Heights of simple loops and pseudo-Anosov homeomorphisms (形まま 7. 本 多数) Tsuyoshi Kobayashi #### 1. Introduction Let H be a 3-dimensional, orientable handlebody of genus g (>1) and ℓ ($C\partial H$) be a connected essential simple closed curve. A simple loop is the ambient isotopy class of ℓ and we often abbreviate it by denoting ℓ . A surface is a connected 2-manifold. Let F be a 2-sided surface properly embedded in a 3-manifold M. F is essential if it is incompressible and not parallel to a subsurface of ∂M . Then we define the height of ℓ , $h(\ell)$, as follows; $h(\ell) = \min \{-\chi(F) \mid (F, \partial F) (C(H, \partial H - \ell)) \text{ is an essential surface}\}$, where $\chi(F)$ denotes the Euler characteristic of F. In section 2 we see that h(l) can be defined. Fix a hyperbolic metric on ∂H . Let L ($\subset \partial H$) be a geodesic lamination. We say that L is of $full\ type$ if there is a system of mutually disjoint incompressible disks $\{D_1,\ldots,D_{3g-3}\}$ in H such that $\partial D_1 \cup \ldots \cup \partial D_{3g-3}$ cuts ∂H into 2g-2 pants P_1,\ldots,P_{2g-2} , which satisfies; - (i) $\cup \partial D_i$ and L intersect transversely and there is no 2-gon B in ∂H such that $\partial B = \alpha \cup \beta$ where α is a subarc of $\partial D_1 \cup \ldots \cup \partial D_{3g-3}$, β is a subarc of L and - (ii) for each P_i we have; for each pair of boundary components of $\,P_{i}^{}$, there is asubarc of L properly embedded in $\,P_{i}^{}$, which joins the components. Then the first result of this paper is; Theorem 1. Let $f: \partial H \to \partial H$ be a pseudo-Anosov homeomorphism and ℓ (COH) a simple loop. Suppose that the stable lamination of f is of full type. Then $\lim_{p\to\infty} h(f^p(\ell)) = \infty$, i.e. for each n (≥ -1) there exists a constant N such that if m>N then $h(f^m(\ell))>n$. We note that the assumption on the stable lamination of f is essential. In fact Fathi-Laudenbach [4] showed that there exists a pseudo-Anosov homeomorphism $\phi:\partial H\to\partial H$ which extends to a homeomorphism of H. Then clearly we have $h(\phi^n(\ell))=h(\ell)$, for each ℓ and n. Let $f:\partial H\to \partial H$ be a homeomorphism and $D_1\cup\ldots\cup D_g$ a union of mutually disjoint incompressible disks in H such that $D_1\cup\ldots\cup D_g$ cuts H into a 3-cell. Then we get a compact 3-manifold whose boundary is a sphere by attaching 2-handles to H along the simple loops $f(\partial D_1),\ldots,f(\partial D_g)$. We note that the obtained manifold does not depend on the choice of D_1,\ldots,D_g (Lemma 4.1). Hence we denote the manifold by \bar{M}_f . Then M_f denotes the manifold obtained from \bar{M}_f by capping off the boundary by a 3-cell. Roughly speaking, M_f is obtained from H by attaching a copy of H by f. As an application of Theorem 1, we have; Theorem 2. Let $f:\partial H \to \partial H$ be a pseudo-Anosov homeomorphism. Suppose that the invariant laminations of f are of full type. Then, for each $n \ (\geq 0)$, there is a constant N such that if m > N, then $M = f^m$ does not contain a 2-sided incompressible surface whose genus is less than or equal to n. #### 2. Preliminaries For the definitions of the standard terms in the 3-dimensional topology we refer to [6,7]. We assume that the reader is familiar with [1]. Let H, ℓ be as in section 1. First we will show that the height of ℓ can be defined. Lemma 2.1. There exists a 2-sided non-separating surface S properly embedded in (H, $\partial H-1$). Proof. Let M be the 3-manifold obtained from H by attaching a 2-handle $D^2 \times I$ along L. Since the genus