<table>
<thead>
<tr>
<th>Title</th>
<th>Moduli Spaces of Holomorphic Mappings into Hyperbolically Imbedded Complex Spaces and Locally Symmetric Spaces (Automorphic Forms and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Noguchi, Junjiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録, 1987, 617: 218-230</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/99837</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Moduli Spaces of Holomorphic Mappings into Hyperbolically Imbedded Complex Spaces and Locally Symmetric Spaces

Junjiro Noguchi

Department of Mathematics, Faculty of Science
Tokyo Institute of Technology
Oh-Okayama, Meguroku, Tokyo 152, Japan

Introduction

The aim of this talk is to describe the results of Noguchi [14]. Let X be a connected Zariski open subset of a compact reduced complex space \(\overline{X} \) such that \(X \) is complete hyperbolic and hyperbolically imbedded into \(\overline{X} \) (cf. [7, 16]). Let \(N \) be a Zariski open subset of a compact complex manifold \(\overline{N} \) such that \(\partial N = \overline{N} - N \) is a hypersurface with only normal crossings; in some case, we consider the case of \(\partial N = \emptyset \). Here we study the structure of the moduli space \(\text{Hol}(N, X) \) of all holomorphic mappings \(f: N \to X \) of \(N \) into \(X \). Especially interesting is the case where \(X \) is the quotient \(\Gamma \backslash D \) of a
symmetric bounded domain D by a torsion-free arithmetic subgroup Γ of the identity component $\text{Aut}_0^0(D)$ of the holomorphic transformation group $\text{Aut}(D)$ of D. It is known that $\Gamma \backslash D$ is complete hyperbolic and hyperbolically imbedded into the Satake compactification $\overline{\Gamma \backslash D}$ of $\Gamma \backslash D$ (cf. [10, 2, 8, 9]). Besides the interesting results of [20, 21, 18], the present work is motivated by the results on the Parshin-Arakelov theorems for curves [17, 1] and Abelian varieties [5]. Cf. also [13]. Let $\pi: \overline{Y} \to \overline{N}$ be a fiber space over \overline{N} which is smooth over N, such that the fibers $Y_x = \pi^{-1}(x)$ with $x \in N$ are curves with a given genus g or g-dimensional Abelian varieties with principal polarization. Then, roughly speaking, the fiber space naturally induces a holomorphic mapping $f: N \to \Gamma \backslash S_g$, where S_g denotes Siegel's generalized upper half space. Then the deformation of $\pi: \overline{Y} \to \overline{N}$ as fiber space over \overline{N} with degeneration at most over ∂N and the total space of such fiber spaces correspond respectively to the deformation of the holomorphic mapping f and the moduli space $\text{Hol}(N, \Gamma \backslash S_g)$. Thus it is quite natural to deal with the case where N and $\Gamma \backslash D$ are non-compact. In the case where N is compact, there is an earlier work for a fiber space of Abelian varieties by [11].

§1. Holomorphic mappings into hyperbolically imbedded spaces

The natural topology of $\text{Hol}(N, X)$ which we endow with is the compact-open topology. We first prove an extension
and convergence theorem.

Theorem (1.1). Let X be a hyperbolic complex space and hyperbolically imbedded into \overline{X}. Let N be a complex manifold \overline{N} minus a hypersurface with only normal crossings. If a sequence $\{f_\nu\}_{\nu=1}^\infty$ of $f_\nu \in \text{Hol}(N, X)$ converges to a holomorphic mapping $f : N \to \overline{X}$, then there are unique holomorphic extensions $\overline{f}_\nu : \overline{N} \to \overline{X}$ of f_ν and $\overline{f} : \overline{N} \to \overline{X}$ of f, and (\overline{f}_ν) converges uniformly on compact subsets of \overline{N} to \overline{f}.

As for the extension theorem, this generalizes the result of [7], but the method of the proof is different. It will play a fundamental role in our arguments. In the proof of Theorem (1.1) we use the following lemma (cf. [14] for the details).

Lemma (1.2) (cf. [19]). Let $B(R)$ be the open ball of the m-dimensional complex vector space \mathbb{C}^m with radius R and center 0. Let S be an analytic subset of pure dimension k of $B(R)$ such that $0 \in S$. Then we have

$$\text{Vol}(SB(r)) \leq \frac{e^{2k}}{k!} r^{2k}$$

for $0 < r < R$. Moreover, if the equality holds for some $r > 0$, then S is a linear subspace of \mathbb{C}^m.

In what follows, we assume that \overline{N} and \overline{X} are compact, and that X is a Zariski open subset of \overline{X}, complete hyperbolic and hyperbolically imbedded into \overline{X}. Combining Theorem (1.1) with the Douady theory [3], we have
Theorem (1.3). $\text{Hol}(N, X)$ carries a structure of a complex space with universal property, such that its underlying topology coincides with the compact-open topology, and

$$\Phi: (f, x) \in \text{Hol}(N, X) \times N \rightarrow f(x) \in X$$

is a holomorphic mapping, which is proper for every fixed $x \in N$. Moreover, $\text{Hol}(N, X)$ is a Zariski open subset of a compact complex space.

