On Primitive Ideal Spaces of C^* -Algebras over Certain Locally Compact Groupoids

bу

山上 远 Shigeru YAMAGAMI

Introduction. Let Γ be a locally compact Hausdorff second countable groupoid with a left Haar system $\{v^X\}_{X\in X}$ in the sense of [9](X = the unit space of Γ). By analogy with Fell's algebraic bundles over groups, we define the notion of C^* -algebras over Γ and , given a C^* -algebra A over Γ , we can form a C^* -algebra $C^*(\Gamma,A)$ as the completion of the cross sectional algebra of A. In this note, under some stringent assumptions on Γ , we present a concrete realization of the primitive ideal space of $C^*(\Gamma,A)$. This is a C^* -version of [12]. For the proofs, we refer to [13].

§1. Assumptions.

We impose a series of conditions on Γ . First we assume that

- (A1) Γ is minimal,i.e., for all $x \in X$, $[x] = \{y \in X ; \text{ there exists } \gamma \in \Gamma$ such that $s(\gamma) = x$, $t(\gamma) = y\}$ is dense in X.
- (A2) Stabilizers of Γ are discrete and uniformly abelian, i.e., there are a discrete abelian group G and a family of topological isomorphisms $\{\iota_x: G \to \Gamma_x^X\}_{x \in X}$ such that for $g \in G$, $X \ni x \to \iota_x(g) \in \Gamma$ is

continuous and $t_{t(\gamma)}(g)\gamma = \gamma t_{s(\gamma)}(g)$ holds for $\gamma \in \Gamma$.

- (A3) Γ is amenable, i.e., for any quasi-invariant measure μ in X there is a net $\{f_i\}_{i\in I}$ of functions in $C_c(\Gamma)$ such that
 - (i) for all $x \in X$ and all $i \in I$, we have $\int v^X(d\gamma) |f_i(\gamma)|^2 = 1$
- (ii) the function $\gamma \longmapsto \int \nu^{s(\gamma)}(d\gamma') \ f_i(\gamma') \overline{f_i(\gamma\gamma')}$ converges to 1 as $i \to \infty$, relative to the weak* topology of $L^\infty(\Gamma, \mu \circ \nu)$.

Comment. The amenability in (A3) is due to [9]. (A2) means that Γ is a central extension of a principal groupoid by an abelian group. We write $\iota_{\mathfrak{t}(\gamma)}(g)\gamma$ and $\gamma\iota_{\mathfrak{s}(\gamma)}(g)$ as $g\gamma$ and γg in the following.

<u>Definition 1</u>. Let $A = \{A_{\gamma}\}_{\gamma \in \Gamma}$ be a separable continuous field of Banach spaces over Γ . A is called a C^* -algebra over Γ if the following structures are specified:

- (i) For $(\gamma_1, \gamma_2) \in \Gamma$, a multiplication $m: A_{\gamma_1} \times A_{\gamma_2} \ni (a_1, a_2) \longmapsto a_1 a_2$ $\in A_{\gamma_1 \gamma_2}$ is defined. It is associative and satisfies $\|a_1 a_2\| \le \|a_1\| \|a_2\|$.
- (ii) For $\gamma \in \Gamma$, a conjugate linear map *: $A_{\gamma} \longrightarrow A_{\gamma^{-1}}$ is defined and satisfies $(a^*)^* = a$, $\|a^*a\| = \|a\|^2$, and $(a_1 a_2)^* = a_2^* a_1^*$.
- (iii) If ϕ_1 , ϕ_2 are continuous sections of A, then $\Gamma^{(2)} \ni (\gamma_1, \gamma_2) \longmapsto \phi_1(\gamma_1)\phi_2(\gamma_2) \in \mathsf{A}_{\gamma_1\gamma_2}$

is a continuous section of m*(A), where m*(A) is the pull back of A under the map $m:\Gamma^{(2)}\longrightarrow \Gamma$.

(iv) If φ is a continuous section of A, $\varphi^*(\gamma) = \varphi(\gamma^{-1})^*$ is also a continuous section of A.