of H is greater than 1, the first Betti number of M is greater than 0. Hence by [6,Lemma 6.6], M contains a properly embedded, 2-sided, non-separating incompressible surface S'. Then, by moving S' by an ambient isotopy, we may suppose that S' intersects the 2-handle in horizontal disks. Hence $S = S'-Int(S'\cap(D^2\times I))$ is a 2-sided non-separating surface properly embedded in H. Moreover, by moving S by a tiny isotopy, we may suppose that S is properly embedded in (H, $\partial H-L$). This completes the proof of Lemma 2.1. Then we have; Corollary. There exists an essential surface properly embedded $in (H, \partial H - \ell).$ Proof. Let S be the surface obtained in Lemma 2.1. If necessary, by applying the loop theorem and performing a surgery on S, we may suppose that S is incompressible in H. Since S is non-separating, S is not parallel to a subsurface in ∂H . Hence S is essential. Let F be a closed, orientable surface of genus g (>1) with a hyperbolic metric and PL(F) the space of projective measured laminations of F with an appropriate topology. Then PL(F) is homeomorphic to the 6g-7 dimensional sphere S^{6g-7} . A simple loop is the ambient isotopy class of a closed, connected, 1-submanifold of F which is not contractible in F. Then it is known that the set of all simple loops together with the counting measure consist a dense subset of PL(F). Let ℓ be a simple loop. \mathcal{G}_{ℓ} ($\mathsf{CPL}(\mathsf{F})$) denotes the set of all simple loops which are disjoint from ℓ . Then let $\mathcal{G}(\ell; \mathsf{L}) = \mathcal{G}_{\ell}$, and $\mathcal{G}(\ell; \mathsf{L}) = \mathcal{G}_{\ell}$ ($\mathsf{L} \in \mathcal{G}(\ell; \mathsf{L})$). In this section we will prove; Proposition 2.2. Let $f: F \to F$ be a pseudo-Anosov homeomorphism with an unstable lamination L^- and l a simple loop. Then there exists a sequence of neighborhoods of L^- in PL(F), $\{U_i\}_{i=1}^{\infty}$, such that $U_1 \supset U_2 \supset \ldots$, and $U_k \cap \mathcal{G}(l; k) = \emptyset$, for each k. Let τ (CF) be a maximal train track, i.e. the closure of each component of F- τ is a 3-gon. Then the set of all non-negative weights on τ defines a 6g-7 dimensional ball B_{τ} in PL(F). And the set of all positive weights on τ corresponds to the interior of B_{τ} [1,10]. Lemma 2.3. If ℓ is carried by τ with all weights positive, then $\mathcal{G}_0\subset B_{\tau}$. Proof. Let $N(\tau)$ be a standard neighborhood of τ . Since ℓ [Figure 1] is carried by τ , we may suppose that $\ell \in N(\tau)$ and ℓ is transverse to the fibers. Let $m \in \mathcal{G}_{\ell}$. Since each component of $F-N(\tau)$ is contractible, we can isotope m into $N(\tau)$ with $m \cap \ell = \emptyset$. If m is transverse to the fibers of $N(\tau)$, then $m \in B_{\tau}$. Hence we suppose that m is not transverse to the fibers. We can isotope m so that m is transverse to the fibers except neighborhoods of the switches which are unions of fibers. See Figure 2. Then the neighborhood of a switch will look like as in Figure 3. We note that the subarcs of [Figure 3] [Figure 2] m as a_1 or a_2 in Figure 3 play a bad role in this situation. Then we will show that we can eliminate such arcs by an isotopy. Let Δ be the closure of a component of F - N(τ) and e an edge of the triangle Δ . Then we have; Assertion. There is a rectangle R in F such that $R \subset N(\tau)$, Int $R \cap l = \emptyset$, one edge of R is a subarc of l, one edge of R is e, and the rest edges of R are subarcs of two fibers of $N(\tau)$. We note that the universal cover of F is isometric to the hyperbolic plane \mathbb{H}^2 . Let $\widetilde{\Delta}$ (CH²) be a lift of Δ , \widetilde{e} the edge of $\widetilde{\Delta}$ [Figure 4] corresponding to e and $\widetilde{N}(\tau)$ ($\subset \mathbb{H}^2$) the lift of $N(\tau)$. Let I_p ($p \in \widetilde{e}$) be the fiber of $\widetilde{N}(\tau)$ such that $p \in I_p$. Then, by [1,Lemma 5.8], we see that $I_p \cap \widetilde{\Delta} = p$. Hence $\bigcup_{p \in \widetilde{e}} I_p$ is a disk which is a disjoint union of the intervals I_p . Since ℓ is carried by τ with all weights [Figure 5] positive, we have a rectangle \widetilde{R} ($\subset \widetilde{N}(\tau)$) such that one edge of \widetilde{R} is \widetilde{e} , one edge of \widetilde{R} is a subarc of a lift of ℓ , and the rest edges are subarcs of two fibers of $\widetilde{N}(\tau)$. Since \widetilde{e} projects homeomorphically onto e, we see that \widetilde{R} projects to the rectangle as in Assertion. This completes the proof of Assertion. Let F' be the component of F - ℓ such that F' \supset m, F* the surface obtained from F' by adding a boundary and N (\subset F*) the image of N(τ). Then we can reduce the subarcs of type a_1 in Figure 3 by an isotopy as in Figure 6. By Assertion, we can reduce [Figure 6] the subarcs of type a_2 in Figure 3 by an ambient isotopy on F^* as in Figure 7. #### [Figure 7] It is easy to see that these operations terminates in finitely many steps and we see that $\,m\,$ is carried by $\,\tau\,.$ This completes the proof of Lemma 2.3. Proof of Proposition 2.2. First we will show that $\, {\bf U}_1 \,$ actually exists. Then we will construct $\, {\bf U}_2 \,,\, {\bf U}_3 \,, \ldots$ inductively. Assume that U_1 does not exist. Then there is a sequence of elements of \mathscr{G}_{ℓ} , $\{m_i\}_{i=1}^{\infty}$, such that $m_i \to L^ (i \to \infty)$. By [10,Chapitre 2, Proposition], there exists a maximal train track τ and a positive integer n such that the stable lamination L^+ is carried by τ with all weights positive and $f^n(\tau)$ is carried by τ . If necessary, by taking $f^{nm}(\tau)$ for τ , we may suppose that $B_{\tau}\cap L^- = \phi$ [10,Chapitre 2]. Hence there exists a neighborhood of L^- in PL(F) which is disjoint from B_{τ} . There is an integer N such that $f^N(\ell)\subset Int\ B_{\tau}$. On the other hand, since $f:PL(F)\to PL(F)$ is a continuous map, we have $f^N(m_i)\to L^ (i\to\infty)$, contradicting Lemma 2.3. Hence U_1 exists. Suppose that we have constructed U_1,\ldots,U_{k-1} . Let $\tau,$ n be as above. Then there exists a positive integer N_1 such that $f^{NN_1}(PL(F)-U_{k-1})\subset Int\ B_\tau. \quad Let\ U_k=f^{-NN_1}(PL(F)-B_\tau). \quad Since$ $g(\ell;k-1)\cap U_{k-1}=\emptyset, \text{ we have } f^{NN_1}(g(\ell;k-1))\cap f^{NN_1}(U_{k-1})=g(f^{NN_1}(\ell);k-1)\cap f^{NN_1}(U_{k-1})=\emptyset. \quad Hence\ g(f^{NN_1}(\ell);k-1)\subset Int\ B_\tau. \quad Then,$ by Lemma 2.3, we have $g(f^{NN_1}(\ell);k)\subset B_\tau$. Then we have $U_k\cap g(\ell;k)=\emptyset$. This completes the proof of Proposition 2.2. # 3. Proof of Theorem 1 In this section we will give a proof of Theorem 1. Throughout this section, let H, ℓ be as in section 1. The key of the proof is Lemma 3.2 which is an easy estimation of $h(\ell)$ and Lemma 3.4. Lemma 3.1. Suppose that h(l) > -1. Then there exists an element l' of \mathcal{G}_l such that h(l') < h(l). **Proof.