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A-genera and sectional genera of local rings

}Z;XEE ' X/E % ( Akira Ooishi )

The classification of (embedded) projective varieties,
especially algebraic surfaces, bj their sectional genera is
quite a classical subject in algebraic geometry studied by
Enriques, Castelnuovo, Roth and others. This old subject has
been recently‘resﬁrrected and exténded to the classification of
polarized varieties by their sectional genera (Fujita, Ionéscu,
Lanteri, Palleschi and others). T.Fujita, among others,
introduced the notion of A-genus and sectional genus of a
polarized variety, and studied the structure of polarized

- varieties with low genera.

Here we introduce the A-genus and theé sectional genus for
a general noetherian local ring, and our aim is to study the
structure of local rings (or singularities) by these genera.

So this note is a continuation of our previous work [3] on thé
genera of commdfative rings; |

By the way, the non-negativity of the sectional genus and the
A-genus of a Cohen-Macaulay local ring traces back to Northcott
(1960) and Abhyankar (1967). Moreover, the structure of Cohen-
Macaulay local rings of A-genera zero and Gorenstein_locai
rings of A-genera one has been studied by J.Sally in detail.

Sally’s work generalizes the study of rational surface singu-
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larities (due to Artih) and minimally elliptic surface singu-
larities {(due to Laufer and Wahl). Also, the sectional genera

of curve singularities are studied by Kirby, Matlis and others.

Throughout this note, we denote by (R, m, k) a Cohen-
Macaulay local ring with dim(R) = d. Let I be an m-primary

ideal of R. Then there exist integers e; (0 ¢ 1 g d) such that

n+l, _ n+d\ _ m+d-1 _1,d
2(R/I ) = eyl g ) el( a-1 Foeee + (1) ey

for all n P» 0. We called ei(I) = e, g(I) = eqr pa(I) =

(-l)d(eo - e, + ... + (—l)ded - 2(R/I)) the i-th Hilbert

1
coefficient, the genus, the arithmetic genus of 1 respectively

(ct£. [3]).

Definition 1. We define the A-genus g,(I) and the sectional

genus gS(I) of I by

g, (1) = e(I) + (d - DE(R/T) - £(1/1%),

gS(I) = el(I) - e(I) + 2(R/I) 1if 4 2 1.
We also put g, (R) = gA(m) = ¢(R) + dim(R) - emb(R) - 1 and
g (R) = g (m) = e (R) - e(R) + 1. Put G(I) =& n30 oy otl
and G(R) = G(m). If F(G(D), t) := § .o g (1%/1M )R -

e (0)/(1 - )% with o (t) € Z[t], then we have e, (I)

1, japd .
(d e /at™[ ;) /il.

Example. If R 1is a hypersurface of degree e (equivalently,

i

g,(R) = e -2, e(R) =e), then e, (R) =( e ) (0 <i<d),

i+l



52

gs(R) = p_(R) = (egl) and g(R) = ($), where ¢ = emb(R).

Lemma 2 (Valla, 1979). Assume that k is an infinite field
and let J be a minimal reduction of 1I. Then gA(I) =
2 (1%/13). Hence g,(I) = 0 if and only if §(I) £ 1, and in
this case G(I) is Cbhen—Macaulay. Here we put §(I) =
n n+l1

min{n | JI° = 1I for some minimal reduction J of I} (the

reduction exponent of 1, cf. [2], [3]).

As a general strateqgy, we reduce problems to the case of
curve singularities. So, first, we treat the case of dimension

one.

Theorem 3 (see [3]). Assume that d =1 and put S =

o n n

Upoy (17 ¢ 155+ Then

(1) S 1is a finitely generated R-module and E(R/In) =
e(I)n - 2(S/R) + 2(1"s/1") for all n > 0.

(2) e(I) = 2(8/18), g(I) = 2(S/R), p_ (I) (=g (1)) =
g(I1) = e(I) + &(R/I) = &(IS/I), g(I) z p (1) 2 g,(I) 2 O,
p_(I) - g, (D) - 2(1%s/1%), and g(I1) - pa(i) = 2(1/3) if k
is an infinite field and J 1is a minimal reduction of I.