Let $C_c(\Gamma,A)$ be the set of continuous sections of A with compact supports. We make $C_c(\Gamma,A)$ into a *-algebra in the following way:

$$(\varphi_1 \varphi_2)(\gamma) = \int v^{t(\gamma)} (d\gamma') \varphi_1(\gamma') \varphi_2(\gamma'^{-1} \gamma)$$

$$\varphi^*(\gamma) = \varphi(\gamma^{-1})^*$$

 $C_{_{\mathbf{C}}}(\Gamma,\mathsf{A})$ is completed to the C*-algebra C*(Γ,A) according to the maximal continuous C*-norm (the topology of $C_{_{\mathbf{C}}}(\Gamma,\mathsf{A})$ is that of uniform convergence on compact subsets.). Analogously as in [3], we define the multiplier bundle $\{\mathsf{M}(\mathsf{A}_{\gamma})\}_{\gamma\in\Gamma}$. We assume

(A4) for all $\gamma \in \Gamma$, $U(A_{\gamma}) = \{u \in M(A_{\gamma}); b^*b = 1_{s(\gamma)}, bb^* = 1_{t(\gamma)}\}$ is not empty and there is a Borel section of $\{U(A_{\gamma})\}_{\gamma \in \Gamma}$ in the sense that we can find a section $u(\gamma) \in U(A_{\gamma})$ such that for any continuous section a of A, $\Gamma \ni \gamma \longmapsto u(\gamma)^* a(\gamma) \in A_{s(\gamma)}$ is a Borel section.

Set $\Gamma(X) = \bigcup_{x \in X} \Gamma_x^X$. $\Gamma(X)$ is a closed subgroupoid of Γ and the restriction of A to $\Gamma(X)$ is a C^* -algebra over $\Gamma(X)$, so we can form the cross sectional C^* -algebra as in the above definition, which is denoted by $C^*(\Gamma(X),A)$. Similarly, from the restriction of A to Γ_X^X , we have a C^* -algebra $C^*(\Gamma_X^X,A)$. Let $G^*(x) = \operatorname{Prim} C^*(\Gamma_X^X,A)$ and set $G^* = \bigcup_{x \in X} G^*(x)$ (disjoint union).

Lemma 1(cf. [4]).

Prim $C^*(\Gamma(X),A) = G^*$.

The topology of G^* is defined by this identification. Let $u \in U(A_\gamma)$ and define an isomorphism from $C^*(\Gamma_X^X,A)$ onto $C^*(\Gamma_Y^y,A)$ $(x=s(\gamma),y=t(\gamma))$ by $C_c(\Gamma_X^X,A) \ni \phi \longmapsto u\phi \in C_c(\Gamma_Y^y,A)$ where $(u\phi)(\gamma') = u\phi(\gamma^{-1}\gamma'\gamma)u^*$.

Now we define an equivalence relation \simeq in G^* by $\omega_1 \simeq \omega_2$ \iff there exist $\gamma \in \Gamma$ and $u \in U(A_{\gamma})$ such that $\omega_1 \in G^*(s(\gamma))$, $\omega_2 \in G^*(t(\gamma))$, and $\omega_2 = u\omega_1$. Here we assume that

(A5) \simeq is an open equivalence relation in G^* .

<u>Comment.</u> This is automatically satisfied if Γ (and A) is arising from a group action.

<u>Definition 2</u> (cf. [1]). We define an equivalence relation \sim in G^*

$$\omega_1 \sim \omega_2 \iff \overline{[\omega_1]} = \overline{[\omega_2]}$$
.

Here [ω] denotes the equivalence class of \simeq containing ω and $\overline{[\omega]}$ is the closure in G^* .

Given $\omega \in G^*$, we can construct the induced primitive ideal ind ω of $C^*(\Gamma,A)$ (see , for example , [2]). Since ind ω depends only on the equivalence class of \sim , we have obtained a map from G^*/\sim into $Prim(C^*(\Gamma,A))$, which is also denoted by ind.

Now the following is proved by the method of [5], [6], [10] (cf. [2], [4]).

Lemma 2.

ind:
$$G^*/\sim \longrightarrow Prim(C^*(\Gamma,A))$$

is a homeomorphism.

