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81 Introduction Interre]atinnship among different areas in

mathematics gives a plenty of beneficence to themselves as a number
of results support its justification. Concerning both geometry aﬁd
analysis especially, there is no doubt that Atiyah—-Singer index
theory has a crucial role to develope their fields simu]{anequsly.

Recently, ConnesC3] has initiated a new index theory for both
dynamical sygtems and foliated manifn]ds, which is really useful to
cases Wwith patho]ugical ambient.spaCes whereas the index theory of
Atiyah-Singer is no longer applicable to them, The main idea of his
theory is based an K-theary of both C*-algebras and twisted vector
bundles. Its validity can be found in many manuscripts due to
Cunnes; Kasparaov, Pimsner—voicu]escu and Rosenberg etc. especially
concerning differential dynamics and foliated manifo]ds,'Baum—Connes
[1] has conjectured the existance of a K—then;etic index formula
between genmefric and anaiytic K-theory, uhiéﬁ may be considered as
a ultimate one of a generalization of Atiyah—-Singer index theorem.
It has a quite important meaning involved as a central ingredient td
develop topolagy, differential genmetry and C*-algebras etc.

Precisely, their conjecture says that the geometric K-group is iso- |
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marphic tb the analytic one under the K-index mapping for foliated
manifolds or differential dynamical systems. If it is affirmative,
as corollaries are deduced the conjectures due to Novikov, Gromov-
Lawson—Rosenberg and Kadison etc in topology, differential geometry
and C*-algebras respectively. 'As a matter of fact, no theorem from
general sigEts has been verified until now although various exampls
supporing the conjecture have been cﬁnstructed by Severa] peoples.

In this report, we shall state the construction, the results
obtained and some applications of the Baum—Connes conjecture, and uwe
shall especially illustrate its affirmation for generalizedlAncsnv
foliations on infra-homogeneous spaces. The basic refferences are
due to Baum-Connes[11,[2]1 , ConnesC3], Kasparov[é] and RosenbergL%l~
111, | "

§2 Construction - Let (M,F) be a foliated smooth manifeld and
172

G the holonomy -groupoid of F. Let Q
172

be the half density bundle

over G tangential to F®F and CC(Q ) the *-algebra consisting of

1/2

all continuous sections nF'Q over G with compact support by the

ful]buing algebraic operations:

(fg)(r) = j?=1i72 fry09(7,)
1.=

) = F(r D

1/2

for a1l f,g9 in CC(Q ). Given any % in M, let Hx be the Hilbert

' space consisting of all L2-sections of al’2 gver 6. Let us consider

172

the *-representatian . of CC(QA ) on Hx defined by

n, (E ) = J7=7172
for all f in Cc(Qllz) and £ in Hx' Applying A, @ C*-norm -1 on

f(71)§ (72)

cc(91’2) can be defined by

e = SUP, e M Hxx(F)ﬂ
for all f in CC(QI/Z). We denote by Ci(N,F) the completion of
CC(QI/Z) With respect to Ik, which is called a }hliation C*-algebra
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associated to (M,F). _ , ‘

We nou consider the K-theory Ka(H;F) =>K(C:(H,F)) of C;(H,F),'
which is called the analytic K-theory of (M,F). On-theuofher hand,
the following construction is considered as a purel§ geometric one
of K—theory‘associated,tn_(n;F): Let X be a,proper~G—manifu]d and D*
the dual bundle of the normal bundleig ofsthe fuTiétiun of X deter-
mined by the G-orbits. Let p be the canonical G-equivariant mapping
frombx to M and P*(u*) the pull back of the dual bundie v* of thé
normal bundle v of F. UWe consider a pair (X,£) of X and a G-vector
bundle § over U¥®p* (U*), which is called é K—ﬁbczc]e of (M,F). Let
I'(M,F) be the set of a]]{K;cocyc}es of (M,F). We then introduce an
equivalence relation ~ on '(M,F) by the following fashion: o

(Xys8) ~ (X2,§2) if and only if there exist a proper G-manifold X
and G-mappings ¢; from X; to X such that | L

(1) oy =ped, and G #1E) =0,1G)

where p,pj are the canonical G-mappings from x,xj to M respectively,
and ¢;! mean the Gysin mappings from G-vector bundles over ;jépg(u*)
‘to those over v*®p* (U*). Denote by Kg(M,F) =T (M,F)/~ the set of
all equivaient classes in I'(M,F) with respect to ~ . Then it is an
abelian group equipped with the disjaint union of G—vectdr bundles.
We call it the geometric K-theory of (M,F).

In uvhat follows, we shai] explain the K—-index mapping # from
Kg(H,F) to Ka(H,F). Given any (X,£) in F(M,F),.let us consider the
G-mapping j from X to XxM defined by j(x) =.(x,p(§)),xex. Then it
implies that p = =x+j where = is the projection from XxM to M. Let
7 be the canonical G-mapping from Eiep*(u*) to E;#”ez*(u*). Then it
is a projection whose fiber has a G-equivariant spinc structure.