(3) g(I) =0 < g(I) =p, (I) & 6(I) =0 < I is
a principal ideal.

(I : I).

(4) pa(I)
(5) pa(I)
n

(6) 8(I) = n(I) + 1 = reg(G(I)) = min{n | s = (1™ : 1™)1

0 & g, (I) =0 <> 8(I) ¢1 <= S

g (I) = (1) £2 & s= (12 12
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n+1)

< pa(l) + 1. Moreover, Z(In/I < e(I) for all n g n(I).

Here n(I) = min{m | 2 (1%/1™*Y) = e(1) for all n > m} (the
postulation number of I) and reg(G(I)) = min{n | [H;(G(I))Jj

=0 if i + j > n}, P = G(I)+ (the regularity of G(I))

(c£. [11, [3D).

Proposition 4. We have gS(I) 2 0 and the following

conditions are eguivalent:

(1) g (1) = oO.
(2) g, (1)

(3) reg(G{I))

0.

1.

A

(4) 2(rR/I™TY) = e(:)(n+g‘1) + @/ D(97Y) for a1l n oz 0.

If these conditiohs are satisfied, then ei(I)

"

0 (2 <igcd),

p,(I) =0, g(I) =0 if 4> 2, and G(I) is Cohen-Macaulay.

Proof. We may assume that k is an infinite field. The
fact gs(i) 2 0 1is proved in [3]. We give another proof:
Take a superficial system of parameters XpreeerXy € 1 with
respect to " I. ' Then we have gs(I) = gS(I/(xl,...,xd_l)) 20
by Theorem 3. The assertions (2) < (3) = (4) => (1)

follow from Lemma 2 and [3]. So we have only to show the

assertion (1) = (3). Take Xyr---sX3 as before, and put

= ‘ - AN .
J = (xl,...,xd) and Ii (xl,...,xi,...,xd), 1 <1 ¢d.
Then we have gs(I/Ii) = gS(I) = 0. Hence, by Theorem 3,
Xi(I/Ii) = (I/Iilz, i.e., X, I+ I, = 12 . Ii’ Take any element
2 ,

y of 1°. Then for any j # 1, we have vy = XY * eee * Xg¥4
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1%
Hence

that

and we

The

(1)
then

(2)
case,
R.)

(3)

<>

<

(4)

SRR |

Pro

(1) Take a superficial system of parameters ,xl,.;.

that

= gS(R
assertion follows from Theorem 3.

(2) follows from Proposition 4.

Xx. €Em - m2
i

14

)rgA(R) =

and put R'

g, (R

)

and

R/ (x

e(R)

(3)

17

If

""xd-l)'
e(R").

The proof of (5)

reg (G(R))

X3

Then

<

Hence the

such

gS(R)

*oee. ¥ XgZ4 for some Yy zi such thaﬁ' Yyr Zs € 1I.
xl(y1 - zl) + ... +xd(yd - zd) = 0, and this implies
Yy~ 2y € JC I. Therefore Yy €1 for all j, 1 ¢ 3j < d,
have vy € JI. Hence I~ = JI, i.e., §(I) =_1. Q.E.D.
orem 5. Put emb(R) = v and e(R) = e. Then
0 < gA(R) < gs(R) < (e;l)' If G(R) 1s Cohen-Macaulay,
reg(G(R)) < g,(R) + 1.
gS(R) =0 < gA(R) = 0 < reg(G(R)) £ 1. In this
r(R) = e - 1. (r (R) denotes the Cohen-Macaulay type of
g, (R) = g,(R) < reg(G(R)) g 2
o (t) =1+ (v-dt+ (e+d=-v=-1t’
g (R/m™H1) = e(ngd) - (2 = v +4d - 2)(n+d !
¢ (e v a-v-1("8%) for all nyo2.
gS(R) = 1 <= gA(R) = 1 and G(R) is Cohen-Macaulay
g,(R) = 1 and reg(G(R)) = 2
e (t) = 1+ (v-dts+ t?
R(R/mn+1) = +d l) <n+d 2 for all n > 2.
gS(R) = (é;l) if and only if R 1is a hypersurface.
of. We may assume that k is an infinite field.

is similar.

