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Lojasiewicz type inequalities and Newton diagrams

Toshizumi Fukui 1 fakhdl

§ 1. Introduction

Let € be the complex number field and f be an analytic

function near the origin 0 € C". Let Tys wee s T be a coordinate

system of ¢h near 0. Assume that f has an isolated singularity at 0.

In other words, in some neighborhood of 0,

§£—<x) = ... = %ﬁ-(z) =0 if and only if z = 0.
1 n

Then there are positive numbers o, C such that the following

Lojasiewicz type inequality (La§ holds near 0.

(L) lgrad fez)| = clzl®,
Y af
where grad f(z) = (ax (), ... . axh(x))’
1 n
and | | is the usual euclid norm.

This inequality has appeared as a characterization of

Co—sufficiency of jets.

Theorem (1,1) [Chang-Lu,l]l

Let f be an analytic function near 0. If (L) holds near 0 for
some o < r, then ' f is a CO—Suffioient jet in holomorphic functions.

Originally this theorem was proved by Kuo in real case(see [21]1).
S.XKoike pointed out me that the converse of this theorem is
true (seel01).

Set ao(f) the minimal number of o such that (La) holds near 0.
In [LigpDin, 3,41, using the Newton diagram of f, he gave an

estimation of ao(f) in case for n=2. But he didn't give similar
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analysis in case n23. In this note, we give an estimation of qo(f)
using the Newton diagram of\f for general n. (Theorem (3.3)). In 8§5.
we treat real case.

Toc estimate ao(f), we use a gimplicial finite subdivision of the
dual Neuton diagram [*(f) of f.(see §2., for definition) We don't
use so-called unimodular subdivision of F*(f), which plays an
importgnt role in the theory of torus‘embedding. We don't need any
knowledge of torus embedding in order to prove our theorem. The key
step of our prbof is to analyée a face of the Newton polygqn of f,
which is not compact, nor coordinéte, i.é. whiéh is corréspbnding to

I in our later notation.

0,

§ 2. Newton polygon

(2.1) Let f be an analytic function near OEC“, and let 2 a, z’
v

be the Taylor expansion of f at 0. Set
R+ = {zeR | z=201,
|

a. = 0 1},

F+(f) = the convex hull of { v + R+ v

'(f) = union of compact faces of F+(f), and

F(k)(f) = { k-dimensional face of I'(f)}.
We call T' (f)(resp. I'(f)) the Newton polygon-of F (resp. the Newton
boundary of f)}

- n _

(2.2) Let a = (az, ey an) € R+ and ¢ = (az, v ooy an) €
(R+n)*, where (R™M™ is the dual space of R". Set

Ca, o> iz au v A,

8() := min { <a,a> | a € r,Hy,

Y := {a €T (£ | <a,0> = &(x) }, and
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= R,H% ~,
where the equivalent relation o ~ o defined by y(at) = y(a”).
We call y(x) the face of F+(f) supported by oo, and I ff) the dual
Newton diagram of f. Naturally we can identify an eguivalent class
with a polyhedral cone ¢ = R*a](o) + ... * R+ak(o), where aj(b),
cees ak(c) are some integral vectors. We may assume that b = aj(o)‘if
pb:aj(o) for some non-negative integer p. i.e. the greatest common
divisior of components of aj(c) is 1. We say that o is a k—-simplez
if az(c), ...,ak(o) are linearly independent.
(2.3) Using above identification, we can consider ['*(f) as a
rational polyhedral finite subdivision of the first guadrant. Let Z
be a simlicial finite subdivision of T*(f). In other word, 2 is a
finite set of simpleces that gives a subdivision of ' (f). Let 5 (0
be the set of all k-simpleces of 2. Let Cn(c) be a copy of ¢ for
each o € Z(n), and y, = (yo,Z’ v 4 Y ) be a coordinate system of

o, n
J

€"(o). For a matrix A = (a3) € Mat(n,n; 2), set
a a
A
Y o= (yj . Y S e e e yj ..... Yy
Define the mapping m_: ") —— C" by " _(y_) := Y+ where
acw) = alwy, ..., a®w)). set

= (y, € Co) | 1y I < 1 ),

0,7
disjoint union of wo for ¢ € E(H), and

wO'
W .
174

{xemnllzilsl}.