By the Thom—-Gysin’s theorem, the group generated by all G-vector

bundles over Baep*(u*) is isomorphic to that by those over

-3 -
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ﬁixHSI*(u*) under the Gysin’smapping J! of 7. Suppbse § is a
G-vector bundle over U}®p* W*) and put ¥ = J!(§). Then it is a :
G-vector bundle over 5§xnﬁx*(u*) which is G-isomorphic to §. Let 7

Yemy) of x 1m) (meM). Since z is a

t, be the cotangent bundle T*(x—
submersion, the G¥space 5§xn01*(v*) is the total spaée of the bundle
over T under the canonical PPQJéction % whose fibers are v*eu*.
.Theranre,,? can be considered as a’G~bundle over T under ihekGysin
mapping ! of ®. Let gm =¥ “r' be the restrict{Pn of ¥ over tm’
By the definition of Em’ there ezist elliptic differential operators
Dm on x—l(m) such thatrgm is the symbol a(Dm) of Dm" Let 1] be the
G-equivariant field of Bm,meﬂ. Then it is a G-invariant differetial‘
operator on XxM such that (i) D_ are elliptic onz '(m), and (ii)
¥ is the symbal g(D) of D. UWe now take the K-theoretic index ind D
of B in Ka(N,F) as follous:

| ind D = [Ker D] - [Coker DI
where [+] means a C?(H,F)—module generated by -+, ?ut #{X,£€) = ind D.
Then £ depends only on the equivalence class of (X,§). Therefore it

determines a homomorphism from Kg(H,F)'tn Ka(M,F).' We now state the

first Baum—Connes conjecture as follows:

Baum—Connes“conjectube I. Given any foliated manifolid (M,F),
the K-index mapping # is an.isamurphism'Frnm.Kg(H,F) to Ka(M.F).

On the other hand, suppose (H;G,a) is a differential dynamical
system where a is free. Then the fami]ylF consisting of all G-orbits
becomes a foliation of M, and its C*-algebra C¥(M,F) is nothing but
the C*-crossed product C(H)xaG of C(M) by a. Thus it follows that
Ka(N,F) = K(C(H)%QG). Moreover, Kg(H,F) is isomorphic to the‘abelian
group Kg(N,G) defined in the fo]]oging manner: Let X be a proper G-
manifold and =.a G-mapping from X to M. Consider the set I'(M,G) of

all triples (X,§,x) for G-vector bundles § over T* (X)®x™* (T* (M)).
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Then it hés an equivalence relation as before. In~other Uords,
(Xl,fl,nl) ~ (Xz,fz,xz)- if and only if there exist a proper
G-manifold X and G-mappings x,pj such that
i) = o i i ] = {
(i) x; AP and (ii) 91.(51) 92.(62) ,
where pj! are the Gysin mappings from the groups generated by all
G- vector bundles over T*(xj)ex}(T*(H)) to the group generated by
those oéer T (X)ex* (T*(M)). Denote by KQ(M,G) the set of all equi-
valence classes in '(M,G) with respect to ~ . Then it is én abelian
aroup by the canonical sum. According to the canjeéture I, the next

one is also due to Baum—Connes(C13]:

Baum—Connes conjecture II. Given any differential dynamical

~system (M,G,x), the K-index mapping # is an isomorphism from KQ(H,G)-
to Ka(N,G) where the latter is defined as K(C(H)xae).

Remark. Let BG be the classifying spacé of G and EG the total
space of the universal principaf G-bundle over BG. Let us denaote by
T the vector.bund]e over BG whose fibers are T*(M). If we define
Kr((EGxH)/G) by the K-group K(Bt/St) of the quotient space BT/St of
the ball bundle BT of T by‘its sphere bundle S7, then there exists a
homomarphism & from K' ((EGxM)/G) to Kg(H,G) such that u#+86 is the
Kasparov 8-mapping if M is one point. Moreover, if G is discrete,
then 6 is Q—-injective. If G is torsion—free, then 6§ is bijeétive,

If the conjectures I and II are affirmative, then so are those
due to Novikaov, Grumnv—Lausan—Rosenberg and Kadison in topolaogy,
differential geometry and C*-algebra theory réspectively. We shall
explain them succeedingly:

Let M be a closed oriented manifold, and let Pj be the rational
j—Pontrjagin class of M in Haj(ﬂ,ﬂﬁ. Namely, Py = (—l)Jc2J where
c‘j is the rational j—Chern class of T(l“!)@[R C. As a known fact, it

is a topological invariant due to Novikov whereas the integral class
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is no longer topologically invariant by Milnor. Hﬁrenver, pj are
without homﬁtnpy invariance by Tamura, Shimada and Thom though they
are homotopy invariant for ambient manifolds with nonpositive curva-
ture, Let = be the fundamental group of M, end let us consider the
total Hirzebruch L-class defined by

LaD =12k_>_0 L = 1+ p/3 + 1/45(7p, - P2 4 auee

By definition, the higher signature ax(ﬂ) of M for x € H*(Brx,R) is

formulted as

ax(H) = LMvf*(x), M1 >
where f is the classifying mapping from M to Bz, f* is the 1ift of f
from H*(Bz,Q) to H*(M,Q) and [M] is the fundamental homolegy class
of M. We then state tﬁe Novikov conjecture in the folliouing:

Novikov conjecture.  Given any oriented closed manifold M and

xeH* (Bx ,0), the higher signature ax(n) is a homotopy invariant of M.
In fact, if the Baum-Connes conjecture II is affirmative for

M =pt, so is the Nogikov conjecture. UWe shall see it briefly in

what follows. It suffices to show that fu(L(M7) in Ha(Bx,Q) is a

homotopy invaruant of M, where L(M)" is the Poincare dual L(M).LCM]

of L(M) in He(M,Q). UWe may assume that dim M is even if necessary

replacing M by MxSl. Let A*(M) be the Grassﬁénn algebra of T* (M.