2,

then



39

G(R) 1is Cohen—Macaulay by Sally. Hence we have ¢R(t) =1 +
(v - djt + (e +d - v ~ l)tz. So we have only to show that if

gS(R) = gA(R), then ¢6(R) < 2. - Take Xqse--sXq as in (1), and
v ~ _ 0N -
put gq = (Xl,...,xd), q; = (xl,...,xi,...,xd), Ri = R/qi.

‘Then gS(Ri) - gA(Ri) =-g (R) - gA(R) = 0. Hence . 5(Ri)'é 2

by Theorem 3. Therefore xim2 gy = m3 *qy- Take any element

S

3 . _ _
y of m~. Then for any 3 # 1, y = X{Yq f o-ee * XgVg = XyZg

2 .
aZa for some Yir 24 such that Yy zj € m~., As 1in

the proof of Proposition 4, we have Yy~ 25 € 4, and Y5 is

in (m2, q) for all 1i. Hence y =u + w with u € q2,

+ ... T X

w €& m3. Since xl,...,xd is ‘analytically independent, we have

u € qztﬁ m3 = q2m,’and this implies that y € qmz. Therefore

we have m3 = qmz, i.e., S(R) £ 2. (4) follows from (3). Q.E.D.

Example.. (1) R 1is a cubic hypersurface <« gA(R) =1,

e(R) = 3 <= gS(R) =1 e(R) = 3.

’
t5

(2) 1f R = k[it?, €2, £/ or k[t*, t®, t’J, then g4 (R) =
gA(R) = 1. In general, if H 1is a numerical semigroup and
R = k[lu]l, then p_(R) = 1 if and only if H = H, _ := {0, e,
7

e+ 1l,..., e+Tr, e+ r+ 2,...} with e 3, 0 gr <e -1,
and in this case pa(R) = gA(Ry = 1.

(3) If g_(R) = 2, then g,(R) = 2 or g,(R) = 1. In the

first case, G(R) is Cohen-Macaulay, @R(t) =1+ (v - d) + 2t2,
and ez(R) = 2, ei(R) =0 (3 g1 < d). 1In the second case,
G(R) 1is not Cohen-Macaulay and r(R) = e(R) - 2. . For example,

5

if R =k[t*, t°, ', then g (R) =2, g (R) =1, and if
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R = k£, t°, t7JL then g_(R) = g, (R) = 2.

Theorem 6. Assume that 1R 1is Gorenstein. - Then
(1) "9,(R) =0 & g,(R) =0 < R is a regular local ring

or a quadric hypersurface.

(2) g (R) =1 & g,(R) =1 & g.(R) = g,(R) 2.1 <
reg(G(R)) = 2. 1In this case, G(R) 1is Gorenstein.
(3) g, (R) does not attain 2.

(t) =1 + (v - d4d)t +

(4) gS(R) =3 < gA(R) = 2 < 2

t2 + t3. In this case, G(R) 1is Cohen-Macaulay, is not
Gorenstein, reg(G(R)) = 3 and e2(R) = 4, e3(R) =1, ei(R)
=0 (4 <1 ¢c4d).

(5) If gs(R) = 4, then gA(R) = 3.

Proof. (1) follows from Theorem 5. (2) If R 1is

Gorenstein and gA(R) = 1, then G(R) 1is Gorenstein by Sally.
(3) If gS(R) = 2, then we have 2 = gS(R) 2 gA(R) ;‘2. Hence
we have gs(R)r= gA(R) = .2, which is a contradiction. (4) 1If

gg(R) = 3, then 2 < g,(R) < g (R) = 3. Hence g,(R) = 2.
Conversely, if gA(R) = 2, then G(R) is Cohen-Macaulay by
Sally, and we have reg(G(R))} = gA(R) + 1 = 3. Hence @R(t) =

1 + (v -4d)t + t2‘+ t3 and we have gS(R),= 3. (4) Since

3 < gA(RY < gS(R) 4, we have gA(R)'= 3. Q.E.D.