** There exists an essential surface F properly embedded in $(H,\partial H-L)$ such that $-\chi(F)=h(L)$. Since every incompressible, ∂ -incompressible surface in H is a disk, there is a disk D in H such that Int $D\cap F=\emptyset$, $D\cap \partial H=\partial D\cap \partial H=\alpha$ an arc and $D\cap F=\partial D\cap F=\beta$ an arc such that $\partial\alpha=\partial\beta$, $\alpha\cup\beta=\partial D$. Let F' be the 2-manifold obtained from F by performing a surgery along D and L' a component of ∂F . Clearly $L'\in \mathcal{G}_L$. By moving L' by a tiny isotopy, we may suppose that $L'\cap \partial F'=\emptyset$. Since F is essential, we see that a component of F', say F'', is essential. And $\chi(F'')>\chi(F)$. Hence we have h(L')< h(L). This completes the proof of Lemma 3.1. As an immediate consequence of Lemma 3.1, we have ; Lemma 3.2. Assume that $\mathcal{G}(l;n)$ does not contain a simple loop of height -1, i.e. if $m \in \mathcal{G}(l;n)$, then $\partial H-m$ is incompressible in H. Then h(l) > n. **Lemma 3.3.** If ℓ is of full type, then $h(\ell) > -1$, i.e. $\partial H - \ell$ is incompressible in H. For the definition of & being of full type, see section 1. Proof. Assume that $\partial H - \ell$ is compressible in H. Then there is a compression disk D properly embedded in $(H,\partial H - \ell)$. Let $\{D_1,\dots,D_{3g-3}\}$ be a system of disks with respect to which ℓ is of full type. Then we may suppose that ∂D_i , ∂D , ℓ are geodesics for a fixed hyperbolic metric on ∂H . Assume that $\partial D = \partial D_i$ for some i. Then ∂D intersects ℓ , a contradiction. Hence we suppose that $\partial D \neq \partial D_i$ for each i. By cut and paste argument, we may suppose that D intersects ∂D_i in transverse arcs. Let Δ be an innermost disk in D, i.e. $\Delta \cap (\partial D_i) = \partial \cap (\partial D_i) = \alpha$, an arc and $\Delta \cap \partial H = \beta$, an arc such that $\partial D = \partial D$. Let P be the closure of the component of $\partial H \cap (\partial D_i)$ such that $\partial D \neq \emptyset$. Then $\partial D \cap D$ is an arc and separates two boundary components of the pants $\partial D \cap D$. On the other hand, since $\partial D \cap D \cap D$ such that $\partial D \cap D \cap D$ is an arc and separates two boundary components of the pants $\partial D \cap D \cap D$ is an arc and separates. Hence $\partial D \cap D \cap D \cap D$ such that $\partial D \cap D \cap D \cap D$ is an arc and separates. Hence This completes the proof of Lemma 3.3. We say that a train track τ on ∂H is of $full\ type$ if there is a system of disks D_1,\ldots,D_{3g-3} in H and a system of pants P_1,\ldots,P_{2g-2} as in section 1 which satisfies; (i) τ and $\partial D_1 \cup \ldots \cup \partial D_{3g-3}$ intesect transversely and there is no 2-gon B in ∂H such that $\partial B = a \cup b$, where a is a differentiable arc on τ , and b is a subarc of $\partial D_1 \cup \ldots \cup \partial D_{3g-3}$ and (ii) for each pair of boundary components of each pants $\,P_i^{}$, there is a differentiable arc $\,a\,$ on $\,\tau\,$ such that $\,a\,$ is properly embedded in $\,P_i^{}$, and $\,a\,$ joins the boundary components. Then, by Lemma 3.3, we have; Lemma 3.4. Suppose that the train track τ ($C\partial H$) is of full type. If ℓ is a simple loop which is carried by τ with all weights positive, then $h(\ell) > -1$. Proof of Theorem 1. Let L^+ , L^- be the stable, and unstable laminations of f. By Proposition 2.2, there is a neighborhood U of L^- in PL(F) such that $U \cap \mathcal{G}(\ell;n) = \emptyset$. Since L^+ is of full type, there is a train track τ ($C\partial H$) which is of full type such that L^+ is carried by τ with all weights positive ([1,Lemma 5.2]). Let N be a positive integer such that $f^N(PL(F)-U) \subset Int B_\tau$. Then we have $f^N(\mathcal{G}(\ell;n)) = \mathcal{G}(f^N(\ell);n) \subset Int