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Summary

An efficient method computing LALR(1) Look-Ahead sets from a
given grammar was given by DeRemer and Pennello in 1982. Instead
of their method based on the traditional graph theoretical
approach, this paper presents a formalized and moré efficient
method based on a new methodology, that is, linear algebra-1like
approach called semi-linear algebra.

For a given BNF or extended BNF, Tixier's Standard Right
Linear equation which is transformed from it and”made empty-free
is used in this method. For the equation, First sets are
equationally defined and solved. Then, a formalized method
obtaining an LR(0) automaton from the equation is given, and
Follow sets concerned with nonterminal state transitions of the
automaton are equationally defined and solved. Finally LALR(1)
Look-Ahead sets are obtained as unions of some Follow sets.

1. INTRODUCTION

In order to construct an LALR(1) parser from a given

grammar, it is necessary to construct an LR(0) automaton and to

compute LALR(1) Look-Ahead sets from the automaton. Many
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researchers gave methods doing so. An efficient method was shown
by DeRemer and PennelloT) in 1982.

The author has been studied linear algebra-like approach to
language and automata theory called semi-linear algebra4). This
approach applying to the above problem is shown in this paper. In
other words, this paper presents a formalized efficient method
based on the linear algebra-1like approach instead of the graph
theoreticél one used traditionally until now. This method is.
efficient because of depending on mainly operation of Boolean
matricés instead of set operation used in usual methods.

For a given BNF or extended BNF, Tixier gave a parametric
representation equivalent to it, that is, a system of simulta-
neous right linear equations, and called it Standard Right Linear
equation (system). In the equations, each coefficient is a set of
terminal and nonterminal symbols and each constant term is either
an empty set.or an empty string set.b

Chapter 2 prepares some definitions necessary in this paber
and introduces Tixier's SRL equation. For the equation, if some
of the coefficients contain empty strings, Chapter 3 offers a
method modifying the equation so as to preserve the effect of the
empty strings even if they are removed or neglected. So in the
following chapters, it is assumed that none of the coefficients
of the equation contains the empty string.

In Chapter 4, for each nonterminal X, the first symbol set
First(X), a set of symbols appeared at the first position in
sentential forms derived from X, is equationally defined and

solved.
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Chapter 5 presents a method constructing an LR(0) automaton
from the SRL eQuation. In Chapter 6, for each nonterminal state
transition (Iy,X) of the LR(O0) autematon given in the previous
chapter, the follow set Follow(Iy,X) is equationally defined and
solved. Finally in Chapter 7,’each LALR(1) LoekéAhead set‘is
obtained as a union of some Follow sets.

2. STANDARD RIGHT LINEAR EQUATION

3) as

Some preparatory definitions and Tixier's SRL equation
a description of context-free grammars are introduced.

A set of terminals and a set of nonterminals are denoted by
T and N, respectively. A union of T and N is written by V. The
empty set is represented by ¢ . ’The empty string and the empty
string set are both denoted by A . A union of V and ) is repre-
sented by VA. For notational convensions, we use t as an element
of T ; X, Y and Z as elements of N ;3 and s as-an element of V.
And ﬁurthermore, for the summing operator'z, zté'T is abbreviated
as‘Zt ; Exétqas ZX; and zseV as Es,'

For a given set S, a matrix A=(aj ¢S and a vector

3l iy

v=(vi),'vic:s, are called an S-matrix and an S-vector,

respectively.
For a set S evk and a symbol O éV)\, a function 35 is defined
as
358 = A if 0 € S,
= ¢ otherwise.
For a matrix A:(aij), the definition is extended as
BGA = (acaij)'

For a nonterminal symbol X € N, a function 0 is defined as



6X = A  if X derives A , i.e. X % A ,

= ¢ otherwise.
And furthermore, the definition is extended for a set S and

a matrix A = (a as follows:

13)1

PS = A if A€ S or X € S: pX = A,
= ¢ otherwise.
PA = ( Pa ).

