<table>
<thead>
<tr>
<th>タイトル</th>
<th>Rings with only finitely many isomorphism classes of indecomposable maximal Buchsbaum modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>Nishida, Koji</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (1987), 621: 125-135</td>
</tr>
<tr>
<td>発行日</td>
<td>1987-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/99891</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Rings with only finitely many isomorphism classes
of indecomposable maximal Buchsbaum modules

Koji Nishida (Chiba Univ.)

1. Introduction.

Throughout this report R is a ring of the form

$$k \llbracket X_1, \ldots, X_n \rrbracket / I,$$

where k is an algebraically closed field of characteristic $k \neq 2$ and I is

an ideal of $k \llbracket X_1, \ldots, X_n \rrbracket$. We denote by m (resp. d) the

maximal ideal of R (resp. the dimension of R). The Jacobson

radical of a (non-commutative) ring A is denoted by $J(A)$.

The purpose of this report is to give a sketch of proof of the

following result which is a joint work [16] with S. Goto.

Theorem 1. If $d \geq 2$, then the following two conditions

are equivalent.

(1) R is a regular local ring.

(2) R possesses only finitely many isomorphism classes of indicom-

posable maximal Buchsbaum modules. (See [6] for the notion of maximal

Buchsbaum module.)
When this is the case, the syzygy modules of the residue class field \(k \) of \(R \) are the representatives of indecomposable maximal Buchsbaum modules and so there are exactly \(d \) non-isomorphic indecomposable maximal Buchsbaum modules over \(R \).

Our contribution in the above theorem is the implication \((2) \Rightarrow (1)\).

The last assertion and the implication \((1) \Rightarrow (2)\) are due to [6]. We actually construct infinitely many non-isomorphic indecomposable maximal Buchsbaum \(R \)-modules when \(R \) is not a regular local ring.

We would like to note here that the assumption \(d \geq 2 \) in Theorem 1 is not superfluous. There actually exist non-regular Cohen-Macaulay local rings \(R \) of \(\dim R = 1 \) that possesses only finitely many isomorphism classes of indecomposable maximal Buchsbaum modules.

The typical example is the ring

\[
R = k [\prod_{i=1}^{2} X_i, Y]/(x^3 + y^2)
\]

\((k, \text{any field})\), which has exactly 5 indecomposable maximal Buchsbaum modules ([16, Theorem (5.3)]). So the result of one-dimensional case seems more complicated.
2. Key lemma.

The following lemma plays an important role in the proof of Theorem 1.

Lemma 2. Let \(L \) be an indecomposable maximal Cohen-Macaulay (abbr. MCM) \(R \)-module and let \(J = J(\text{End}_R L) \). If \(d \geq 2 \) and if one of the following conditions

(a) \(\dim_k L/JL \geq 2 \)

(b) \(\dim_k JL/(J^2L + mL) \geq 2 \)

is satisfied, then \(R \) has a family \(\{ M_\lambda \}_{\lambda \in k} \) of indecomposable maximal Buchsbaum modules such that \(M_\lambda \neq M_\mu \) for \(\lambda \neq \mu \).

Sketch of proof. Choose elements \(f \) and \(g \) of \(L \) (resp. \(JL \)), when the condition (a) (resp. (b)) is satisfied, so that the classes \(\bar{f} \) and \(\bar{g} \) of \(f \) and \(g \) in \(L/JL \) (resp. \(JL/(J^2L + mL) \)) are linearly independent over \(k \). For each \(\lambda \in k \), we put \(h_\lambda = f + \lambda g \) and define

\[M_\lambda = JL + Rh_\lambda \quad (\text{resp. } M = J^2L + mL + Rh_\lambda). \]

Then \(\{ M_\lambda \}_{\lambda \in k} \) meets the needs of this lemma.

Proposition 3. If \(R \) satisfies the condition (2) of Theorem 1, then \(R \) is a simple hypersurface.
Proof. Let K_R be the canonical module of R. K_R is an indecomposable MCM R-module. If R were not a Gorenstein ring, then by Lemma 2 we can construct from $L = K_R$ infinitely many non-isomorphic indecomposable maximal Buchsbaum R-modules, because $\text{End}_R K_R = R$ and because $\dim K_R / m K_R \geq 2$ by [7, Satz 6.10]. Hence R must be Gorenstein. Since R is finite CM-representation type, by [8, Satz 1.2 1.2] and [3, Theorem A] R is a simple hypersurface.