B_\tau$. Hence, by Lemmas 3.2 and 3.4, we see that $h(f^N(\ell)) > n$. Moreover, by [10,Chapitre 2], we may assume that $f(B_\tau) \subset Int B_\tau$. Hence we see that if $m \geq N$, then $h(f^M(\ell)) > n$. This completes the proof of Theorem 1. ## 4. Proof of Theorem 2 In this section we will prove Theorem 2. First we will show that $\mathbf{M_f}$ is well defined. Let H be a genus g (>1) handlebody and $f:\partial H \to \partial H$ a homeomorphism. Let $\{D_1,\ldots,D_g\}$, $\{D_1',\ldots,D_g'\}$ be systems of mutually disjoint incompressible disks in H such that $\cup D_i$ ($\cup D_i$ ' resp.) cuts H into a 3-cell. Let M (M' resp.) be the 3-manifold obtained from H by attaching 2-handles along the union of simple loops $\cup f(\partial D_i)$ ($\cup f(\partial D_i')$ resp.). Then we have; ### Lemma 4.1. M and M' are homeomorphic. **Proof.** First we prepare a terminology. Let B be a rectangle in ∂H such that Int B \cap $(\cup \partial D_i) = \emptyset$, one edge of B is a subarc α of ∂D_j , another edge of ∂B is a subarc β of ∂D_k , where $j \neq k$, with B \cap $(\cup D_i) = \alpha \cup \beta$. Then $D_j \cup B \cup D_k$ is a disk D in H. By moving D by a tiny isotopy, we may suppose that D \cap $\partial H = \partial D$ and D \cap $(\cup D_i) = \emptyset$. It is easy to see that the disks $(D_1, \ldots, \hat{D}_j, \ldots, D_g, D)$ cuts H into a 3-cell, where \hat{D}_i means removing the element. Then we say that $(D_1, \ldots, \hat{D}_j, \ldots, D_g, D)$ is obtained from (D_1, \ldots, D_g) by a band move. It is known that (D_1, \ldots, D_g) is ambient isotopic to the union of disks which is obtained from (D_1, \ldots, D_g) by a sequence of band moves ([9, Korrolar 2]). Hence we may suppose that (D_1', \ldots, D_g') is obtained from (D_1, \ldots, D_g) by a band move. We may suppose that (D_1', \ldots, D_g') is obtained from (D_1, \ldots, D_g) by a band move. We may suppose that (D_1', \ldots, D_g') is obtained from (D_1, \ldots, D_g) by a band move. We may suppose that (D_1', \ldots, D_g') is obtained from (D_1, \ldots, D_g) by a band move. We may suppose that (D_1', \ldots, D_g') is obtained from (D_1, \ldots, D_g) by a Then \mathring{M} and \mathring{M} ' are homeomorphic to the manifold obtained from H by attaching 2-handles along the union of simple loops $\partial D_1 \cup \partial D_2 \cup \ldots \cup \partial D_g$, where \mathring{M} denotes the manifold obtained from M by removing a 3-cell from its interior. This shows that M and M' are homeomorphic. This completes the proof of Lemma 4.1. By Lemma 4.1, we may denote the manifold obtained as above \overline{M}_f . Then M_f denotes the closed 3-manifold obtained from \overline{M}_f by capping off the bondary by a 3-cell. It is easy to see that $H'=cl(M_f-H)$ is a genus g handlebody. Hence (H,H';F), where $F=\partial H=\partial H'$ $(\subset M_f)$ is a Heegaard splitting of M_f . (H,H';F) is called a cannonical Heegaard splitting of M_f . Then we will introduce the concept of rectangle condition of a Heegaard splitting by Casson-Gordon [2]. Let S be the genus g orientable surface and P_i (i=1,2) be a pants (:disk with two holes) embedded in S, with ∂P_i = $\ell_1^i \cup \ell_2^i \cup \ell_3^i$. We suppose that ∂P_1 and ∂P_2 intersect transversely. Let Q_1, \ldots, Q_m be the compact surfaces obtained from $S-(\partial P_1 \cup \partial P_2)$ by adding a boundary. We say that P_1 and P_2 are tight if; - (i) each Q_i is not a 2-gon, - (ii) for each pair of, pair of boundary components, $((\boldsymbol{\ell}_s^{\ 1},\boldsymbol{\ell}_t^{\ 1}),(\boldsymbol{\ell}_p^{\ 2},\boldsymbol{\ell}_q^{\ 