ij
Example 1. For aset S= {X, t}, whererﬁ:X‘and Y £ X,
it holds that Ps =21, 88 =¢ , 3yS =%, 3,5 =A and 3yS = ¢
For a given BNF or extended BNF, Tixier gave its parametric
representation called Standard Right Linear or SRL equation. This
is an extension of representing a given regular expression as a
right linear equation of which the 1st component of the minimal
solution is equivalent to the regular expression. Namely,?for
each nonterminal X in the BNF or extended BNF, the X?defining
equation:

X ::= £(Y, = , X, °*° ,Z) (2.1)

is unfolded by means of introducing appropriate intermediate

parameters Xyx1, Xxo, 77, xXnX as follows:
X = Xy
, I
Xxi T Lj=1 @xij*xj * Cxi

where aXijE Vx, Cyi & A
i=1, 2,°°", ng
or ‘ (2.2)
Xy = AXXX + Cy
where  xy = (Xy3), cx = (cxi), BAg = (ayiqy)-

In the BNF or extended BNF Eq.(2.1), the right part
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f(y,***,X,*"*,2) is able to be regarded as a regular expression
defined on a space V*, which is a set of strings generated from
an alphabet Vk . On the other hand, the SRL equation Eg.(2.2) is
able to be regarded as defined on an ny-dimensional v¥_vector
space. In the space, it has the minimal solution Ax*cx, of which.
the 1st component 1is equivalent to the right part
£(Y,***,X,***,2) of Eg.(2.1). We call the solution on V the
semi-solution.

In the followiﬁg discussions, we use the SRL equation

Eg.(2.2) instead of the BNF or extended BNF Eqg.(2.1), and there,

the right three ny-dimensional iy =(xrdr cees9)
A-vectors associated with Eq.(2.2) by = (o1 by «vur )
will be often used. Ay =t b X eeer X))

Example 2.
Fig.1l is an example grammar 5= G #

SOD@ s

written by BNF. Fig.2 is a state

transition diagram representing

the multiple finite automata

system derived from Fig.1.

S - G #
G-> E=E | f

E— T| E+T

T > £ | T*f

Fig.1 An example grammar quoted
from the book written by Fig.2 Finite automata system

Tremblay and Sorensonz). derived from Fig.1
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The coefficient matrices and the constant term vectors of the SRL

equations describing the automata in Fig.2 are shown below.

As = —¢ G ¢ CS = —¢—' AE = F"¢ T E ¢ ¢_ CE = r—¢—
s ¢ s 6 ¢ ¢ ¢ ¢ A

6 6 o X 6 ¢ ¢ + 4 ¢

- -7 ¢ ¢ ¢ ¢ T ¢
Ag=[¢ E ¢ ¢ ] cg=[9¢] ¢ ¢ ¢ ¢ ¢ | A
¢ & = ¢ ¢ ¢ - - o

6 ¢ ¢ E o ¢ Ap=1é £ T ¢ d)lcp=/¢

6 b ¢ o ¢ A & ¢ ¢ 9 A

¢ ¢ ¢ ¢ ¢ bA ¢ o ¢ x ¢ ¢

- - - ¢ & ¢ ¢ T ¢

6 6 ¢ b o A

Fig.3 - T

3. EMPTY-FREE EQUATION

An SRL equation Xy = AyXy + Cyx (2.2) is said to be empty-
free if its minimal semi-solution is preserved even if each empty
string contained in Ay are removed or_néglected. ’fhis chapter
presents a method making a given SRL equation empty-free without
changing its minimal semi-solution. For this-‘, we must obtain the
value of pX, for each XeN. |

For a given BNF or extended BNF, it is not so difficult to

evaluate pX, X€ N, by inspection. A method doing so by calcula-

tion is given as follows: . 6 l AU é

As the preparation, A ¢ AlA A A
interprete the concatina- u|lu ¢ uliAuu
tion operator "°*" and the $1o 49 $lAud

selection operator "|"

Fig.4 Interpretation of . and l .
(or addition operator "+") as shown in Fig.4. Then, for each

"X €N, initialize pX as PX = u, where u means '"undefined". Note
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that the function P is homomorphism. Namely, it holds that
P(s + 8') = Ps + ps', p(ss') = Psps' and p(s*) = (ps)*.
Then for each X-defining equation:
X 2= £(Y, °°°, X, =*°, 2),
such that pX = u, evaluate
pX = f(pyY, = , PX, *~°°, p2) (3.1)
recursively until values of every pX, X &N, become stable.