Proposition 4. If R is a normal ring of $\dim R = 2$ and if R satisfies the condition (2) of Theorem 1, then R is a UFD.

Proof. Assume that R is not a UFD and take a non-principal prime ideal \mathfrak{p} of R so that $\dim R_\mathfrak{p} = 1$. Then \mathfrak{p} is an indecomposable MCM R-module and $\text{End}_R \mathfrak{p} = R$, $\dim K_{\mathfrak{p}} / m_{\mathfrak{p}} \mathfrak{p} \geq 2$. By Lemma 2 we can construct from $L = \mathfrak{p}$ infinitely many non-isomorphic indecomposable maximal Buchsbaum modules — this is a contradiction.

The rest of this report is devoted to show the following proposition briefly.

Proposition 5. If R is a simple hypersurface of $\dim R \geq 2$, then R possesses infinitely many non-isomorphic indecomposable
maximal Buchsbaum modules.

From Proposition 3 and Proposition 5 we get the implication

(2) \implies (1) of Theorem 1.

3. The case where \(d \geq 3 \).

It is well known that a \(d \)-dimensional simple hypersurface is isomorphic to a singularity of form

\[
\frac{k \langle X, Y, Z_1, \ldots, Z_{d-1} \rangle}{(f(X, Y) + Z_1^2 + \ldots + Z_{d-1}^2)},
\]

where \(f(X, Y) \) is one of the following ([9]):

\[
\begin{align*}
(A_n) & \quad x^{n+1} + y^{n+1} \quad (n \geq 1) \\
(D_n) & \quad x^{n+1} + xy^2 \quad (n \geq 4) \\
(E_6) & \quad x^3 + y^4 \quad (ch k \neq 3) \\
 & \quad x^3 + y^4, \quad x^3 + x^2y^2 + y^4 \quad (ch k = 3) \\
(E_7) & \quad x^3 + xy^3 \quad (ch k \neq 3) \\
 & \quad x^3 + xy^3, \quad x^3 + x^2y^2 + xy^3 \quad (ch k = 3) \\
(E_8) & \quad x^3 + y^5 \quad (ch k \neq 3, 5) \\
 & \quad x^3 + y^5, \quad x^3 + x^2y^3 + y^5, \quad x^3 + x^2y^2 + y^5 \quad (ch k = 3) \\
 & \quad x^3 + y^5, \quad x^3 + xy^4 + y^5 \quad (ch k = 5).
\end{align*}
\]

In the case where \(d \geq 3 \),

\[
\begin{align*}
R_0 = k \langle X, Y, Z_1, \ldots, Z_{d-3} \rangle / (f(X, Y) + Z_1^2 + \ldots + Z_{d-3}^2)
\end{align*}
\]
is also a simple hypersurface. Hence there exists an indecomposable MCM R_0-module M which is not free. By Knörrer's Periodicity Theorem ([10, Theorem 3.1]) we can take an indecomposable MCM R-module L so that $L/(z_{d-1}, z_{d-2})L = M \oplus N$, where z_{d-1} (resp. z_{d-2}) is the class of Z_{d-1} (resp. Z_{d-2}) in R and N is the first syzygy module of M. Let

$$\xi : L \longrightarrow M \oplus N$$

be the canonical epimorphism. Then we can prove that

$$\xi(JL) \subseteq J_1M \oplus J_2N,$$

where J, J_1 and J_2 denote $J(\text{End}_R L)$, $J(\text{End}_R M)$ and $J(\text{End}_R N)$ respectively. So ξ induces the epimorphism

$$\bar{\xi} : L/JL \longrightarrow M/J_1M \oplus N/J_2N,$$

and we get $\dim_k L/JL \geq 2$. Hence Proposition 5 is deduced from Lemma 2 in the case where $d \geq 3$.

4. The case where $d = 2$.

Let R be a 2-dimensional simple hypersurface which satisfies the condition (2) of Theorem 1. By Proposition 4 R must be of type
Hence R is a ring of the form
\[k \square x, y, z \square / (x^3 + y^2G + y^5 + z^2), \]

where G is either 0 or one of the following
\[x^2y, x^2 \quad (\text{ch } k = 3), \]
\[xy^2 \quad (\text{ch } k = 5). \]

Let x, y, z and g respectively denote the class of X, Y, Z and G in R. Then the maximal ideal \mathfrak{m} of R is $(x, y, z)R$.