Sketch of the proof. Let $\text{Hol}(\overline{N}, \overline{X})$ be the space of all holomorphic mappings from \overline{N} into \overline{X} with compact-open topology. Then, by Theorem (1.1) the mapping

$$f \in \text{Hol}(N, X) \mapsto \overline{f} \in \text{Hol}(\overline{N}, \overline{X})$$

is an into-homeomorphism. Hence we identify the topological space $\text{Hol}(N, X)$ with its image in $\text{Hol}(\overline{N}, \overline{X})$. By making use of the distance decreasing property of hyperbolic distance for holomorphic mappings, we see that $\text{Hol}(N, X)$ is relatively compact. The complete hyperbolicity of X implies that $\text{Hol}(N, X)$ is open and closed in $\text{Hol}(\overline{N}, \overline{X})$ and then Theorem (1.1) yields that the topological closure of $\text{Hol}(N, X)$ in $\text{Hol}(\overline{N}, \overline{X})$ is a compact complex subspace which contains $\text{Hol}(N, X)$ as a Zariski open subset. The complete hyperbolicity of X also implies that $\Phi(\cdot, x): \text{Hol}(N, X) \rightarrow X$ is proper for every fixed $x \in N$. Q.E.D.

In general, let Y_1 and Y_2 be two complex spaces. For a holomorphic mapping $f: Y_1 \rightarrow Y_2$, we set
rank \(f = \sup \left\{ \dim_t Y_1 - \dim_t f^{-1}(f(t)) ; t \in Y_1 \right\} \).

The following proposition follows from Lemma (1.2). It reveals a special nature of the complex analyticity of holomorphic mappings but is less known.

**Proposition (1.4). Assume that \(Y_1 \) and \(Y_2 \) are compact. Let \(\{f_\nu\}_{\nu=1}^\infty \) be a sequence of points of \(\text{Hol}(Y_1, Y_2) \) converging to \(f \in \text{Hol}(Y_1, Y_2) \). If \(\text{rank } f_\nu = k \), then \(\text{rank } f = k \).

We set

\[
\text{Hol}(k; N, X) = \{ f \in \text{Hol}(N, X) ; \text{rank } f = k \}.
\]

Corollary (1.5). \(\text{Hol}(k; N, X) \) is open and closed in \(\text{Hol}(N, X) \).

§2. The moduli \(\text{Hol}(N, \Gamma \backslash D) \)

In this section we deal with the case where \(X \) is the quotient \(\Gamma \backslash D \) of a symmetric bounded domain \(D \) by a torsion-free discrete subgroup \(\Gamma \) of \(\text{Aut}(D) \). We assume that \(\Gamma \) is uniform or an arithmetic subgroup of \(\text{Aut}^0(D) \). In the case where \(\Gamma \) is uniform and \(N = \overline{\mathbb{N}} \), the results of this section were already obtained in [20, 21, 18]. We are mainly interested in the case where \(\Gamma \backslash D \) and \(N \) are non-compact, while our arguments work in the compact case. Let \(\ell(D) \) (resp. \(\ell(\Gamma) \)) denote the maximum dimension of proper boundary components of \(D \) (resp. \(\Gamma \)-rational boundary components). Let
\(\text{Hol}(k; N, \Gamma \backslash D) \) denote the set of all holomorphic mappings \(f: N \to \Gamma \backslash D \) with rank \(f = k \). Applying the results of the previous section, we have

Theorem (2.1). i) \(\text{Hol}(N, \Gamma \backslash D) \) carries a structure of a complex space compatible with compact-open topology, such that the evaluation mapping

\[
\Phi: (f, x) \in \text{Hol}(N, \Gamma \backslash D) \times N \to f(x) \in \Gamma \backslash D
\]

is holomorphic. Moreover, \(\text{Hol}(N, \Gamma \backslash D) \) is a Zariski open subset of the compact complex space \(\overline{\text{Hol}(N, \Gamma \backslash D)} \), and satisfies the universality property: i.e., for a complex space \(T \) and a holomorphic mapping \(\psi: T \times N \to \Gamma \backslash D \), the natural mapping

\[
t \in T \to \psi(t, \cdot) \in \text{Hol}(N, \Gamma \backslash D)
\]

is holomorphic.

ii) Every connected component of \(\text{Hol}(N, \Gamma \backslash D) \) is complete hyperbolic and the holomorphic mappings

\[
\Phi_x: f \in \text{Hol}(N, \Gamma \backslash D) \to f(x) \in \Gamma \backslash D
\]

are proper for all \(x \in N \).

1) \(\overline{\text{Hol}(N, \Gamma \backslash D)} \) is the closure of \(\text{Hol}(N, \Gamma \backslash D) \) in \(\text{Hol}(\overline{N}, \overline{\Gamma \backslash D}) \).
iii) $\text{Hol}(k; N, \Gamma \setminus D)$ are open and closed in $\text{Hol}(N, \Gamma \setminus D)$.

iv) $\text{Hol}(k; N, \Gamma \setminus D)$ are compact for $k > \ell(\Gamma)$.

v) $\text{Hol}(k; N, \Gamma \setminus D)$ are finite for $k > \ell(D)$.