Example 3. Evaluate pX and pY in Fig.5.

PX = pP(aX + Y) X - Y | aX

= PapX + OY Y - aY | 2

= PY (*." pa = ¢ ) Fig.5 An example of BNF.
Y = p(aY + A ) = papY +PA =)
X = A

On the other hand, in order to evaluate pX by using the X-
defining SRL‘equation Eg.(2.2), the following equation can be
used in the above manner. |

PX = iy( 34Ay + JyPYdyAy) ey (3.2)

If the value of each PX, Xe N, is thus determined as
whether X or ¢ , we are able to make each the SRL equation empty-
free by means of the following transformation. /

Xy = (PAy) " ((Ay - 3, Ay)xy + cy) (3.3)

Eg.(3.3) preser?es the semi-solution of Eqg.(2.2).
Furthermore, Eqg.(3.3) is equivalent to Eqg.(2.2) concerned with
the semi-solution even if each nonterminal symbol in the
coefficients of Eg.(3.3) would not contain A. In other words, the
transformation Eq.(3.3) completely realizes in Eqg.(3.3) itself

the effect of all A's contained in Ay of Eq.(2.2).
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This fact means that, for Eqg.(3.3), if there exists a non-
terminal containing A, we may neglected it or remove it from the
nonterminal except for the.startiné nonterminal X, without loss
of its effect. Namely, we may assign ¢ to cyq, the Tst component
of cy in Eq.(3.3) defining X except for Xj.

For a given grammar, parsing techniques generally require to
add a padding rule defining a new starting nonterminal X'O
instead of the original X, as follows:

Xé 1:= X #
where # is a newly introduced terminal which is not contained in
the original terminal set T and is used as the end-marker of
input sequences. |

We are thus able to make a given SRL equation system empty-
free. Therefore in the following chapters, we assume without loss
of generality that a given SRL equation system is empty-free.

Example 4. A system of SRL equations transformed from the BNF in

Fig.5 is shown below. Make each constituent equation empty-free.

S=s;, [sq]=[¢ X & rsyl_ +[ 6]
Sg ¢ ¢ #lls, ¢ (3.4)
_SL _¢4 ¢ ¢_ _33_ A

X = xl, rxlﬂv —¢ a Y—| —X]._
Xo ¢ ¢ X Xo (3.5)
(X3| | ¢ ¢ ¢ {|x3

Y= ¥y» .yla _¢ a A _y1_._
Yo ¢ ¢ Yily, (3.6)
vz [¢ ¢ ¢ |[¥3]

From Eq. (3.3), Eq.(3.4) becomes
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Similarly, Eq. (3.5)
X = Xl, X-l
X2

Y = yl) y].
.yZ

In each Eq.(3.8) and (3.9), the 1st constituent of the constant term was A
after computation. However they were changed to ¢ without loss of the effect.

4. FIRST SYMBOL SETS
For a nonterminal X in a production grammar, a set of sym-

bols (terminals and nonterminals) appeared at the 1st position of

S

o
>

S S o

i

My ]

S O O
S 5 <

1*3

S e o

RE&E

and Eq. (3.6) becomes

¢ X ¢ S].
¢ ¢ # 52
._d’ 4 ¢_ | S3_]
([ xo]ls]
¢ ¢ # Sz
_¢ ¢ ¢_._s3_
kM
So ¢
2
]+ 8]
X9 A
(%3] LA
”yl"\ . '—¢"T
Yo A
3! LA

(3.7

(3.8)

3.9)

sentential forms directly derived from X is defined as

DFirst(X)
and is called a Directly First (symbol) set.
Similarly, a set of symbols qppeared at the first position
of sentential forms derived from X is defined as

First(X)

{seVIX:ﬁsw,weV*}

{seVv |X :);? SW, weV*}

and is called a First (symbol) set.
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They are, in our equation Eq.(2.2), defined as
n
. . X
First(X) = )yiydyAyAyFirst(Y) + DFirst(X) (4.2)

Now, in order to solve them, put

u = (uX), uy = First(X),
d = (dy), dy = DFirst(X),
I'= Cyxy)r yxy = ixdyBxhy = dy(ixhgly) = dydy

then, Eqg.(4.2) becomes

u=ru+d-=,r7"d | (4.3)

'Wheré, =g shows that its right-hand side is the minimal solution
of the equation in its left-hand side.

