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On Derivations and Congruences of Siegel Modular

Forms of Degree Two

FT A - (£ 21 (Takakazu Satoh)

1. Introduction

Let Mk(FD) be the space of Siegel modular forms of degree n and of
weight k and S, (I')) its subspace consisting of cuspforms. Denote

Fourier expansion of feMk(I’n) by

£(Z) = T a(N,f)exp(2ziTr(NZ)),
N20

where N runs over all symmetric half-integral matrices of size n.

Put
M (T,;2) = { feM (I')) | a(N,f)eZ for all N20 },

S, (I';Z) = M (I,;Z)NS,(T,),
and

M (T',;R) = M, (I',;Z)®,R,

S AI;R) = S (I';Z)Q,R,

ven I23R) = MA(I'R),

k:even

where R is a commutative ring with 1. We note Mk([’n;C) = Mk(I"n)

by Eichler [3] and Baily [1]. Let H, be the Siegel upper half space

z, 2
of degree two. We denote the variable Z on H, as Z = (zl Z“) and
3 2
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define the differential operator & by

61 %9, 1 3
& = where 6J. = 5mi B2
%9, 62 J

For a odd prime 9, wee see that |@®| induces a map from Mk(I’D;FQ) to
Fn[qa,qs'll[[ql,qz]] where q = exp(Zzizj). Our aim is to show that |@]
preserves Mven(Pz;Fﬂ) under the suitable conditions on ¢ (Theorem

e

3.2).

We proceed as follows. First, we. construct the order two

derivation d:M (Ir;C)-M

even 2 even

(I’Z;C) with certain integrality. This
result already enables us to prove certain congruence formulas.
Using this derivation, we reduce our problem to one for an element

of the Maass space in Section 3.

Notation and Terminologies.

By a holomorphic periodic function on H, we mean a holomorphic
function f on H satisfying rf(Z+S)=f(Z) for all ZeHn and all
symmetric half-integral matrices S of size n. In this case, we denote
- by a(N,f) the Fourier coefficients of f at N. Let K be a algebraic
number filed and R a localization of the integer ring of K at a
prime ideal ¢ of K. If a holomorphic periodic function £ satisfies
a(N,f)eRrR for all N, we denote by f mod ¢ coefficient wise reduction
mod ¢ of f. Suppose a holomorphic periodic function g satisfies

a(N,g)eR for all N. We write f=zg mod 8 if a(N,f)=za(N,g) mod ¢ for

n }éna)

1
}«éns n

all N. For simplicity we denote by (“1'”2'”3) the matrix [
2
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2. Construction of Derivation

Let R be a subring of C containing 1, %, % By Igusa [5], we see
that the ring of even weight modular forms of degree two with

R-coefficients is isomorphic to a polynomial ring with four wvariables:

M oenlTsR) = Rlo,00,%,,,%,,]1. (2.1)

even

Here, generators are determined by the following conditions.

<p4e]\1"1(1"2;Z) a(oiq’q) 1,

(pGEMG(Fz;Z) 8(0’('06) = 1,
4xloeSm(I"2;Z) 3((111}1)17510) = -1,
12x,,€8,,(I32)  a((1,1,1),%,,) = 1.

In general, we denote by @, Siegel’'s Eisenstein series of degree two
and weight k for an even integer k normalized as a(O,q)k) = 1. It
is known by Nagaoka [9] that “’9-151 mod ¢ if ¢ is a regular prime

or if ¢ does not divide the numerator of Bernoulli number B _,.

We denote by M:(Fn) the C-vector space of C™Siegel modular
forms of degree n and of weight k. Let & = &, be the Maass

operator:

ak: Mk(rn) - Mk+2(rn)’

In the degree two case, §,f for feM:(Fz) is given by

5,.f = k[ -%—] |n|'1f+~}i[k-%]Inl'lTr(n@f)H@]f, (2.2)
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where n = -4zImZ. See Maass [7, Sect. 19] for details. Although the
Maass operator commutes with the Hecke operators, it does not keep

holomorphy. So we construct another operator.