For any [£] in KO

(M), consider the signature operator D, = d§ + dg
on the tensor bundle A*(M)® § uwhere dg is the tensor product 4 @ 1
of the exterior derivativekd of M and the trivial mapping 1 of §.
Since Dg is elliptic, we can défihe the analytic index indan of DE’
which is‘nothing more than the Kasparov product [f]ONED] € Z of [¢1
and [D] for the signature operator D on A* (M), uhere the latter is

2

defined as follows: let L“(A*(M)) be the Hilbert space consisting of

all L2—sectinns of A*(M) and 2 the canonical representation of C(M)
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2 2Zia% My, 2, D1+ 05712y 4 kkM,D) .

on LAY (M), theh CD] = C(L
Denote by inngE the geometric index of Dg’ Thep it is equal to
< LUMvech(L§1), M1 > where ch is the Chern character from KO(M) to
Hév(ﬁ,ﬁ). "By Atiyah-Singer index theorem, it implies that

indé-ﬁg = indg Dg
which means that

EfJGHED] = < L(Mvch(LED, [MT >
for all L&] in KO(H). Since Chn is an isomorphism from KO(N)@Z @ to
HEY(M,@), it follouws that '

chél(F*(x))-em D1 = < f*(x), LMD" >
for all x in H®VY(Br,B). As a well-known fact, it follows that
ch&l- R chu"l1 and  f*(a)ey b = a @ f.(b)

for a in KK(P,R) and b in KK(Q,R) where f is a continuous mapping .
from Q to R and f%, fx are the 1ifts of f from KK(P,R), KK(@,R) to

KK(P,@), KK(R,R) réspectively. We then see that
=1
Q (%) @Bx

for all x.in H*(Bx,Q). Thus, the homotopy invariance of f.(L(M™)

ch Fa(TDD = < x , Fo(LADY >
is equivalent to that of f,(LD1) in KO(B:{)@Z Q= 1lim XCBRKO(X)@Z cC.

Let us now define the Kasparov homomorphism 8 from K, (Bx) to
Kﬁ(C:(x)) by the following way: Given a compact subset X of Bx, put
X = i§(Eﬂ) for thernatural imbedding ix from X to Brx. Then it is a
regular covering space with the property that X = X/z . Let Ex be
the set of all continuous mappings f from X to C;(z) such that
flgx) = A(@)Ff(x) for all g in & and % in ?. It becomes é Hilbert
C(X)@Cﬁ(x)—mndule equipped with

(fa) (%) = f(x)a-p(X) and F e p () = £,GO%F,00

for alf f, Fj € EX’ a e C(X)scz(n) and x € X , where p means the
>projectinn from X to X. UWe then denote by [Ex] the homotopy class

nf\(Ex,O) which belongs to KK(E,C(X)QCi(n}) = KO(C(X)OC;(N)). Let
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Bx(f) = EEXJ ®y £ for ¢ in KO(X). Then it is a hbmpmorphism from
KO(X) to KO(C:(z)). “Put 8 g 1im XCBR Ex. Then it is alhomomorphism
from K (Br) to K,(Cl(x)) such that ‘Qx = B *KO(X) + By Mischenko

and Kaspghovcsj. the image Bg(fu([D1)) of £, ([DI) under By = 8 @ 1g
is é homotopy inQariant of M in KO(BR)OZ Q . Therefobe, if Bmis a
monomorphism from KO(BE)Qz Q to KO(C:(n))QZ Q, then f,(LD1) is also
homotbpically invariant of M. Remembering the definition of B,8 and
42, one can see that 8 = u+8 . Henceforth, if the,cnnjecture I1 is
affirmative or ko is injective in more general, then soris.ﬁu. This
bimplies that Novikov conjecture is affirmative (cf:[61,[9~[11D).

~We shall next state the Gromov-Lawson-Rosenberg in differential
topalogy in connection with the‘BaUm—Cunnes conjecture II. Let M be
an oriented cldsed\spin manifald and = its fundamental group. Given
the classifying mapping f from M to B=x, consider the liftlf* of f
?rom'H*(Bn,Q) to H*(M,0). Let us define the Hirzebruch A—ciass AU
of M by |

AM) =1 - p1/24 - 1/32'45(_P2 - 7/4 p?