In the rest of this section, we study in details the structure of $\text{Hol}(N, \Gamma \setminus D)$, assuming that \bar{N} is Kähler and ∂N is a hypersurface with only simple normal crossings. We use the following result on harmonic mappings by [18]:

(2.2) Let $F: N \to \Gamma \setminus D$ and $G: N \to \Gamma \setminus D$ be free homotopic harmonic mappings with finite energy. Then there is a harmonic mapping $\Psi: RXN \to \Gamma \setminus D$ with respect to the product metric $dt \otimes h$ on RXN such that

i) $\Psi(0, x) = F(x), \Psi(1, x) = G(x)$ and Ψ provides a free homotopy between F and G, equivalent to the given one;

ii) for every $x \in N$, the curve $\gamma_x: t \in \mathbb{R} \to \Psi(t, x) \in \Gamma \setminus D$ is a parametrization of a geodesic with constant speed, independent of x, and $e(\Psi(t, \cdot))(x)$ is constant in t.

Lemma (2.3). Let F and G be as in (2.2). If F is holomorphic, then so is G.

Remark. 1) In case N is compact, this is a theorem due to Lichnerowicz (cf. Theorem (8.6) of [4]).
2) Since (2.2) actually holds for harmonic mappings from a complete Riemannian manifold with finite volume into a complete Riemannian manifold with non-positive sectional curvatures, Lemma (2.3) is also true for harmonic mappings F and G from a complete Kähler manifold with finite volume into a complete Kähler manifold with non-positive sectional curvatures, provided that F and G have finite energies.

The main result is the following:

Theorem (2.4). i) $\text{Hol}(N, \Gamma \backslash D)$ is smooth and quasi-projective.

ii) For a connected component Z of $\text{Hol}(N, \Gamma \backslash D)$ and a point $x \in N$, the evaluation mapping at x

$$\phi_x: f \in Z \rightarrow f(x) \in \Gamma \backslash D$$

is a proper holomorphic immersion onto a totally geodesic complex submanifold, so that Z is a free quotient of a symmetric bounded domain.

iii) For a connected component Z of $\text{Hol}(N, \Gamma \backslash D)$, there is a normal complex projective variety \tilde{Z} such that Z is hyperbolically imbedded into \tilde{Z} and ϕ_x holomorphically extends to $\overline{\phi_x}: \tilde{Z} \rightarrow \Gamma \backslash D$.

iv) $\dim \text{Hol}(k; N, \Gamma \backslash D) \leq \ell(D)$ for $k > 0$.

- 8 -
v) For $f \in \text{Hol}(N, \Gamma \backslash D)$ with $f^{-1}(\partial \Gamma \backslash D) \neq \emptyset$,
$\dim_{\mathbb{C}} \text{Hol}(N, \Gamma \backslash D) \leq \ell(\Gamma)$.

As a corollary, we have the following.

Corollary (2.5) (Rigidity). Let $f : N \to \Gamma \backslash D$ be a holomorphic mapping. Then f is a unique holomorphic mapping among the free homotopy class of f, if f satisfies one of the following conditions:

a) The image of f is not contained in a totally geodesic complex proper submanifold of $\Gamma \backslash D$;

b) $\text{rank } f > \ell(D)$;

c) $f^{-1}(\partial \Gamma \backslash D) \neq \emptyset$ and $\text{rank } f > \ell(\Gamma)$.

In general, a holomorphic mapping $f \in \text{Hol}(N, \Gamma \backslash D)$ admits a deformation (cf. [5]). But in the special case where D is the n-th product H^n of the upper half plane $\mathbb{H} \times \mathbb{C}$, we see that any $f \in \text{Hol}(N, \Gamma \backslash H^n)$ is rigid. That is, by making use of the rigidity Theorem 6 of [6], we have

Theorem (2.6). Let $\Gamma \subset (\text{PSL}(2, \mathbb{R}))^n$ be an irreducible torsion-free discrete subgroup with $\text{Vol}(\Gamma \backslash H^n) < \infty$. Then

i) if $f : N \to \Gamma \backslash H^n$ is a non-constant holomorphic mapping, f is a unique holomorphic mapping among the free homotopy class of f, so that
ii) there are only finitely many non-constant holomorphic mappings from N into $\Gamma \backslash H^n$.

Remark. 1) It must be noted that if $\Gamma \backslash H^n$ is not compact, then Γ is arithmetic ([12]). Therefore Γ satisfies our requirement for discrete subgroups.

2) In the case of dim $N = 1$, i) was proved in [6].

3) By the same arguments as in [15], we see that the Kähler assumption for \bar{N} is not necessary in ii). The proof is reduced to the present case.

4) For a compact quotient $\Gamma \backslash H^2$ and a compact complex manifold N, ii) was proved in [15]. For an algebraic curve N and compact $\Gamma \backslash H^n$, it was proved in [6].

References