Example 5 Obtain all First (symbol) sets in Example 2.

From Eq. (4.1) and Fig.3, we have
dS={G}’ dG={E:f}’ dE-"{EsT}, d'l‘:{.Tnf}-

From Eq. (4.3), the desired First sets are obtained as follows:

T =|3gdg %ds %dg 3pds | =[¢ A ¢ 6|, d=[dg|=](6)

ogdg %4 %pdg O7% | | ¢ ¢ A ¢ dg | | {E.f}
950 3gde Opdg Orde $ & A A | dg {E,T}
dsdt 9gdr opdy ordr ¢ ¢ ¢ A dy {T,f}
u=[First® |=T% =[x A A A =F{GETf}
First (G) ¢ A A A—l {E,f} { E,T,f}
First (E) ’ ¢ ¢ A A|l{ET { E,T,f}
First (1) 66 ¢ 2|0 1,1}

5. LR(0) AUTOMATON
We have studied the traditional method to derive an LR(0)
automaton from a given grammar and found that it is an extended

" variation of the subset construction method used in the case of

10
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»ﬁransformation from a nondeterministic finite automaton into a
deterministic one. This chapter shows a fofmaliied method con-
structing an LR(0) automaton from a given SRL equation(2.2).

For any nonterminals Z and X, a function fgy is defined as

foyw = 3x({ 2} u First(z)). : (5.1)

Each state of the LR(0) automaton, the so-called LR(0) term,
is specified by a bit wvector of which the length (i.e. dimension)
is Exnx, as follows:

Io = ( Iy o oee s Ipge oo 0 Igg )o k=0, 1, oo, K.
where each Iyxs X€N, is an ny-dimensional bit’vector associated
with the X-defining SRL equation: Xy = AyXy + Cyx.

The initial state of the éutomaton is defined as

Ip = ( Toxy r+-+r Tox re=ev Toz )
where Igx = fXOXiX ’ XeN,
Xp is the starting nonterminal.

The state transition function of the automaton is defined as

Goto(Iy, s) = Closure(Trans(Ik,'s)) (5.2)
where
Trans(Iy,s) = Trans((Ipy , «-« ; Iyx, ..; v Ixg),s)
= (Trans(Ikxo,s),..., Trans(Ikx,s),.../Trans(IkZ,s)) (5.3)
where for any X €N, Tréns(lkx,s) = Jyx = IansAX (5.4)"
Closure(Jy) = Closure( JkXO""' v Tpxr o+ 1 Jxg )
= (Closure(Jyy,),..., Closure(Jyyx),..., Closure(Jyz))  (5.5)

where for any X €N,
Closure(Jyy) = Jpx + LylzJkyPzAyiyEqaxiy (5.6)
If a state I, contains at least one I x such that Ipycy = A,

then it is a reduce state of the automaton.

11
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" Example 6. From Example 2,

obtain the LR(0) automaton.

L=(Ls g L L ) s|G|E|T|E|T|T
Ig:(A ¢ Aoddé6 Aobddd Ao =y, |1
Trans(1y,0)=(¢ A ¢ 6668 6686¢ ¢¢6¢d)Gotolly,0)=1y, |2].
Trans(1p,E)=(6 ¢ dAd b 66A06 6666 8é)otolly,B)=I,, |.|2]3
Trans(Ip,D=(8 66 68666 61686 66 A9 ¢)hotolly,D=I", |.|.
Trans(ly, £)=(8 6 6 6668A 66688 &L 6 d)hotolly,N=I,*, |. |5
Trans(1),1)=(6 4 A 66666 66660 6664 ¢) hotoll;,n=Ih
Trans(Ip,=)=(8 6 ¢ A6 666606 06660) ,
(s8¢ 66168 A6d86 Adoéé)lotollg,)=lg, [.[3].].[1]1
Trans(Ip,)=(8 6 ¢ 6686 666X 66669) |
(866 66660 66616 Ad6¢8)Gotollg,)=ly, |.|.[4].[4].
Trans(Ig,%)=(¢ 6 ¢ 66666 66660 66 Ad)Gotolly,N=Ig, |.|.|.|4].|4
Trans(Ig.E)=(6 6 &6 666X 6 66106 &9 6¢¢)Goto(lg.B)=Ig", | .
Trans(Ig, 1)=(6 866 66666 66664 ¢ A6 ¢)lotolly,N=Ijo ) .
Trans(I7.N=(8 6 ¢ $666¢ 666X 6616 ¢)otol;, D=l . |.|5].|5].
Trans(Ig,0)=(8 66 66660 66666 666 ¢ M) Hhotollg, =T, . |.|.|5].|5