)_OOOOv

where pJ are the rational Pontrjagin classes of M. We now consider

the higher‘ﬁ—genus pg(ﬂ) of M for any x € H*(Bx,Q) as follows:

p M = CAMVIT(x), [M] >
where [M] is the fundamental homology class of M. It is of cource
differentially invariant of M. Let xm(ﬁ) be the scalar curvature of
M at me M, in other words

< R(Xi,XJ) Xj PoX, >

x (D = 2 i m

i,
where {Xj} is an orthonormal basis of Tm(ﬂ) and R is the curvature
tensor of M with respect to a Riemannian metric. The‘cnnjecture is

given by the following fashion:

Gromov-Lauwson—Rosenberg conjecture. Let M be é closed spin

manifo]d. Suppose there exists a Riemannian metric of M for which
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the scalar curvature x is nonnegative and xn 15 pusitive for some'm
in M,-the higher A-genus £ (M) of M vanishes for allbx in H*(Bzx,Q).
This ;nnjecture is affirmative if the Kaspafcv mapping' E@ is
injective, which is satisfied if the Baum—Connes‘conjectue II hu]ds.:
In fact, let § be the flat C?(x)—bundle over M. In other words, |
£ =M X C?(n) where M is the universal covering space df M. One
may assume that dim M is even by the same reasph as before. Since M
has a spin structure S, there exist half spinor bundles S+. S of Sf‘
Let C(S% £), C(ST® £) be the sets of all C -sections of S'® & ,
87®‘§ respectively. Denote by D+bt5e Dirac operator from c”(s’e £)
ta C (S e &) Uith’respect to the flat connéction»of £, Theh there
exists the conjugate operator D of o" from cCT(sTe £) to CT(s'e f);
We explain the Chern character ch(§) of & due to Miscenko-Solov’ev. -
Given a C:(x)-bundle_é over M, its fibers have the structure of-
finitely generated projective left C;(x)—modules. Then fhe classe;
L& of & by étabe equivalence generate the K—group KO(C(H)GCﬁ(E)),oF
:the C*-tensor product C(N)OC:(I) of C(M) and C:(n). Using the
ordinally Chern charactér and the Kunneth formula, one obtains the
Chern character ch(L§1) of [§] as a homomorphism from.Ko(C(H)QC?(ﬂ))

od

to HEV(M,)e K (Ch(x)) @ H O (M,@)® K, (Chx)), which is actually an

0
isomorphism modulo torsion. Since s¥e ¢ and S ® § are smonth»C?(x)—

vectnr<bundles over M, and D+ is an elliptic bounded C;(x)~operater'

from a Sobolev C;(z)—mndu1e H* (s7e £) of s'e £ to that H* (S ® £) of
S e §,'there exists a_C;(x)—compact gperator C from H* (s7e £) to
H*(S"® &) so that both [Ker(D'+ €)1 and CCoker(B™+ €)1 are finitely
generated projective C:(x)—modules. Therefore, one can define the
" s . B + ,

Cr(z) index lndC:(z) D of 8 by

indew qy DY = [Ker(DT+ C)1 - C[Coker(D™+ C)1 .
r

It follows from Hiscenkn—Fomenkn£i4] that

-9 —
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1ndcﬁ(x) D" = < chea (DIVTAMD,ITF NI > in K (Ci(x))ey Q,
where Td(N) is the Todd class uf Mand CT*(M)] is the fundamental
class of T*(M. 'Sincelﬁ has a spin structure, there exists the Thom

isomorphism Th from H* (M,Q) to H;(T*(ﬁ),@)o‘ It then follous that

ch(CEDVAGD = Th lteh-odPviaanmy .
Therefore, one has that

On the Sobolev C*(z) ~module H*(S'e £§), the operétor DTD" satisfies
the generalized Buchner Weizenbeck formula: -
DDt = V' o+ x/4
uhefe V is the canonical flat connection of S+® f; Similarly, D+D_
Has the following equality: |
D D = Vo + ®/4 .
.- By the assumption of ;, it implies due to Kazdan Warner that there
exist a Riemannian metric of M and a ¢ > 0 such that xm(ﬂ) 2 cl
for all m in M. Thus, D-D+ and D+D~ have boﬁndeb’inverse operators,
which means that 1ndc*( y D = 0 » Henceforth, one obtains that
- < ch([&])vﬁ(ﬂ), M3 > = 0 .
By the definition of 8 and inda Dg = ind Dg s it‘Fullous ihai
[¥1 g, chy
< ch(fFD) , f4(ACQDAIMI >

Hﬂ(ph"1°r;(A<M)Ach>> L e A ATMD)

Q

i

]

= < f*.ch(LEFDVAM , NI > ,
where ¥ is the universal C;(n)~bund1é over Bx . Since § is the flat
C* (x)-bundle over M, it is the pull back f*(¥) of ¥ with respect to
- f. Therefore, it implies that

L e AODAIMI)

B@(ch

Q < ch(CEDVAMD) , [MI >

= 0 .

Suppose Bﬂ is ., 1nJect1ve, then one has that

-1

Wu

°f*(ﬁ(ﬂ) tMmy = o .
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Since Ch@ is an isbmorphism from K*(Bz)®zﬁ ta‘Hngx}Q), it impiiés
that fL(AUDALMI) = 0 . By the definition of bx(ﬁ), one concludes :

that

i

P (D <AV (x), [MI D>

<x , fR(AUDAIMD > = 0
for all x in H*(Bzx,Q).