Define a mapping m:W —— V by Ty, = _(y ) for ¥y, € W,.

For a subset [ of { 1,

E

“ 3 n}, set
= E = { Yy € W, | ¥ . = 0, for any i € I }, and

o, [
« .
Ec I = { Vo € Ea,l o, 7 = 0, fqr any § € (1,...,n}-1 3.

— %~

E

1
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(2.4)Lemma
1) n_l(O) N Wo is compact.
2) m is surjective.
Proof) 1) Since no—l(O) is a union of some coordinate spaces, 1) is

obvious.

2n/-19 .
2) For any £ € V, set T, =T;e t, ri =0, 0= Gi < 1.
ZRJ:TGC
Set Yo, j = Ty, '@ * ra’i 20, 0< Go,i < 1.
a’. (o) ag(a)
Since mi = yc,] ""'yc,n , Wwe obtain that
‘ ai(O) a. /(o)
T e To , (2.4.1)
and 6, Evai(c)ea’j+...+a¥(o)60’n (mod Z). (2.4.2)

Since a(og) has the maximal rank, the equations (2.4.2) have a
solution. We have to solve (2.4.1) for some ¢ under the condition

T, P < 1. If ri # 0, for i=7/,...,n, then we obtain that

FA
"(2.4.1) <=> log r, = >
J=1

Therefore (-log r], e =log rn) € 0

...7 = 0."

J
ai(a) log ra , an T *o.n

y J g,!

€ the first quadrant

\( > (—log rO',I’ .. 5 —log T'o',’n‘

{=> ro’j <1 for =171, ... ,n."

Since X is a subdivision of the first quadrant, there are ¢ and ro

3

satisfying (2.4.1). Since (C-0" NV is dense in V, and in view of

1), (2.4.1) have a solution with r_ j < 1. (q.e.d)
(2.5). Define f. by 3 a. z’ for v ¢ (R.™™. Note that f_ is a
¥ vey Y + Y

polynomial if ¥ is compact. We say that f is non—-degenerate if the

equations
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amz oz
have no common solution on xj.....x # 0 for any compact face Y of

[
r, .

§3. Result.

(3.1 Let HY denote the hypersufface with v c HY for y €
F(n-l)(f). Let mi(?) denote the i-coordinate of the point
(i—axis) N Hy. Set

mcy) := max | ml(?), cee s mn(?) }, and

mo(f) t= max ( m(v) | v e rm=1ry 3y,
(3.2) We consider the following condition for the Newton polygon.
(3.2.1) Condition U Yy =TWH.
yer (0712 7y

(3.3) Theorenm.

Let f be an analytic function near 0. Assume that f has an
isolated singularity at 0 and f is non-degenerate in the sense of
(2.6), and T' _(f) satisfies tke condition (3.2.1). Then

ao(f) < mo(f) - 1.

(3.4) Corollary.

Let f be as above, and let r be the smallest integer with
r > mO(f)—l. Then i¥F is a Co—sufficient jet.

(3.5) Remark. Theorem (3.3) asserts nothing new when the function
f is convenient ("convenient” means that the Newton polygon F+(f)
meet each coordinate axis).(See [51.) But when f is not convenient,
this is a new result. .

5 5 5

(3.6) Example. Set f(ml,mz,xs) =Ty Tyt T,Ta .

Then ao(f) < mo(f)—l =_25/4 - 1 = 21/4. In this case it is easy to
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show that the equal mark holds. Define g by f + $3100. Then we

get ao(g) = ao(f) = 21/4, and mo(g) = 100. So, in general, the equal

mark does not always hold.

84. Proof.
(4.1) For a = (aZ. ce e an), set

m{a) := min { aj, e an }, and

M(a) := max ta,;, ..., a }.

(4.2) Let T be a simplicial subdivision of I*(f). Set
=1 2 ta ez P @ > 0. |

We consider the following conditions for Z.

Condition(4.2.1). 2(1? = {1-simplex of T (f)}.