2})) \quad \text{of} \quad P_1 \quad \text{and} \quad P_2 \quad \text{with} \quad \text{s} \neq \text{t}, \, p \neq \text{q}, \, \text{there}$ exists a rectangle $\ Q_u \quad \text{embedded in} \quad P_1 \quad \text{and} \quad P_2 \quad \text{such that}$ Int $\ Q_u \cap (P_1 \cup P_2) = \emptyset$, and the edges of $\ Q_u \quad \text{are subarcs of} \quad \boldsymbol{\ell}_s^{\ 1}$, $\boldsymbol{\ell}_t^{\ 1}$, $\boldsymbol{\ell}_p^{\ 2}$, and $\boldsymbol{\ell}_q^{\ 2}$. Let l_1, \ldots, l_{3g-3} $(l_1', \ldots, l_{3g-3}'$ resp.) be a system of mutually disjoint simple loops such that the closure of the complement of a regular neighborhood of $\cup l_i$ ($\cup l_i$ ' resp.) is a union of 2g-2 pants P_1, \ldots, P_{2g-2} (P_1 ', \ldots, P_{2g-2} ' resp.). We say that $\{l_1, \ldots, l_{3g-3}\}$ and $\{l_1$ ', \ldots, l_{3g-3} ') are tight if, for each pair (i,j), P_i and P_j are tight. Let (H,H';F) be a Heegaard splitting of a 3-manifold M. We say that (H,H';F) satisfies a $rectangle\ condition$ if there are two systems of mutually disjoint simple loops $\{l_1,\ldots,l_{3g-3}\}$ and $\{l_1',\ldots,l_{3g-3}\}$ which are tight and each l_i $(l_i'$ resp.) is a boundary of a disk properly embedded in H (H' resp.). We say that a Heegaard splitting (H,H';F) is strongly irreducible if there does not exist incompressible disks $D\subset H$, $D'\subset H'$ such that $\partial D\cap \partial D'=\emptyset$. Then Casson-Gordon proved: Theorem [2]. If a Heegaard splitting (H,H';F) satisfies a rectangle condition, then (H,H';F) is strongly irreducible. In this paper we will show; Theorem 4.2. Let H be as in section 1 and $f: \partial H \to \partial H$ be a pseudo-Anosov homeomorphism. Suppose that the invariant laminations of f are of full type. Then there is an integer N_1 such that if $m>N_1$, then the cannonical Heegaard splitting of M_f^m satisfies a rectangle condition. **Proof.** Let L^+ (L^- resp.) be the stable (unstable resp.) lamination of f. We suppose that L^+ (L^- resp.) is of full type with respect to a system of disks $\{D_1, \ldots, D_{3g-3}\}$ ($\{D_1',\ldots,D_{3g-3}'\}$ resp.) in H. Then we may suppose that L^+ , L^- , $\cup \partial D_i$, $\cup \partial D_i$ are unions of geodesics on ∂H . The universal cover of ∂H is isometric to the hyperbolic plane \mathbb{H}^2 . Let $\hat{f}:\mathbb{H}^2 \to \mathbb{H}^2$ be a lift of f, and S^1_{∞} be the circle at ∞ of \mathbb{H}^2 . Then it is known that \tilde{f} has a unique continuous extension to $\mathbb{H}^2 \cup S_{\infty}^1 = D^2$ ([1,Lemma 3.7]). Moreover, there is a positive integer n such that if $g:D^2 \to D^2$ is the extension of a lift of f^n then $g|_{S^1}$ finitely many fixed pionts A_1, \ldots, A_{2n} (n\ge 1) on S_{∞}^1 , alternately contracting and expanding. We suppose that A_1, \ldots, A_{2n} are on S_{∞}^1 in this order, A_1, \ldots, A_{2n-1} are contracting and A_2, \ldots, A_{2n} are expanding. Let I_i (j=1,...,2n-1) be a closed interval in S^1_{∞} bounded by A_j and A_{j+1} such that Int $I_j \cap (\bigcup A_i) = \emptyset$, and $I_{2n} = c\ell(S^{1}_{\infty} - \bigcup_{j=1}^{2n-1} I_{j}). \quad \text{Let } \widetilde{L}^{+}(\widetilde{L}^{-} \text{ resp.}) \ (\subset \mathbb{H}^{2}) \text{ be the lift of } L^{+}$ (L resp.), and γ_1 (δ_1 resp.) be the geodesics of \tilde{L}^+ (\tilde{L}^- resp.) which joins A_1 and A_3 (A_2 and A_4 resp.). Then we will show; Assertion. For each ∂D_i (∂D_i ' resp.), there exists a lift e ($\subset \mathbb{H}^2$) of it such that the endpoints of e are contained in I_1 and I_2 (I_1 and I_{2n} resp.). **Proof.