Eséecially, if the Baum—-Connes conjecture II is affirmative,
then so is the Gromov-Lauson-Rosenberg conjecture. For instance, as

\pi(Ka) =2 faf the K3-surface K4, there is no Riemannian metric of

K'El which induces a positive scalar curvature.
As an application toward C*-algebras, we shall state the gene—<
ralized Kadison conjectﬂre concerning the existance of nontrivial

projections in group C*-algebras:

Generalized Kadison conjecture. Suppose G is a torsion free

discrete group, the reduced group C*-algebrg C?(G) of G has no non-
trivial projéctiuns. |

In fact, let us consider the geométric K-theory Kg(',G) for N =
pt. By the definition of the K-index mapping #, given a L[(X,§)] in
Kg(‘,G), there exists a G-invariant elliptic differential operator
Dg on X such that |

4GE) = ind, D, and  o(De) = § .
As G is torsion free, it acts on X freely. By Atiyah, it follouws
that
tr*(inda D§) € Z »

where try is the 1ift of the canonical normalized trace of C:(G).tu
Ku (CL(G)). Suppose # is onto, it implies that |

tr, (K (C:(G)) C Z )

4]
Therefore, C?(G)’has no nontrivial projections.

- 11 -
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Summing up the argument discused gntil here, we have the following

observation:

: »0bsérvatinn. Suppuse the Baum—Connes conjectbre~ll halds for
one point hanifold, then affirmative are all the cunjectureé of -
Novikov, Gromov-Lawson—Rosenberg and Kadison. |

Remark. A{Vtﬁe present stage, Kadison conjecture is solved
affirmatively only for the free groups with finite genérators due tg

-Pimsner—Voiculescu.

§3 Miscellaneous results : Let (A,G;a) be a C*-dynamical
system where G is simply connected solvableok By Iuééaua, G is the
multi semidirect prnddcts of R . Using the duality for C*-crossed

,/prudﬁcts, Connes has shown that Kj(AxaR) is isomorphic to KJ+1(A)
under {he TBom isomorphism. Since crusséd products are compatible
uith semidirect produéis, one obtains the following thecremﬁ

ﬁTheorem 1. Let (A,G,a) be aiC*—dynamical system where G is

(A

simply connected solvgblé. Then KJ(AXG) is isomorphic to Kj+dimG

under the Thom isomorphism. A

Given a differential dynamical system (M,G,®) where G is simply
connected solvable, it'follous from Theorém 1 that Ka(H;G) iz equal
to Kdim G(H) via the Thom isomorphism. On the other hand, since G
has no torsion, one can shouw that Kg(N,G) is isomorphic ta K(Br/St)
where T is the T*(M)-bundle over (EGxM)/G , and Br,St are the ball,
sphere bund]es of T respectively (cf3C11)+ By the assumption of G,

BG is homotaopic to Rdim G +. Therefore, it follows from Boett perio-

dim G

dicity that Kg(H,G) =K {M) . Combining it uithkthe previsus

argument, one has the following propositions

Proposition 2. Let (M,G,¢) be a differential dynamical system
where G is simply connected solvable. Then the conjecture II holds

for the triplet.
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Suppose G is a compact Lie group, the cdnjeétufe Il is naturally
affirmative by virtue of Atiyah-Singer index theory:

Proposition 3. Let (M,G,0) be a differential dynamical system

where G is caompact. Then the same conclusion holds as Proposition 2.
Due tn tHe>above propositions, we may restricts our interest:
to the case where G is a noncompact semisimple Lie group in thevnext
stage. Let G be as above and let K be the maximal compact subgrodp
- of G. Supposé G/K has a G-invariant spin®-structure,it follows from

dimG/K

Baum—Connesf11 that Kg(N,G) = Kg M,K) . By Proposition 3, it

implies that .Kg(H,K) = Ka(N,K) up to the K-index mapping. Thus, it

suffices to show that K (M,6) = KgimG/K

(M,K). » The next result is
one exampie having.the equality:

Proposition 4. lLet G be a conhected Lie group and let K be

the maximal compact subgroup of G with the property that G/K has a
G-invariant spin®~structure. If there exists an amenable normal
subgroup H n? G such that G/H is locally isomorphic to the finite
product of SOo(n,l) and compact/groups,'then Ka(N,G) = KgimG/K(H,KB
(e I7D.

Especia]ly, suppose M is one point, the conjecture Il is praoved

affirmatively for more wider classes of G:

 Propositisn 5. Let G be the connected reductive Lie group
and K, G/K as in Proposition 4. Then K_(+,6) = K31/l yy

When G is a discrete group, there is no theorem to support the
conjecture II a?firmatively at the present stage. The only examplsas

that one knows is the following case:

- Observation 6. Kg(f,SL(Q,Z)) = Ka(',SL(2,Z)) (515]) .
In ?act, the abové result is‘deduced from the fac{ that SL(2,Z)
is the amalgamated product of 24 and 26 with respect to 12 . Since

SL{(n,Z),n23 has no such fashion, one may ask the fo]]ouing question:
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éuestiun 1. Is it true that‘ Kg(é,SL(n,Z)) = Ka(-,SL(n,Z})
~for all n23 7?7 More generally, suppose G is a discrete subgroup of
~a connected Lie group, can one shouw that Kg(e,G) = Ka(~;8) ?
Concerning tﬁe conjecture I, we list up several éxamples‘ia

satisfy it afFirmaiive]y in qhat follows.