Our next problem is the concrete description of G $/\sim$ *. For

that purpose, we need one more assumption. Through the isomorphism $\iota_{\mathbf{X}}: \mathbf{G} \longrightarrow \Gamma_{\mathbf{X}}^{\mathbf{X}}$, $\mathbf{A}|_{\Gamma_{\mathbf{X}}^{\mathbf{X}}}$ will be regarded as a \mathbf{C}^* -algebraic bundle over \mathbf{G} and then, by Theorem 9.1 in [3], we have an action of \mathbf{G} on $\mathrm{Prim}(\mathbf{A}_{\mathbf{X}})$. Now suppose that

(A6) for each $x \in X$, all G-orbits in $Prim(A_x)$ is dense in $Prim(A_x)$.

For example, if $\mathbf{A}_{\mathbf{X}}$ is simple, this condition is trivially satisfied.

§2. Topological decomposition of $C^*(\Gamma, A)$.

For $g \in G$, we denote by A^g the pull-back bundle of A under the map $X \ni x \longmapsto \iota_X(g) \in \Gamma$. Let $M(A^g) = \{M(A_{\iota_X(g)})\}_{X \in X}$ be the multiplier bundle of A^g . A section ϕ of $M(A^g)$ is called strictly continuous if for each continuous section f of A^g , $X \ni x \longmapsto \phi(x) f(x) \in A_{\iota_X(g)}$ is a continuous section of A^g . Let C_g be the set of bounded strictly continuous sections, say ϕ , of $M(A^g)$ satisfying $\phi(t(\gamma))a = a\phi(s(\gamma))$ for all $\gamma \in \Gamma$ and all $a \in A_{\gamma}$.

Lemma 3.

(i) dim $C_g \leq 1$.

(ii) If $C_g \neq 0$, we can find $\varphi \in C_g$ such that $\varphi(x)$ is a unitary element in $M(A_{t_{\varphi}(g)})$ for all $x \in X$.

Set $S = \{g \in G; C_g \neq 0\}$.

Lemma 4. S is a subgroup of G.

Set $\Omega = \{\omega: S \ni g \mapsto \omega_g \in C_g; \text{ for all } x \in X, \omega_g(x) \in U(A_{l_X}(g))$ and $\omega_{g_1}(x)\omega_{g_2}(x) = \omega_{g_1g_2}(x)$ (g,g₁,g₂ \in G)}. Then S^(= dual group of S) acts on Ω as a transformation group:

$$(\sigma\omega)_g = \langle \sigma, g \rangle \omega_g, \ \sigma \in S^{\wedge}, \ \omega \in \Omega, \ g \in S.$$

<u>Lemma 5.</u> Ω is a principal homogeneous space under the action of S[^](in particular, $\Omega \neq \emptyset$).

By this lemma, we can transform the topology of S $^{\uplambda}$ into Ω and Ω becomes a compact Hausdorff space.

Let $\omega \in \Omega$ and define an action of S on A by

$$ga = \omega_g(t(\gamma))a, g \in S, a \in A_{\gamma}.$$

Taking quotient, we obtain a C*-algebra A^{ω} over Γ/S . Let $\phi \in C_{c}(\Gamma,A)$ and set

$$\varphi_{\omega}(\gamma) = \sum_{g \in S} \omega_g(t(\gamma)) \varphi(g^{-1}\gamma), \gamma \in \Gamma.$$

Then ϕ_{ω} gives rise to an element in $C_{c}(\Gamma/S,A^{\omega})$ and we have

<u>Lemma 6</u>. $\{\{\phi_{\omega}\}_{\omega} \in \Omega; \phi \in C_{\mathbf{C}}(\Gamma, A)\}$ defines a continuous field structure for the family of C^* -algebras $\{C^*(\Gamma/S, A^{\omega})\}_{\omega \in \Omega}$.

Theorem. Let Γ be a locally compact Hausdoff second countable groupoid satisfying (A1)~(A3) and A be a C*-algebra over Γ satisfying (A4)~(A6). Then

(i) for all $\omega \in \Omega$, $C^*(\Gamma/S, A^{\omega})$ is simple,

(ii) $C_c(\Gamma,A) \ni \phi \longmapsto \{\phi_\omega\}_{\omega \in \Omega} \in \{C^*(\Gamma/S,A^\omega)\}_{\omega \in \Omega}$ is extended to the isomorphism between $C^*(\Gamma,A)$ and the cross section C^* -algebra of $\{C^*(\Gamma/S,A^\omega)\}_{\omega \in \Omega}$.