Condition(4.2.2). For a subset A of 2(1),

1y An Zil) # ¢, if N y(a) is compact, and
a€A

2) 0¢a) = M(a) or L(a) = 0 for any a € T¢I,
(4.2.3) It is easy to show that the condition (4.2.1) implies
the condition (4.2.2) under the assumption (3.2.1). (See (4.7).)
(4.3)Proposition.

| Suppose that f has an isolated singuiarity at 0 and is

non-degenerate in the sense of (2.5), and let ¥ be a simlicial
subdivision of r*(f) satisfying the condition (4.2.2). Then

ao(f) < max {(La)/ma)]a € Zil)} - 1.

(4.3.1) Since 2l /mw@l @)y = mval))), it is easy to show

that (4.3) implies (3.3). Then, in this section, we shall prove

proposition(4.3).
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A

(4.4) Set <z = "y, where A = (af).
N, := {.d € {1,...,n} | nia?) > o 3,
N_:={gje(t,...,a} | 2y =01
NO":= {]{...,n} - N, - N_

For a subset [ of (1, ..., n }, set

I, i= InN, I,:=1n NO, I_=1n0AN_,

0
NI = {1 ai # 0, there is a number j§ € IO}, and
oo g J _ ;
MI t= (] ay = Q(a)f for J € IO}.
1
Set ei = (0,...,0,1,0,...,0)Y, and
v, = 0 valy.
jeI
(4.5) Define gk(yo) and gk(yo) by
af | n 2a? )
( mk~55; )(no(yo)) = j§1 yo’j 'gk(yo), and
5f Lt 0r)-a} (o)
~d -
a3[:}\:(7:0(%)) = 3 yo,j 'gé(y ).
. g
J€N+
Then
' 9.y =S v a ¥ <v,a1>—l(a1),.... w,a™-2™
k7o’ ~ v k “v 70,1 yo,n ’
. ) Jo_J
, _ <v,a3>—ﬂ(a3) <v,a’> Lk
9y Wy) = 2 Ve @y Iy, J ’ L
v « jeN+» ’ jGNOUN_ :
Note that gk and gé are analytic functions.
(4.6) Since
ai(o) | 2ad oy
1 Yo, i "9, (Y = n Yy, j ‘9 (Vg
jeNOuN_ ’ jeNOUN_ :
(g)=...=9,=0)=1(g,=... = 9, = 01,



171

on I y. . # 0.
JEN UN 7.7
O -
(4.7)Lemma. If ¥(@) N (v -+~ v 20} # ¢, then £(a) 2 M(a).

Proof. It is enough to prove that
(4.7.1) if va)y n { Vi # 0 } # ¢, then L(a) = ai.

By the assumption, there is a v = (v cees vn) € y(a) n 2" with v.

1 i

. + .. # ‘ .V .
1’:)1 avzatvtzat

# 0. Then 2a) = a 2 Vn

(gq.e.d.)
(4.8)Lemma. Suppose that f has an isolated singularity at 0. Let I be
a subset of {1,...,n}. Assume that YI is not compact. Then there

are a number i € {1, ..., n} and a point v € F+(f)nZn such that

J

<v,a’> = a% for any J € I.

Proof. Assume that any i

=1, ., %, there is a number J € [ such
that <v,a’> > ai.
n
: v,a >-a v,a">-a
. df AL _ A S ’ k
Since exk( y) = g v @, ¥y o Y, ,
%i~°n is identically zero on E,. So , w(E,) is a
T, I 1 ,

singular locus of f. Because f has an isoclated sigﬁlarity at 0,
K(E}) = {0}. Therefore n Y(ai)'is compact. (g.e.d.)

1€]
(4.8.10 Under the same assumption of (4.8), in view of'(4.7),
we get that Q(aj) = M(aj) for any 7 € .
(4.8.2) Under the same assumption of (4.8), for any'v Ev?};’one of
the following properties hold. |
(4.8.2.1) Vi = 0 for any k € M[.
(4.8.2.2) There is a unique k € M[ such that
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vk = 1 and vk’ : . ior any k € N I {k}.