I8
[
(7N

(%]

(EN
len .
3] w
[[\CI
ln w I - B

Trans(Is,T)=Goto(16.T)=I3#, Trans(I7,f)=Goto(I7.f)=110“, The embedding matrix
Trans(Ig,+)=Gotb(Ig,+)=I7; Trans (11,%)=Goto (I;1,%)=Ig,

E->E+T Fig.6
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The above method constructs an LR(0) autématon from a given

SRL equation (2.2) so as to embed once or more times each one of
finite automata described by the SRL equation into the LR(0)
automaton. In the above example, this is shown by a matrix in the
right-hand side. In the matrix, each column corresponds to one of
occurrences of the embedded automata and, for each state I, of
the LR(0) automaton, each element of the I, -th row contains A if
there is, in the embedded automata, a state which is embedded
in Iy , otherwise ¢ . (In Fig.6, the state ﬁumber is written
instead of X ), In this case, automata S and G were each embedded
from state I;, automaton E was embedded from states I and Ig,
and automaton T was embeded from states I, Ig and Iy.

This matrix is called an embedding matrix and each element
is denoted by E[Ik,(IR,Y)] , wWwhere I} is the row number asso-
ciated with the state Iy of the derived LR(0) automaton and
(I,,Y) indicates an occurrence of embedding the automaton Y from
~state Iy in the LR(0) automaton. For each nonferminal traﬁsition
(I, ,Y), there exists one and only one occurrence of embedding the
automaton Y from state Iy, and it suffices that Igytiy = A .
6. FOLLOW SETS

For the LR(0) automaton, Follow set concerned with each
nonterminal (state) transition (Ip,X) is defined as

Follow(Iy,X) = {teT | X %? 6Xtw and 0 access state I !

where X0 is the starting nonterminal and wefT*.

DeRemer and Penello derived from the definition two types of
inclusive relations related to Follow)sets and gave a method to

obtain the sets concretely on the basis of the inclusive

13
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relations in the manner of recursive computation, which needs
repeative computation of set union and set comparison taking much
time.

Our method shownvbelow takes not so much time because of
depending on mainly closure operation of an n x n Boolean matrix
instead of the recursive computation on sets, where n is the
number of nonterminal transitions in the LR(0) automaton.

Generally, a production graﬁmar has two types of rules such
as Y — aXsB, a,Bev™ and Y — aX, o € V*, which introduce two
types of situations in the derivation sequences, as follows:

For Y —» aXsB, there is X ﬁ%& SYw j?? SoXspw
and for Y — aX, there is Xy %%? SYw ?53 SaXw.

Similarly, in the related LR(0) automaton, two types are

derived as shown in Fig.7 and Fig.8.

Goto (&,X) X Goto (IkY,X)

Y =+ aX

Fig.8

14



164

According to the 1st type, We have the following.
PROPOSITION 6.1 The following 2 conditions are all equivalent.
- There exists a rule Y — aXsB, o,B éV*.‘
-  There exist an occurrence of embedding an automaton Y and
a state I, of the LR(0) automaton such that
I ydxAydgAyliy = A (6.1)
Fig.7 shows this situation and its relation to the defini-
tion of Follow‘sets.Namelyy if Eg.(6.1) holds; we can expect to
have the following relation.
Follow(Iy,X) = Firstp(s) (6.2)
where FirstT(s) = s, for s é T,
| = T n First(s), for s & N.
The above conditional relation is simply shown as follows:
Follow(Iy,X) 2 IpydyAydAylyFirstyp(s) (6.3)
This relation for any Y& N and for any.s €V is given as
Follow(I,,X) 2 al(I,,X)] (6.4)
LyTey®xPyPy (6.5)

by = XSaSAYAYFirstT(s) (6.6)

where d[(Ik,X)]