Example. (1) 'R 1is a quartic hypersurface <« gA(R)~= 2,

e(R) = 4 <= R 1is Gorenstein and g _(R) = 3, e(R) = 4.
s
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{2) R 1is a complete intersection of type (2, 2) < R is
Gorenstein and gA(R) =1, e{(R) = 4 <« R 1is Gorenstein and
gS(R) =1, e(R) = 4.

_ 5 6 9 . .
(3) R .=k[[t?, t°, t’]] is Gorenstein and g (R) =3, g,(R)

7

(4) R = kﬁt6, t!, tgﬂ is Gorenstein and gS(R) =4, g,(R)

Next, we consider the normal genera. Henceforth we assume

that R 1is analytically unramified. Then there exist integers

[OR]

(o)
in

}_l
liA

d) such that

;ETT)r_ s n+d) _ = (n+d-1
~ o\l a €1\ a-1

for all n »-Q, where J denotes the integral closure of J.

2 (R/ ) oL (—1)déd

We called éi(l) = e,

- - - d - -
0 9(1) = eg, py(I) = (=1)"(ey - e +

e * (—l)ééd - Z(R/T)) the i-th normal Hilbert coefficient,
the normal genus, the normal arithmetic genus of I,

respectively (cf. [3]).

Definition 7. We define the normal A-genus §A(I) and the

normal sectional genus §S(I) of I by

G 1) = e(n) + (4 - VeI - 2(I/17),

34 (1)

e (I) - e(I) + 2(R/I) if 4z 1.

|

Lemma 8. Assume that k 1is an infinite field and = I,

and let J be a minimal reduction of 1I. Then §A(I) =

z(;QVIJ), §A(1) - g,(I) = 2(27}12). Hence §A(1) = 0 <=
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5(I) <1 and 1° = I°.

Put §(I) = min{n | there exists a minimal reduction J of
I such that JI® = I™! for all m > n}. Hence if T = I, |
then 8(I) <1 <> 6(I) <1 and 1" = 1" for all n 2 O.

We have §S(I) 2 gS(I) > 0. It is easy to see that
§(I) £ 1 for all I

g,(I) = 0 for all I

I, we have ¢(I) 21 and

>
< 1T = 1° for all I
> for all I such that I

I" =1 for all n» 0

&=  for all I such that T = I, we have g, (1) = 0 and

d. If 3(I) <1 (resp. §(m) < 2),

A

e. (1) = ei(I) =0, 2 ¢1i

+

then G(I) =& n>y 0»In/Ir1 1 (resp. G(m)) 1is Cohen-Macaulay.

If da =1, then g_(I) =0 <= §(I) £ 1 < R= (I : I).

0 <> g(I) =0 <

Theorem 9. If d = 2, then g_(I)
s

5(1) 1.

<

1 =

i}

Proof. We already know that g(I) 0 «= 5(I)

lin

g (1) = 0 (cf. [3D. 1f go(I) = 0, then g_(I) = g (I) = O,

and this implies that €, (I) = e;(I) and e,(I) = 0. Hence

for all n> 0, we have 0 < g (R/ID) - z(R/?[—ﬁ) e, (I) - 52(1),

= - &,(I) £ 0. Therefore g(1) = &, (1) = 0. Q.E.D.

|
—
v
(]
Jiv
S

Example. (1) Put H =<e, e + 1, e(e - 1)
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and R = k[H]]. Then §S(R) = e(e - 3)/2. For example, if

H

<4, 5, 11>, then R 1is not Gorenstein, - §S(R) = g, (R) = 2,
g,(R) =1, &(R) =3, §(R) = 2, G(R) is not Cohen-Macaulay,
G(R) 1is Cohen-Macaulay, r(R) = 2, &_{(t) = 1 + 2t + t3 and
Proj(R(m)) is normal.

(2) If R is Gorenstein; d =2, g (R) =1 and e(R) 2 3,

then we have g_(R) = g(R) = g(R) = g, (R) = 1.
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