For simplicity we put Meven(l“z)' = M__(I';C). Let

even 2

d:M (rz)-ec‘”(ﬂz) be the C-derivation defined by

even

) ,
de, = Z(-49,-101¢,), do, = f—l(—Gw:—l@lws),

(2.3)
dx,, = -216] dx,, = -2 10
Xyo = ~19101%55s X2 T "33101%,,:

{Note that $,9 Pgs X0 and x,, are algebraically independent.) For an

even integer k, define the C-linear map ak:Mk(Fz)—acw(Hz) by
d = —2_(a-10]) (2.4)
k 2k-1""k ’ :

where d“r is the restriction of d to Mk(I’z), and put 6= & 6k.

k:even

Theorem 2.1. Let kK be an even integer. Let R be a subring of C

containing 1, %—, -31;, %, -11—1, ll’ and —2-13— Then we have the following.

» (a) If feM, (I,), then dfeM, (TI,).
(b) If feS, (I,), then dfeS, ,,(I}).

(c) If feMk(I"z;R), then a(N,af—lalf)e(k——lz—)R for all symmetric

half-integral matrices N.

Proof. The assertion (a) holds for four generators »,~%,, by (2.3)
and (2.4). To prove (a), it is enough to show that a(fg)EMk”"(I"z)

under the conditions fEMk(Fz), ofe M

i (1) g€M(T,), and dgeM, (I,).

J+2

Since d is a derivation, we have
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2 2 2
57T = f
2(A_”.)_lé'(fg') zj_l_,ag+2k_1gaf+ﬂ

where

2 2 2
H = Wl@l(fg)-mgl()lf*zj_lfl@|g

Clearly H is a holomorphic function on H,. On the other hand,

- 2 2 __2
H = kv 1% (18 a1 8857 1%;¢
by (2.2). So, HGM:+j+2(I_'2). Hence HeM, . .(I,) and therefore

a(fg)eMk”n(I"z). The proof of (b) is similar. Noting (2.1), we have
only to prove (c) for f = (p:(p:xfoxfz where a, b, ¢, and d are

positive integers. In this case, we have

(8-101)f = Q—k—:{l)—afp:'lwfxfoxg(ﬂ—l@l)w‘
e 5-101)9,
sy BERDC papby ety (5-101)x,,
+ (—zl%g—wftp:xfoxfz"(@ﬂ@i)xu (2.5)

Noting the condition on R, we see that (c) holds. Q.E.D.

A modular form f is said to be an eigenform if it is a non-zero
common eigen function of all Hecke operators. We denote by A(m,f)
the eigenvalue of the m-th Hecke operator T(m) and put

Q(f) = Q(a(m,f)|mz1).

Corollary 2.2, Let (¢ be a prime number other than 2, 3, 7, 11, 19,

23. Let K be an algebraic number field, % its prime ideal lying over
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¢ and R the localization of the integer ring of K at %. Let k be an
even Integer satisfying 1|2k-1 and let feMk(I“Z;R) be an eigenform.

Then at least one of the following holds.
{a) |Nla(N,f)=0 mod ¢ for all N>0.

(b) There exist an eigenform geS“z(I"z) such that

2 =
NQ(f)Q(g)/QU)(m A(m,f)-A(m,g))=0 mod ¢

for all m21 where N is the norm map.

UL/ QL)

Proof. Suppose (a) does not hold. Using mzb‘T(m) = T(m)s (cf. [10,
(3.11) below]}) and the uniqueness of the Fourier coefficients, we can
define T(m)|@|f by mzi@lT(m)f. Clearly, |®|f is an eigenform when
f is a non-constant eigenform. Since a{(N,éf)=|N{a(N,f) mod ¢ by
Theorem 2.1(c), 8f is a mod ¢ eigenform in the sense of Deligne and
Serre [2, Sect. 6]. It is easy to see that Jf mod ¢ belongs to
Sk+2(1"2;R/Q). Now existence of g follows from Deligne and Serre [2,

Lemma 6.11]. Q.E.D.

Remark 2.3. Suppose the multiplicity one condition holds for a Hecke
eigenform feMk(I’n). Then, by Kurockawa [6, Theorem 2], there is a
non-zero constant c¢ satisfying cfeM, (TI',;Z(f)) where Z(f) is the
integer ring of Q(f). We note the multiplicity one condition certainly

holds for degree two Eisenstein series (including Klingen type ones.)