Noterthat‘IkYaXAY is a X—vector Trans(Iyy,X) given in the
previous chapter. |
Associated with the 2nd type, the following is given.
PRQPOSITION 6.2 The following 3 conditions are all equivalent.
- Theré is a rule Y — 0oX, 0 € Vf
- There are two nonterminal transitions (Ik,X) and C%,Y) and
fhere is an occurrene of embedding an automaton Y of which the
initial state is embedded in I, and of which a final state ié

embedded in state Goto(Iy ,X).

15
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- There are two nonterminal transition (Ik,X) and C%,Y) such
that E[Iy,(Iy,Y)] = A and there is a state Goto(Ik,X) reducible
concerned with ¥, that is, it holds that IkYB_XAYcY = A

Fig.8 shows‘the above situation and ‘relations to the
definition of Follow sets. Namely, if the above condition holds,
we can expect to have the following relation

Follow(Ik,X) = Follow(Iy ,Y) (6.7)
The above conditional relation is simply shown as

Follow(Ik,X) 2 y[(Ik,X),(Iz,Y)]°Follow(I2,Y) (6.8)

Z(IQ,Y)EQ
where
 1is an ordered set of all nonterminal transitions.
YI(Ix,X),(I, ,¥)] = X if the condition of PROPOSITION 6.2 holds,
= ¢ otherwise.

From Egs.(6.4) and (6.8), Follow sets are, for a given LR(0)

automaton, defined as follows:
Follow(Ik,X) =

E(IQ,Y)G g, [(Ix,X), (Ig,Y)]-Follow(L ,X) + dl(Iy,X)] (6.9)

In order to compute Eg.(6.9), put

u = (ul(I,x)1), ul (I,X)] = Follow (I ,X)
T o= ( YI(Ix,X),(Ig,¥)] ),
a = (dl(I,x)1 ),

Then, the desired solution is obtained as follows:

*

u= T'n+d =g T d (6.10)

Example.7 Obtain Follow sets in the LR(0) automaton in Example 6.

Because there are six allowable nonterminal transitions (I,0), (Ip.E),
(IO,T). (Is,E). (IG.T) and (I7.T) in the LR(0) automaton, it is necessary to
obtain a six-dimensional vector d and an n % n matrix I'. d needs b which is

composed of bS' bG’ bE and bT obtained from Eq. (6.5) and Example 5.

16
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b =[bg |, vhere bg = {£3 |, bg={ (3|, bg=[Cf2], bp=](f}]
bg { %} {= ¢ $
bg ¢ (f) {+) (=)
by | ¢ RIS S (f)

L ¢ L ¢ L ¢

d=[dl1y®] | =[Trans(Tp. 0 b = {83 |, T =[06 66666
d[(Iy,E)] Trans (I, E) {=. +} $ &6 & & ¢ &
dl(1y, D1 | | Trans(Iy,T) {# IR I I
d[(Ig.E)] Trans (Ig,E) {+} Ao oo o9
d{(Ig.T)] Trans (I, T) %} $ ¢ & A o9
| d[(I7,D1 | | Trans(I7,T) =} KA AR

Thus, we have the desired Follow sets as follows:

— —_ r— PR —

u= [Follow(Iy,6) |=T*d =/ A ¢ ¢ ¢ ¢ ¢ || {#}|=|{n)
Follow(Iy,E) $ Ao d o o {= 4]} {=, +}
Follow (I, T) ¢ A Ao o o {x} {=, + =%}
Follow(Ig,E) Ad Ao o|{+] {#, +}
Follow (I, T) Ad o AN {x} {#, +, %}
| Follow(I7,T) | ERR ARSI RN

7. LOOK-AHEAD SETS

I
LALR(1) parsers use sets called 0;3

Look-Ahead sets to make parse deter- // \S Iy
ministic. The sets are defined for // IQ
each reduce state Ik concerned with 6:,’ X ‘o
a nonterminal X, i.e. a rule X — 4 , ‘: /05’/’“\ \ fIkX
as follows: “ //Ikd;é_"i)

LA(I,, X — o ) I NWx x > «

={teT]XO=l:=) SXtw X
| Fig.9

and 8o access Iy }

17
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= { Follow(I,,X) ]11 transits to Iy by o }

Fig.9 shows the situation in the LR(0) automaton concerned
with the definition. So we can expect to have the following.
PROPOSITION 7.1 The following 3 conditions are all equivalent.