(4.8.3) Moreover assume that the condition (4.2.1). Since YI N
0

{v .vn¢0} # ¢, and YI isn't compact, the consequences of
0

EEE
(4.8)-(4.8.2) hald for IO'

Lemma (4.9) Assume that Yy isn't compact, and that.
YI N (Ul""‘vn #0} # ¢,

Then there is an analytic function fi’ for each +{ € NI’ such that

f(xl, cees ZT) = _E xi-fi(ml, cees T
tENI
Proof. If there is a v € F+(f) with v, = 0 for any i € NI’ then
J

<v, a“> = 0 for any J € IO' This is a contradiction. (g.e.d.)
(4.10.1) Set h, = fil{mj=0ljeNI}. Since f has an isolated

singularity at 0, then we obtain that

( h,

;=0 | i € Npd o= (0 on {z.=0] 7 € N[ }.

J
In particular, at least one of hi isn't identically zero. Moreover if

the coefficient field is €, then we get that #L. = n - #NI’ where

I
LI = {{ € ”1 | hi isn't identically zero}.

(4.10.2) NI =) MI - LI'

. . 7 _ .
Proof. It is clear that NIDMI. For any J € 10’ a = 0 if kK € NI‘

Suppose hi is not identically 0, then the weighted degree of mihi

%, and thus equals to l(aj). Therefore,

J equals to a

with respect to a
i € M]. (q.e.d.)

(4.110Lemma. For any ¥ € E?, the following conditions are equivalent.

1) gk(y) = 0.

2) Sfy

I
~o _ AN ~s - ~e .’\' ~e - " . ~ - .
where = = "y, y—(yl,.--,yn), yj 1, if j €1 ; yj = yj, otherwise.

/amk(x) = 0,
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w,a’>-0a?)

Proof. Since g, lE, = 3 v,+a m v
k'"1 VGYI k v jel i
n J J
~ ,a’>-1(a
veyl J=1

we obtain that " gk(y) = 0 for ¥ € E?

n J

<=> 2 Vi a, 4 §_<v,a = 0

VE?I J=1 J

)

<=> 2 vera, =0

UEYI
(=> afyl/axk(x) = 0. (qg.e.d.)
(4.12)Lemma. For any y € E?, the following conditions are

equivalent.
1) gé(y) = 0.

2) 8fr /3$k(x} = 0,

I, k
where FI g ‘= {v € F+(f)l <v,aJ> = Q(aj), for any jeI+, <v,a

N |
> = ap,

for any J € IOUI_}.

Proof. Since g&IEI =

wv,a’>-2a’) <v,a’>-al
2 vpra, T Y, n o k
verl,k JEN I | JEN UN _—1,UI_
J._ J ' Jo_.Jd
= 3 v, m §j<v,a >-2a") T §j<v,a > qk
ver[,k J€N+ JGNOUN_
n Fo_gind PO N |
Verl,k J=1 JGNOUN_
we obtain that
(1) ’ - . . *
gk(y) = 0 for y € El
n 1
<=> > vk~av'H §j<v,a =0
veFI’k J=1
<=> 8fp  /8z, (&) = 0." (g.e.d.)

I,k

_10-
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(4.13) Lemma. Assume that f'has an isolated singularity at 0.
1) If k € MI’ then rI,k = ¢,
2) If k € MI then Sfr

, I,k/amk = af;l/axk,
where ¥, = v NSs 4y NPYW@),
r- frurg SN,
8; = {v; =0 [ € dJ 3y, e {l,...,n},
S; = (i€{l,...,n}| there is a number ¢ € I_ with a’ = e}, and
a. =d, if i € M,; d-1, if i€N,-¥,; O , otherwise,
i I I 71

d = sufficiently large integer.
Proof.l) By the definition of 2 and FI k and (4.8), 1) is obvious.

2) Set Hk = af?I/a$
/9Ty 82 d N de N (v,=1, if k €S,)°
ko Yror" °s- k=0t °1

P We obtain that

I,k

= 5oy n s n (v, =1y’
kYo" %s-uo k
9 .,
= 22z, ((F)s ) )
8z, Tk k”8 L4 n 3
k Ny Yo s

...NI

. I
o
ka((zkhk)

)
I

Y n o
I+UIO S,-N

I

=Hk

The definition of FI ¢ implies the first equality. Since k € MI’
(4.8.2) implies the second one. The third one follows from (4.8.2)

and (4.9). (g.e.d.)