Remark 2.4. 1In fact 0 is an order two derivation. . But the current

author has not obtained the result taking advantage of this property.
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3. Stability of mod ¢ modular forms

Let M:,(]"z) be the  Maass space  of weight k and put
S, (I,) = S, (I,)NM(T},), M (T,;R) = M (I,;R)NM,(T}), and
S;([;;R) = Sk(Pz;R)ﬂM;(I"z) for a subring R of C. The Fourier

coefficients of feS‘f(I"z) satisfies the relation
nn, n
2 )

for (n,,n,,n)>0 with g = gcd(n,n,n;). Therefore, a(N,f) for all N>0

3((n1)n21n3)1f) = = dk_la
dig, d>o0

are determined by a((l1l,%,1),f) and a((1,%,0),f). We also note that if
the latter are integral with respect to a discrete wvaluation, so are
the former. For a holomorphic periodic function f on H, and an

integer Jj,h,v20, we put

CyAy(j;hyf) = zza((j;h;t)yf) tyt
te

where e°=1 and ey:Z for v>0. By Maass [8], the Maass space S;(I"z)

is isomorphic to Sk(I"l)GBS

hz(["l) as a C-vector space:

S;(r,) = S/(I) & S, (I) |
(3.1
r - (Fo y Fz)

where
F(z) = T A(Lhf)q",
h=1

Fz) = E}(Ao(l,h,f)—%Az(l,h,f)]qh,
h=1
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Lemma 3.1. Let k an even Iinteger and (25 be a prime number

satisfying fk(k+1)(k+2) and ¢, =1 mod 4. Let feM,(I,;Z

(Q)') . Then

there exists a cuspform FESI:(P,‘,;Z whose Fourier coefficients

(ﬁ))

satisfy

a(N,F) = |N]a(N,f) mod {.

Proof. (Outline.) It can be verified that

- 1 1 h
Ao(l,h,l@lf) - [1-27;]hAo(l’h"f)_-Z{Az(l’b’f)—EAo(l’h’f))'
By Serre [11], it holds that

eMk (F1;Fn) c SkHHI( FI;FQ)

where 6f = qa%-f is a derivation of FQ{[q]]. So, there is

FoESkMu(FﬁZ(n)) satisfying

Ao(l,h,l@}f) = a(h,Fo) mod ¢.

A similar computation shows that there is F,eS§

k+ ﬂ+3( PI;FR) satisfying

A(1h,1010)-5g 4 (LA, 101£) = a(h,F,) mod 0.

(Cf. Eichler and Zagier [4, Theorem 3.11.) Then FeS’

k+a+1( PZ;Z

(ﬁ))

corresponding (F,,F,) in (3.1) has all the required properties. Q.E.D.

Theorem 3.2. Let 523 be a prime number satisfying ¢, =1 mod ¢

and k an even Iinteger. Then, l@le(I"z;FQ)CS

eesa(Tp3F,).  Especially,

M (I‘z;FQ) is stable under |6/|.

even
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Proof. Let a, b, ¢, and d be non-negative even integers satisfying

4a+6b+10c+12d = k. Put f = q)j(p:xfoxfz. We have only to prove

that
16| f mod & c S, (I;F). (3.2)
As in (2.5), we have
le|f = ¢, 0f

LZ_IS”;_L)E(‘/’:-l‘p:xfoxxdz“’9-16“’4'“’:-1“’:9‘;07‘;’2 1€10,)

(_Z'Lri—li)—b_(‘p:q’sb_lxlcoxfz(’oa-la(ps—q’:(p:-leoxfz 18 19,)

G (0} 2 9,4 0%,,=030, 200 10 12,

- Lz-lfz;glﬁ(“’:(p:xfoxfzﬂ‘pn—laxu‘(p:‘p:xfoxfz.ll @‘xlz) mod {

by Lemma 3.1. Since four generators Py~Xy, belong to the Maass

space, |@|f mod ¢ C (I"Z;FQ). On the other hand, a(N,|@|f) = 0

Mk‘i’l*l

for |N]=0. So (3.2) holds. Q.E.D.
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