- IR transits to I, by o for the rule X — o .

_ There exists an occﬁrrence of embedding an automaton X of
which the initial state is embedded in I, and of which a final
state is embedded in I, and the initial state transits to the
final state by o in the automaton X.

- E[T), (T, ,X)] = XA and Ipycy = A (7.1)

Here, we obtain a table called Look-Back table from the
embedding matrix in such a manner that if I, is not a reduce
state, then the Ip-th row is ommitted. Note that only states
satisfying Eq.(7.1) are left. .There may beva state reducible
concerned with two or more nonterminals. Accordingly, we expand
the LB table to the row-direction such that if Iy is reducible
concerned with nonterminals X, X',..., X", then we make reducible
state-nonterminal pairs (Iy,X), (Ik,X'),”.; (I} ,X") and expand
the I, -th row to the (I,X)-th, the (Ik,X')—th’,“., the (Iy,X")-
th rows so as to satisfy the following condition. The obtained is
a matrix called Look-Back matrix ofiwhich the [(Iy,X),(Iy,Y)]
element is defined as ‘

A[(Ik,x),(%/Y)} = LB[Iy,(I, ,Y)] if X =Y
‘ = ¢ otherwise.
Note.that the Look-Back matrix is obtained directly from the

embedding matrix as follows:

AL(Ix,X), (I, ,¥)] = E[I,,(I,,Y)], if X =Y

18
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= ¢ otherwise. (7.2)
Then for each reducible state-nonterminal pair (I, X — o),
the Look-Ahead set LA(Iy, X — a) is defined equationally as
follows:
LA(Iy, X - o) = E(IQ,Y)E q AL(Ix,X), (I, ,¥)] Follow(I,,Y)
(7.3)

In order to compute them, put

Vv = (LA(Iy, X —a) ),
A= (AT, X), (I, Y)] ),
u = (ul(I,,¥)] ), ul(I,¥)] = Follow(I,,Y¥)

Then, from Egs.(7.3) and (6.9), the desired Look-Ahead sets are
obtained, as follows:
v = Au= AT™a (7.4)
Note that it is not necessary to obtain Follow sets
concretely in order to compute Look-Ahead séts.
Example 8 Obtain Look-Ahead sets .of the LR(0) automaton in

Example 6.

e
1

= (LA(I, X»a) ) = AT

r

| ™ 1 | —l ™
=|LA(Ig, E=T) |[=|dAdAdS || A || {#])|=|{# =+ }
LA(I4, G->f) Addoddd || dAdddd || {=+] {# }
LA, T-D oAb || 6ANSSS || {xY]| | = v %)
LA(Lg, GE=E) |Add606 || AddAdd ||{+}] |(¢ }
LA(III' E->E+T) pAPASS __A Ad Ao A_-_{ * }_ {# =+ }
_LA(112’ T—?T*fl __¢ dAPA A_ _{ #, = + = }_
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8. CONCLUSION

For a given BNF or extended BNF, Tixier's SRL equation
equivalent to it was ﬁsed. The SRL equation, which describes
multiple finite automata system, was at first made empty-free.
First sets were equationally defined on the empty-free SRL equa-
tion and solved.

A method that derives an LR(O) automaton from a given SRL
equation was given. Follow sets were equationally defined on the
LR(0) automaton and solved. LALR(1) parse on the LR(0) automaton
uses Look-Ahead sets composed of Follow sets.

Until now, concrete computation of the above sets has been
done in the recursive manner on the equations. Instead, this
paper gave direct and efficient computation using the solutions.

This work was supported by the Spec. Res. Grant. Min. Educ.
of Japan in 1986. This assistance is acknowledged.
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