4.14)Lemma. Assume that f is non-degenerate in the sense of:(2.5),

and that f has an isolated singularity at 0 , and that IO # ¢. Then

of

Y A frr amu b €M Y e £ ee e -
{ amk = 0, for any k EMI }y € {zx T 0},

where y = ?I'.

_11—
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Proof. For the sake of simplicity, we assume that
LI = {1, ... , S}, NI = {1, ..., 8, S+1, ..., € }.

By (4.10.1), we get that 8 > 1. By (4.10.2), Ly cH.

Assume that there is a (mo ..oy xg) such that

c+l’
0 0
$C+l mn # 0, and that ‘
0 0, _
Hk(xo+1’ .o xn) = 0, for any k € MI'
s , ,
Note that f, (x) kglzka($c+l..‘.,xn). By the assumption of
non-degeneracy of subfaces of vy,
oH . '
> xj-551($g+1, ces xg) =0 for 4 =¢+1, ..., ny c (1 z.=0},
Fe€J i JjeJ
for any subset J of LI“
: o . :
i,.0 0 ) _
In other words, rank (axi(mc+1’ e s xn) = 8.
On the other hand, since Hl’ ey HS are weighted homogeneous
s s +
polynomials for some weight (ae+1, , an),
n OH .
0] I, 0 0 .
2 a.-x.- (z , , ) = 0, for § =1,..., 8.
izo+] T T azi c+1 n
. aHj ¢} Q
This asserts that rank (ami($0+1, che mn)) < 8. This is a
contradiction. : (g.e.d.)

(4:14.1) .As a consequence of this proof, we obtain that

#L[ <7 - #NI'

(4.15) In this paragraph, we assume that f has an isolated

singularity and is non—degenerate. Let = be a simplicial subdiviSion

of T (f) satisfying the conditions (4.2.1) and (4.2.2).

. - |
(4.15.1)Claim. The function 3 lg]'((y)l2 is positive on T 1(0).
k=1
%*

Proof. Assume that there is a point y € El such that
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2 lgk(y)l2 = 0. If it yj = 0, then g,(y) = 0, for k=1,...,n,
k=1 jeNOUN_

»ecause of (4.6). By Lemma (4.11), this contradicts non-degeneracy of

f. Assume that -1 Yy, = 0. Lemma(4.12) and (4.14) assert that
genun_ 7 |

non-degeneracy implies positivity of 2 lgé(y)lz. By (4.13),
keM
I

n
kzM lgl’((y)l2 = 2 lgé(y)lz. So this is a cotradiction. (q.e.d.)
€ - =
I .

(4.15.2)
n
lgrad f|2(a(o)yo) - 2 _,i__a(c)y )'2
k=1 %k .
n J o J
k=IJ€N+
> 1 [yo JIZ(Q(a (G)) m(a (0))) 2 lgk(y )l
JEN ! . k=1
(4.15.3)
1 n
. n a, (o) a, (o)
2200, K K9 2
212 Py = 3 g Vg p © |
' omcad oy ™ ay(@r-mea' (@) apor-m@a™@)
= HN 1y, ;1 kE lvg, © e Yo m |
je ’ =1 9 9’

Note that the condition (4.2.2.2) implies
dzl2*yr=0) = (v, ;=0 for j with mnea?(@))>0).
(4.15.4) By (4.15.1)-(4.15.3) and (2.4), finally we obtain that
®,(f) < max {Q(aj(o))/m(aj(a)), for o, J with mnal @)y > 0y - 1,
where a(0)=(a1(o),...,an(o)) for g € E(n).

This completes the proof of proposition (4.3).

§ 5. Real case.

_13_
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In this section we treat a real function f:(R",0) —(R,0).
We can define the number ao(f) in the same way as the complex case.
Similar charcterization of Co—sufficiency of real jet was proved by
Kuo [21.
(5.1> Definition.