Proposition 7. ‘ The conjecture I holds affirmatively for the
Reeb foliations of 2-torus or 3—sphére ([léj)v

Proposition 8. The conjetture I holds affirmatively for the

Anosov foliations of infra-homogeneous manifolds ([121).
Suppose a manifold has an Anosov foliation, its rank is one
automatically. The next example is the case where the conjecture 1

holds for a fo]iated manifold with an arbitréry ranks

Proposition 9. Given any n € N, there exists a foliated
manifold (M ,F ) such that |

(i) rank Mn =n and (i) Kg(ﬂn,Fn) = Ka(ﬂn,Fn)
(cf3Section 4). |

The foliations cited above have nontrivial holonomy in general
sinceithe‘Gudbi]lon—Vey invariént is nonzero in general. Houever,
the ne#t two cases are without holonomy:

Propnsition’lo.. The conjecture I is true ?or all foliations

of codimension one without hohonomy on any smooth manifold (L153).

Observation 11. The K—index mapping is injective for Anosov

foliations derived from topologically transitive diffeomorphisms of
any compéctvsmonth‘manifold.

In order to verify the conjecture I, the next question is quite
fundamental:

Question 2. Given a K—urientea foliation whose leaves are

contraétible,'ﬁnes'the conjecture 1 hold affirmatively ?
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54 Anosov actions In this sectian, we sha!l check the Baum-‘

Connes cunJecture I for general1zed Annsov f011at10ns on a 1nfra—
homogeneous manifolid. Let (M,G,$) be a d1fferent1ab]e dynamlcal‘
systémw The action ¢ is called Anosov if fhgre exist an é}ement g
in 6 and subbundles E%,EY,EC of TCH) such that -

(i) - T = E% EY EC , d¢g<EJ>,= el

(iiy  EY are all integrable, EC = T(B(B)) (j=s,u,c) and

(iii) HdoD(EINC RUEN (E<E®) ,  wNENK HdoTCErn (geEYy

AUENL ud¢ EIN< ulEN (6<ES)  for some’o<x<1<a'.

Then there ex1st fullat1uns F,FY,FC of ﬁ such that T(Fj) ='E‘j for

J=s,U,Ca Each leaf U; in FJ (J=5,U,C)vi5 given by the following

fashion:
Wp = (x €Ml d@](x),87 (m))2 M S0 (n— =),
W= (xenl d(¢g <x>,¢ "(mu" — 0 (n — =)},
u; = ¢(B)m

Let us now take a‘noncompact semisimple Lie group G with finite
center and K its maxlmal compact subgroup. We denate by G; the Lie :
algebra of G. Let G’ = K’ + P* be a Cartan decnmp051t1un of G’ and
A’ a maximal abelian subspace of P’. Suppose A is the root systém
‘uith respect to A’, then we have the root space decomposition of G’”
in the following manner: ‘ |

& = M e A el . G -
where M* be the centralizer of A’ in K’ apd Gi the 2~eigen subspace‘-
of G*. Given a regular element a € A = exp A’, define two subsets
A; ’ A as follows:
Au={2eA ] 20032 >0 } s A, ={2 <Al 20cga)<0),

where log a is the e}ement of A such that exp(log a) = a . Let us

define N , N’ as the direct sum of Gi (1 = A; , A;) respectively.
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Concerning the diffeomorphism &, of G/M (M = exp M) such that

¢é(gﬂ) = gaM (g € G) , one can see that
- . _—A(log a) - Sy o Lo
déa(f) = zleAi e §l ( f = ZJ.EA; fl € N3 s JTH,— )] 9
W_(6) =f  (fem . R

Therefore there exists a constant ¢ > O such that

hdd_(E)1 < e €

NN ¢ ¢ € NLD Hd¢a(§)u 2 eC HEN (¢ e N D) .
As the tangent spaée T”(G/H) of G/ﬂ at M is N> @ A’ @ N;, it imbiies
that ¢ is an Anosov action of A on G/M . '

‘Remark.' If ae A is singuiar, then the decomposi{ion of G*/1?
with respect to a is obtained in the following way:

G’

G'/M = N_e A e N,® 3 .

o A(log a)=c
~ Hence, do_ is without Anosov conditiaon.
_ Let I' be a torsion free uniform lattice of G . UWe define an
“action ¢ of A on I'\G/M by ,¢a(FgN) = F¢a(gﬂ) = [gaM (é € A;g € G,
Then we have the following lemma; |
Lemma 1 The action ¢ is an Anosov -action of A on '\G/M .
Except the foliations FY of I\G/M with respect to ¢ (j=s,u,c),
there exist other foliations Fj (j=cs,cu) such that
T(F® =E* o E€ , TG =g"e ® .
Eachlleéf'ui € FJ%QJ=cs,cu) haé the following form:
oo = Yyeooom Y%+ Yn = Ykes orm
We now check the structure of leaves in FY (j=s,cs) on '\G/M . For

u
W .
X

any gM e U; , there exists a smooth curve g{(it) in G such that

_ YR ' » s
g(0) = e , g(1)M = gl and d/dt(g(t)M E-Eg(t)ﬂ .
It follows that putting

1

X(t) = d/ds(g(t)” g(S)N)'S=t € N (t e R) ,

d/dt (g(t)M) = do X<t)> , gOM="Hn .

