, by Theorem (1,1) the mapping
feHol(N, X) » feHol(N, X)

is an into-homeomorphism. Hence we identify the topological
space Hol(N, X) with its image in Hol(N, X). By making use
of the distance decreasing property of hyperbolic distance
for holomorphic mappings, we see that Hol(N, X) is rela-
tively compact. The complete hyperbolicity of X implies
that Hol(N, X) is open and closed in Hol(ﬁ, X) and then
Theorem (1.,1) yields that the topological <closure of
Hol(N, X) in Hol(N, X) is a compact complex subspace which
contains Hol(N, X) as a Zariski open subset. The complete
hyperbolicity of X also implies that ®(-, x): Hol(N, X) » X

is proper for every fixed xeN. Q.E.D.

In general, let Y, and Y, be two complex spaces. For a

holomofphic mapping f: Y1 > Y2, we set
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- . - ad -1 .
rank f = sup{dlth1 dlmtf (fCE)): teYll.
The following proposition follows from Lemma (1.2). It
reveals a special nature of the complex analyticity of holo-

morphic mappings but is less known,

Proposition (1,4), Assume that Y

and Y2 are compact.

«©

1
Let {fv}v=1 be a sequence of points of Hol(Yi, Y2) converg-

ing to feHol(Yi, Y2). If rank fv = k, then rank f = k.

We set

Hol(k; N, X) = {feHol(N, X): rank f = k}.

Corollary (1.5), Hol(k: N, X) is open and closed in

Hol(N, XO.

§2. The moduli Hol(N, T'\D)

In this section we deal with the case where X 1is the
quotient T'\D of a symmetric bounded domain D by a torsion-
free discrete subgroup I' of Aut(D), We assume that TI' is

uniform or an a}ithmetic subgroup of Aut0

(D). In the case
where I' is uniform and N = N, the results of this section
were already obtained in [20, 21, 181]. We are mainly
interested in the case where TI'\D vand N are non-compact,
while our arguments work in the compact case., Let (D)

(resp. (I')) denote the maximum dimension of proper boundary

components of D (resp. '-rational boundary components), Let
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Hol(k: N, I'\D) denote the set of all holomorphic mappings
f: N> M\D with rank f = k. Applying the resultg of the

previous section, we have

Theorem (2.1). i) Hol(N, I'\D) carries a structure of a

complex space compatible with compact-open topology, such

that the evaluation mapping

®: (f, x)eHol(N, T\D)XN » f(x)el\D

is holomorphic. Moreover, Hol(N, I'\D) is a Zariski open sub-

gset of the compact complex space Hol(N, P\D)l) and satis-

4

fies the universality property: i.e., for a complex space T

and a holomorphic mapping %: TXN = TI'\D, the natural mapping

teT » y(t, -)eHol(N, I'\D)
is holomorphic.

ii) Every connected componeht of Hol(N, '\D) is complete

hyperbolic and the holomorphic mappings

¢x: feHol(N, I'\D) » £f(x)el'\D

are proper for all =xeN,

1) Hol(N, T\D) is the closure of Hol(N, I'\D) in
Hol(N, T\D).
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iii) Hol(k;

iv) Hol(k:

v) Hol(k:
In the

structure

N, I'\D) are open and closed in Hol(N, TI'\D).

N, I'\D) are compact for k > Q(T),

N, I'\D) are finite for k > #(D).

lest of this section, we study in details the

of Hol(N, I'\D), assuming that N is Kahler and 3N

is a hypersurface with only simple normal crossings. We use

the followi

ng result on harmonic mapppings by [181]:

(2,2) Let F: N> I''\D and G: N » T'\D be free homotopic har-

monic

mappings with finite energy. Then there is a

harmonic mapping ¥: RXN > I'\D with respect to the pro-

duct

i)

ii)

Lemma

metric dteéh on RXN such that

v(0, x) = F(x), ¥(1, x) = G(x) and ¥ provides a
free homotopy between F and G, equivalent to the

given one:

for every xeN, the curve 1 teR » ¥(t, x)el'\D is
a parametrization of a geodesic with constant

speed, independent of x, and e(¥(t, -))(x) is

constant in t.

(2.3). Let F and G be as in (2.2), If F 1is

holomorphic, then so is G.

‘Remark. 1) In case N is compact, this is a theorem due

to Lichenerowicz (cf, Theorem (8.,6) of [41),
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2) Since (2.2) actually holds for harmonic mappings
from a complete Riemannian manifold with finite volume into
a complete Riemannian manifold with non-positive sectional
curvatures, Lemma (2.3) is also true for harmonic mappings F
and G from a complete Kahler manifold with finite volume
into a complete Kahler manifold with non-positive sectional

curvatures, provided that F and G have finite energies.

The main result is the following:

Theorem (2.4). i) Hol(N, I'\D) is smooth and guasi-

projective,

ii) For a connected component Z of Hol(N, I''D) and a point

XxeN, the evaluation mapping at x

®x: feZ » f(x)el'\D

is a proper holomorphic immersion onto a totally geo-

desic complex submanifold, so that Z igs a free guotient

of a symmetric bounded domain,

iii) For a connected component Z of Hol(N, I'\D), there is a
normal complex projective variety 7 such that Z is

hyperbolically imbedded into 7 and Qx holomorphically

extends to EX: 7 \D.

iv) dim Hol(k: N, I'\D)> £ 0(D) for k > 0,
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1)

v) or £€HOl(N, TI'\D) with T leor) ¢ ¢,

dimeol(N, '\D) £ 0(I'),
As a corollary, we have the following.

Corollary (2.5) (Rigidity). Let f£: N > I'\D be a holo-

morphic mapping, Then f 1is a unigue holomorphic mapping

among the free homotopy class of £, if f satisfies one of

the following conditions:

al The image of f is not contained in a totally geodesic

complex proper submanifold of I'\D:;

b) rank £ > Q(D):
¢) T leor\D) # ¢ and rank £ > 0(I'),

In general, a holomorphic mapping feHol(N, I'\D) admits
a deformation (cf. [51)., But in the special case where D is
the n-th product H" of the upper halfkplane HcC, we see that
any feHol(N, F\Hn) is rigid, That is, by making use of the

rigidity Theorem 6 of [6], we have

Theorem (2.6). Let IPc(PSL(2, R))" be an irreducible

torsion~-free digscrete subgroup with Vol(F\Hn) < o, Then

i) if f: N » I‘\Hn ig a non-constant holomorphic mapping, f

is a unigque holomorphic mapping among the free homotopy

class of £,

8o that
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ii) there are only finitely many non-constant holomorphic

mappings from N into I'\H",

Remark, 1) It must be noted that if I'\H" is not conm-
pact, then I is arithmetic ([L121)., Therefore I' satisfies

our requirement for discrete subgroups.
2) In the case of dim N = 1, i) was proved in [61,

3) By the same arguments as in [15], we see that +the

Kahler assumption for N is not necessary in ii), The proof

is reduced to the present case,

4) For a compact quotient F\H2 and a compact complex
manifold N, ii) was proved in [153. For an algebraic curve

N and compact P\Hn, it was proved in [6],
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