Let ¥ be a compact face of ' _(f) and [Y be a subset of
{l1,...,n} depending on Y. We call

N := {(Y,I?)l?: a compact face of I'_(f))
a Newton data of f if the following properties (5.1.1) and (5.1.2)
are satisfied.
(6.1.1) (8f,/3z, = 0l LE1)  {zy-eree z_=0}.
(5.1.2) [_c I, if wy.
(5.1.3) Note that the real analogue of (2.5) implies the existence of
a Newton data.

3 2k

(5.2) Example. f(xl,xz) =z o+ T, T, (k=1).

Set y1=?(el), V2=Y(el+262),'y3=y(e }, and yi.=yiny Then

2 J 7’
N = {(72,{1}),(712,(1}),(Y23,(1})} is a Newton data of f.
(5.3) Theorem.

Suppose that f has an isolated singularity at 0 and a Newton
data N. And suppose that ' _(f) satisfies the condition (3.2.1). Then

ao(f) < mN),

where m(N) = max{(Q(a)—ai)/m(aila:1-simp1ex of I'_(f) with m(a)>0,
ie]y(a)}’

This theorem follows immediately from the following
(5.4) Proposition.

Suppose that f has an isolated singularity at 0 and a Newton

data N. Let X be a simplicial finite subdivision of F*(f) satisfying

_14_
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the condition (4.2.2). Then

(1) .
P Le[y(a)}'

Proof. The proof is almost similar to complex case. But we have to

ao(f) < N, = max{(ﬂ(a)—ai)/m(a)l a€y.

modify the construction of a simplicial subdivision of F*(f).
(5.5) Notation.
Wo = WARY, W, p=W 0k Vp=Van R", np=nlWy, and so on.
It is easy to show the following two lemmata.
(56.6) Lemma.
Let T be a simplicial finite subdivision of I'"(f) satisfying
(5.6.1) For any i€{l,...,n}, there is a number j€{1,...,n} such that

n)

7 . . .
ai(o) is odd, for any ¢ € % Then KR. WR —_— VR is a

surjection.
(5.7) Lemma. For aiZO, bi>0, cizo, such that one of ei is positive,
the following inequalities hold.
max{a /b li=1,...,n} 2 (Qe,a )/ (e b,y 2 minla /b li=1,...,n}.
(5.8) For any ¢ € 2™, define k(o) and p(o) by
- k) = #a'@),...,a"w0Nnte ... e ), and
p(o) = #(j]a?(o) € 2Z, for any i}.
After suitable renumbering, we may assume that
ai(o) = e, 1=k(o)+1,...,n,
2@t > 0, i=1,...,k0),
a?(a) € 2Z for i=1,...,n; j=1,...,p(0)<k(0), and
there is a number ¢ such that a;(o) is odd for
any  J=p(o)+1l,...,k(o).
(56.9) Choose a, € (al(o),...,an(o)} such that méa_d) > 0, for ¢ with

k(0)>0. Choose b, € (2Z+1)P %7 P9y 6 for ¢ with k(0)>0.

Then there is a simplicial finite subdivision Z“ (u=1,2,...) of 2

_.15_
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satisfying

(1) _ « (1D -

Zu = L7V (b_|p(0)>0, and k(0)=0} UV {(u-l)ao+balp(a)>0, and

k(og)>0}.

Since Zu satisfies (5.6.1), the mapping corresponding to Zu is
surjective. Then we obtain

“b(f) < inf {m(N,Zu)lu=1,2,....}.
By (5.7) and the construction of Zu’ it is easy to show that

inf {m(N,Zu)[u=1,2,.,.} = m(N).

Note that
n
[grad flz(a(a)yo) = 3 lgﬁ_(a(o)ya)lz
k=1 k
> S |g£ (a(o)ya)lz
kEIa k

J _J
= 5 T |y -|2(£(a (o)) ak(o))

» ’ 2
= “lgilcy |
. g,J k7o
keIo J€N+

- J _ J
> 1 'yo jIZ(Q(a (¢)) mo(a (g))) S
jen, - kel

7 )
L.(c>l«,elo}.

, 2
lg vy 17,

J

where mo(a (g)) = min {a

Comparing it with (4.15.3), we obtain proposition(5.4).
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