g(t)
If one defines one parameter family h(t) of NT = exp N; by

h(t) = exp fé X(t) dt

- 16 —
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then one easily checks that g(t)M h(t)M (t e R) « Thus it means

that

(git)K,g(t)P) = (h(t)K,h(t)P) (h(t),P) e (N'K/K) x {P)‘
for all t € R uwhere P = MAN' , which implies that

| Ui € (N'K/K) x (P}
Similaf]y,rdne obtains that.
W3® C (6/K) x P .
.Canversely, . given é g e G/M (g € P), there are a € A and n € N sdch
that gaM = nM . Thus, gaM e W3 implies gM e WS® . The 1eaves;u§
and U;u,are also determined b§ the same way as U; and U;S concerning
G = N_AK , P~ = NAM where N = exp N> . Let =, be the canonical
projection from G/M to F\é/ﬁ » Identifying G/M with (6/K)x(G/P)
G-equivariantly by taking the mapping gﬁ — (gK,gP), we obtain the
"following lemma:

Lemma 2 The Anosov dynamical system (P\G/M,A,¥) gifts five
foliations thuf '\G/M (j=s,u;c,¢s,c0) whose leaves Ugg” are given
by |

CINTK/ZK) x{gP}) = INCINTKZKO x(gP))

S
Urgm = *r
U _ - - c _
Upgm = INUN KZAKOx{gP 3, Up oy = &gt
cs  _ CU  _ ny -
Urgn = I'\N((G/K)x{gP}> , UFgM = F\(‘G/K)x{gP }} .
‘Remark. The following observation means a geometric approach

to the above lemma. According to Oshimal17], there exists a real
analytic closed manifold G/K containing G/K as an open submanifold
and G/P as the boundary of G/K. For the decomposition G = N AK, one
knows that N'x R! is embedded in G’K and N x Rl is isomorphic to G/K
by the mapping (n—,exp—li(log a),-++,exp-2,(log a)) — n aKk where

1 = ran%RG and {lj}}=i is a restricted positive simplé root system
of A . Moreover, G/P can be i&enti?ied with N x {0}] » Using the

fact that g exp(tlog a)K — gP ‘as t — w s the geodesic half lines
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{g exp(tlog a)K}t>¢ and (h exp(tlog a)kl,y, are asymptotically
apprdaching to geI hM e'U;; . On ihe uth;r hand,.U:ﬁ ié interpreted
‘-as a hordsphere whose boundary passes‘ihrnugh gP « The leaves Ucu,
WY are similarly translated as W°%, ws . |
We now study the fu]i:‘:;'t'ions'F‘j of T\G/M (j=s,u,cs,cu) in more
detail. Since'G/ﬁ'= G/K x G/P , we see that '\G/M is a G(P‘~bund1e
over '\G/K . Appl?ing Lemma 2, the following Temmavholds:
Lemma 3 The foliated manifolds ('\G/M,FS%) is the foliated
G/P -bundle over F\G)K whose holonomy group is the image of the left
translation action of T' on G/P 'Thg same is true fqb (F\G/H,Fcu)
replacing P by P . /
» Let us consider the principal M-bundle '\G over I'\G/M and &y
the natural projection from I'\G to '\G/M ; Then the following lemma
is also verified: ’
~ Lemma 4  The pull back foliations z§<F5>,n§(F9) of FS,F9 by
A abé MN,N M - orbital with respect to the right translation action
p of G on I'\G . |
Since Hausdorff are the‘holonnm? groupoids of Fjv(j#s,u;cs,cu),

we have the following lemma combining Lemma 3 and Natsume-Takai’s

result for folidted bundles:

Lemma 5 Cnncerning (F\G/H,FJ) (j=cs,cu), ane obtains that
C;(F\G/H,FCS) = (C(G/P)xlF)Po BC(Lz(P\G/K)) s
Ci(F\G/H}FCU) = (C(G/P—)xlr)ra BC(LZ(F\G/K)) )

up to isomorphism uhere'(-x?)r means the reduced crossed product and
BC(H) is the C*-algebra of all compact operators on H .

By Rieffel’s work on Morita equiva]epce, (C(G/P)xll")P is stably
isomorphic to (CAM\G)x P} , which is equal to Ca\GIx,P . Since
N = 8(N*) for the Cartan involution 8 of G, CH (I\G/M,F°®) is stably

isomorphic to c;(r\G/H,FCU) . By Lemma 4, one has the following



113

lTemma:

Lemma 6 Concerning (I\G,x}(F')) (j=s,u), one obtains that

M
up to isomorphism.

CLTN\G,xl(F®)) = CA\®Ix N , CEHI\Gaf(FY)) = Ca\EIx N

Let (N;F) be a Fqliatéd‘manifold and £ a bundle over M whose
?ibérs_are a compact manifold X. Consider the pull back =* (F) of‘Fj,
by the natural projeétiun % from £ tn M. Then ane has the fn]]nuiné'
lemma:

Lemma 7 Concerning (§,x*(F)), one cobtains that

CL(E,m* (FY) = CYO1,F) @ BC(L2x))
up to isomorphism.
Combining Lemma 6 and 7, the next one is auimatically deduced:?
Lemma 8 Concerning (F\G/H,Fj) (j=s,u), one gbtains that

CX (T\G/M,F®) o BC(LZ2(M))

2

C(F\G)xpN+ﬂ ,

|

C?(F\G/H;Fu) ® BC(L“(M)) C(F\G)xpN—M .
We nou compute the analytic K-theory Ka(F\G/N,Fj) of (F\G/H,Fj)
(j=s,u,cs,cu) using Lemma 5~8. It éertainly follouws that

Ka(F\G,N Mm .,

Ka(F\G/H,FS)”= Ka(F\G,N+H) > Ka(F\G/N;FU)

1l

Ka(F\G/H,FCS) = K (G/P,[) Ka(F\G/H,FCU) Ka(G/P_,F) .