Sketch of the proof. We define an action of G^{\bullet} on $C^{*}(\Gamma(X),A)$ by $(\sigma\phi)(g,x) = \langle \sigma,g \rangle \phi(g,x)$.

Then the associated action of G° on G^{\ast} preserves the equivalence relation \sim and we can show that this action is transitive. So G^{\ast}/\sim is identified with G°/S^{\prime} , where S^{\prime} is a subgroup of G and $S^{\prime}=(\sigma\in G^{\circ};\sigma|_{S^{\prime}}=1)$. Now imbed $C(G^{\ast}/\sim)$ into $C_{b}(G^{\ast})$ and regard it as a subalgebra of the center Z of the multiplier algebra $M(C^{\ast}(\Gamma(X),A))$ (by Dauns-Hofmann Theorem). Then we can explicitly write down the condition when an element in Z belongs to $C(G^{\ast}/\sim)$, and this shows that $S^{\prime}=S$ and $S^{\circ}=G^{\circ}/S^{\prime}=\Omega$. The topological decomposition follows from [11].

Corollary 1. $\Omega = Prim(C^*(\Gamma, A))$.

Corollary 2. $C^*(\Gamma, A)$ is simple if and only if $S = \{e\}$.

Let G be a locally compact group and N be an open normal subgroup of G with G/N abelian. Let A be a separable C^* -algebra and $\alpha:G\longrightarrow \operatorname{Aut}(A),\ \rho:N\longrightarrow \operatorname{U}(A)$ be homomorphisms, which form a twisted covariance system in the sense of [6]. Set S = {g \in G}; there exists u \in \openu(A) such that $\alpha = \rho(h^{-1}g^{-1}hg)\alpha = \rho(a)u$ for all $h \in G$ and all $a \in A$. Due to §9 of [3], we can construct a C^* -algebraic bundle over G/N. Since algebraic bundles are special cases of C^* -algebras over

groupoids, we have

<u>Corollary 3</u>. S is a subgroup of G containing N and, if A is G-simple the primitive ideal space of the twisted covariance algebra $A\times_N^G$ is homeomorphic to $(S/N)^{\Lambda}$.

This is a supplementary result to [7],[8].

References.

- [1] E.G.Effros and F.Hahn, Locally compact transformation groups and C*-algebras, Mem.Amer.Math.Soc. 75(1967).
- [2] T.Fack et G.Skandalis, Sur les representations et ideaux de le C*-algebre d'un feuilletage, J. Operator Theory 8(1982), 95-129.
- [3] J.M.G.Fell, An extension of Mackey's method to Banach *-algebraic bundles, Mem.Amer.Math.Soc. 90(1969).
- [4] J.Glimm, Families of induced representations, Pacific J.Math. 12 (1962), 885-911.
- [5] E.C.Gootman and J.Rosenberg, The structure of crossed product C*-algebras: A proof of the generalized Effros-Hahn conjecture, Inventiones math. 102(1979), 283-298.
- [6] P.Green, The local structure of twisted covariance algebras, Act. Math. 140(1978), 191-250.
- [7] A.Kishimoto, Simple crossed products of C*-algebras by locally compact abelian groups, Yokohama Math.J. 28(1980), 69-85.
- [8] D.Olesen and G.K.Pedersen, Applications of the Connes spectrum to C*-dynamical systems, III. J.Funct.Anal. 45(1982), 357-390.

- [9] J.N.Renault, A groupoid approch to C*-algebras, Lecture Notes in Math. 793(1980), Springer-Verlag.
- [10] J.L.Sauvageot, Ideaux primitifs de certains produits croises,
 Math.Ann. 231(1977), 61-76.
- [11] J.Tomiyama, Topological representations of C*-algebras, Tôhoku Math.J. 14(1962), 187-204.
- [12] S. Yamagami, On factor decompositions of ergodic groupoids, preprint.
- [13] ______, On topological decompositions of C^* -algebras over certain amenable groupoids, in preparation.

Department of Mathematics
Ryukyu University
Okinawa 903-01 JAPAN