Let L' denote the second syzygy module of R/\mathfrak{m}:
\[0 \rightarrow L' \rightarrow R^3 (x, y, z) \rightarrow R^2 \rightarrow R/\mathfrak{m} \rightarrow 0. \]

Then L' is a MCM R-module of rank 2 and is generated by
\[\begin{pmatrix} x^2 \\ y^4 + yg \\ z \end{pmatrix}, \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}, \begin{pmatrix} -z \\ 0 \\ x \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 \\ -z \\ y \end{pmatrix}. \]

Let $\phi: R^3 \rightarrow R^2$ be the homomorphism defined by $\phi\left(\begin{pmatrix} a \\ b \\ c \end{pmatrix} \right) = \begin{pmatrix} a \\ c \end{pmatrix}$, and put $L = \phi(L')$. Then L is also a MCM R-module of rank 2 and is generated by
\[f_1 = \begin{pmatrix} x^2 \\ z \end{pmatrix}, \quad f_2 = \begin{pmatrix} -y \\ 0 \end{pmatrix}, \quad f_3 = \begin{pmatrix} -z \\ x \end{pmatrix} \quad \text{and} \quad f_4 = \begin{pmatrix} 0 \\ y \end{pmatrix}. \]

We can see that L is indecomposable and $\dim_k L / JL = 1$, where
\[J = J(\text{End}_R L) \].
To show that \(\dim_k J_L/(J^2 L + mL) \geq 2 \) we consider the ring
\[T = R/yR \ (= k \{ X, Z \} / (X^3 + Z^2)) \]. Let \(\bar{T} \) denote the normalization of \(T \) and put \(t = -z/x \). Then
\[\bar{T} = k \{ t \} , \ x = -t^2 , \ \text{and} \ z = t^3 . \]
Let \(\bar{L} = L/yL \) and recall that any indecomposable maximal Cohen-Macaulay \(T \)-module is isomorphic to \(T \) or \(\bar{T} \) ([8, Satz 1.6]). Then we have that
\[\bar{L} \cong \bar{T} \oplus \bar{T} , \]
as \(\text{rank}_T \bar{L} = 2 \) and as \(\bar{L} \) is minimally generated by the four elements
\[\{ \bar{F}_i \} _1 \leq i \leq 4 \] (here \(\bar{\cdot} \) denotes the reduction mod \(yL \)). It is easily checked that \(\bar{F}_2 \) and \(\bar{F}_3 \) form a \(\bar{T} \)-free basis of \(\bar{L} \).

Since \(\text{End}_T \bar{L} = \text{End}_{\bar{T}} \bar{L} \), we shall identify \(\text{End}_T \bar{L} \) with
\[C = M_2(\bar{T}) \] (the matrix algebra) via the \(\bar{T} \)-free basis \(\bar{F}_2 \) and \(\bar{F}_3 \).

Let \(A = \text{End}_R L \) and put \(\bar{A} = A/yA \). Then \(\bar{A} \) may be canonically considered to be a subalgebra of \(\text{End}_T \bar{L} \) and we have a homomorphism
\[\psi : A \longrightarrow \text{End}_T \bar{L} = C \]
of \(R \)-algebras. Thus via \(\psi \) we may write each element of \(A \) as a
\[2 \times 2 \] matrix with coefficients in \(\bar{T} \). Then we have the following
Fact. Let $\xi \in J^2$ and write $\Psi(\xi) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Then $c \in tT$, $a, d \in t^2T$, and $b \in t^3T$.

Let $E : L \longrightarrow \tilde{L}$ denote the canonical epimorphism. By the above Fact we can see that $E(J^2L + mL) \subseteq W$, where $W = t^2Tt_2 + tTt_3$.

So E induces the epimorphism

$$\bar{E} : L/(J^2L + mL) \longrightarrow \tilde{L}/W \cong \tilde{T}/t^2T \cdot \tilde{T}/tT.$$

Hence $\dim_k L/(J^2L + mL) \geq 3$, by which we have

$$\dim_k JL/(J^2L + mL) \geq 2,$$

since $\dim_k L/JL = 1$. This completes the proof of Theorem 1.
References