Since (C(G/P)x F)P, (C(G/P-)xlF)P are stably isomorphic to C(F\G)xpP

y e
s C(F\G)xpP— respectively, it then follows that
K (G/P,I') = Ka(F\G,P) ’ Ka(G/PF,F) = Ka(F\G,P;)},.

To analyze thé right hand side of the above equality, one prepares
a generalized Thom isomorphism business due to Connes and Julg:

Lemma 9 Let (A,G,a) be a C*—d;namical éystém where G is the
semidirect product Rnxsc of R" by a compact group C. Then there is
an C-equivariant Thom isomorphism Betueen Ka(A,G) and KQ’C(A) .

Remark. In the above lemma, if C is one point, it is due to

Cennes. If n = 0, it is thanks to Julg.
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Since P is the semidirect product of N+ of MA , it_fc]]ous from

L.emma 9 that

]

K_(T\G,P) = K (C\&)x_MNV,a) = k3i™ A g, mnh)
a a "o a
dim ANt

a,M ,
As I' is torsion free, it has no intersectiun with M. Thus, g2 is a

=K (T\G, *)

free action of M on I'\G. There?ore,»ue deduce from Segal that

. +
Kglﬂ AN r\G,.) = gdim AN e
, |
Consequently, it follows that R
. - + ‘
K NG/, FCS) = kI AN gy

We shall next compute the geometric K-theory Kg(F\G/H,FCS) of
(T\G/M,F®®) . Let us look at the leave structure of F°®. Since
Ur M= R (G/K % {gP}) and G/K is contractible, it implies that MFSN
are all K(',1)-spaces. Since I' is torsion free, so is 6 = Hol(F%),
It follows from Baum—Connes[11 that

| »Ké(F\G/M,chi = K B |
where T is the vector bundle over B§ via ugés. By definition, & is
isomorphic to (G/P x,I) x (B[ % Br') as a Borel groupoid by Natsume-—
Takai. Let us study this correspondence more closely. Conéider thé‘
mapping & from G to Bl x BM by taking &(7) = Rp (5T ymp (r (7))
Then the groupoids Q_l(x,Y) (x,yeBl') are isomorphic to the principal
groupoid G/P xlr » namely one has that

6/P x,r -5 & L eroxaEr .
‘Taking the classifying space of the above spaces, it follows that
B(G/P x,I') Be, g B2, g x By .

Since B(BF x B') is homotopic to one point, one obtains that BE is
homotopic to B(G/P x,I') by B¢+ Since one knous that ¢ is an iso-

morphism from G/Pfxxr into 8 as a topological groupoid, it follows

that G is a Hausdorff space. Let us consider the back ¢ = (Be)* ()
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of T by B:. Then it is a vector bund]e over B(G/P xlr) whose fibers
come from ugcs. By the above discussion, one obtains the following:
Lemna 10 K'(B(G/P x,I')) = K (BE via (B! . ‘

‘ By definition, u;cs is tangential to T*(G/P). Since ' is torsion

free, it imblies from Baum—ConnésEl] that
K (G/P,T) = K0 er xpG/P)

where & = ET er*(G/P) + Since ET er/P is the base space of a

principal (G/P;xlr)—bundle, there exists a classifying mapping f of v‘

B %x-.G/P into B(G/P kiF). Let us take the pull back bundle f*(g) of

o by f. Then it is actually isomorphic to & as a vector bundle.
Therefore, one has the follouwing lemma:
5, _ f* (a) : ,

Lemma 11 ‘K (T er/P) = K (ET er/P) .
The next lemma seems to be quite crucial to determine the~geamétric
K-theory of (I\G/M,F®*):

: ’ W .

Lemma 12 k¥ @ e x.6/p)

Combining Lemma 10~12, one obtains the following:

r)y wvia f! .

K7 (B(G/P X2
Lemma 13 Kg(F\G/H,FCS) = Ké(G/P,F) .

Let Hj be two closed subgroups of G (j=1,2). Oné compares the
two geometric K—-groups KQ(G/HI’HZ) and Kg(HQ\G’Hl)' By the same

phenomenon as the analytic K-theory, one can verif9 the following: .

Lgmm§v14 Kg(B/H  Hy) = K (H\G,Hp)
Applying the above lemma to H1= P and H2= r , it implies that
Kg(G/P,I) = K (T\G,P) .
One finally check the following 1emmas
Lemma 15 Kg(F\G,P) = gdin ANiG) .

Summing up the argument discussed above, we obtain the following

main theorem:

Theorem 16 The Baum—-Connes conjecture I is affirmative for

the foliated manifolds (T\G/M,F) (j=s,u,c,cs,cu).
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In fact, the similar method takes place tao shuu.the'cnnjecture

even in the case of j=s,u,c,cu.
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