** Since each leaf of L^+ is dense in L^+ ([1,Theorem 4.8]), there is a sequence of lifts of the points of $L^{+}\cap\partial D_{i}$, $\{a_{i}\}_{i=1}^{\infty}$ such that $a_{i}\in\delta_{1}$, and $a_{i}\to A_{2}$ $(i\to\infty)$. Let $\{\epsilon_{i}\}_{i=1}^{\infty}$ be the sequence of the lifts of ∂D_{i} such that $\epsilon_{i}\cap\delta_{1}=a_{i}$. Since each ϵ_{i} is a geodesic, we see that at least one endpoint of ϵ_{i} is contained in I_{1} or I_{2} for sufficiently large i. Assume that the other endpoints of ϵ_{i} are not contained in I_{2} or I_{1} . Then we have $\lim_{n\to\infty} \arg(\epsilon_{i},\delta_{1})=0$, where $\arg(\epsilon_{i},\delta_{1})$ denotes the angle between the two geodesics. Since L^{+} is a closed set, we have $\partial D_{i} \subset L^{+}$, a contradisction. This completes the proof of Assertion. Let P_1,\ldots,P_{2g-2} $(P_1',\ldots,P_{2g-2}'$ resp.) be a system of pants obtained from ∂H by cutting along $\cup \partial D_i$ $(\cup \partial D_i'$ resp.). Let ∂D_{α} , ∂D_{β} and $\partial D_{\gamma}'$, $\partial D_{\delta}'$ be pairs of boundary components of a pair (P_i,P_j') . By Assertion, there are lifts α , β $(\gamma$, δ resp.) of ∂D_{α} , ∂D_{β} $(\partial D_{\gamma}',\partial D_{\delta}'$ resp.) in \mathbb{H}^2 such that $\alpha \cap \gamma_1 \neq \emptyset$, $\beta \cap \gamma_1 \neq \emptyset$, $\gamma \cap \delta_1 \neq \emptyset$, $\gamma \cap \delta_1 \neq \emptyset$, the endpoints of $\gamma \cap \delta_1 \neq \emptyset$, $\gamma \cap \delta_1 \neq \emptyset$, and the subarc of contained in A_1 and A_2 A_1 and A_2 A_3 resp.) and the subarc of $\gamma \cap \delta_1$ resp.) bounded by $\gamma \cap \delta_1 \cap \delta_1$ resp.) and the subarc of $\gamma \cap \delta_1$ resp.) bounded by $\gamma \cap \delta_1 \cap \delta_1$ resp.) projects to an arc properly embedded in A_1 resp.). Then there is a constant A_1 A_1 resp. such that if A_2 resp.). Then there is a constant A_1 A_2 resp. such that if A_1 resp.) Then the endpoints of A_1 resp. are separated by the endpoints of $\gamma \cap \delta_1$ and $\gamma \cap \delta_1$ resp. Then the endpoints of $\gamma \cap \delta_1$ resp. Then the endpoints of $\gamma \cap \delta_1$ resp. Then re This completes the proof of Theorem 4.2. Lemma 4.3. Suppose that a Heegaard splitting (H,H';F) of M is strongly irreducibe and that M contains a 2-sided incompressible surface S. Then there is a surface S' which is ambient isotopic to S and satisfies; - (i) S' intersects F in transverse loops, - (ii) every component of S'∩H is not a disk, and - (iii) just one component of $S' \cap H'$ is a disk. Proof. This lemma is proved by using the argument of [6,Chapter II], which was used to prove the Haken's theorem. We assume that the reader is familiar with the proof. We note that Jaco considered the case of S being the 2-sphere, but the argument works in this situation. We also note that if (H,H';F) is strongly irreducible, then M is irreducible ([3,Theorem 2.1]). We may suppose that each component of $S \cap H$ is a disk and the number of the component is minimal among all surfaces which are ambient isotopic to S. By the minimality, we see that $S \cap H'$ is an incompressible surface in H'. Hence we have a hierarchy for $S \cap H'$, $(S_2^{(0)}, \alpha_0)$, $(S_2^{(1)}, \alpha_1)$,..., $(S_2^{(p)}, \alpha_p)$, and a sequence of isotopies of type A in M which realizes the hierarchy. Let $S^{(q)}$ $(0 \leq q \leq p+1)$ be the image of S after the q-th isotopy of type A ,i.e. $S^{(q)} \cap H' = S_2^{(q)}$. Let k be the integer such that $S_2^{(k)}$ does not contain a disk and $S_2^{(k+1)}$ contains a disk. We note that $S_2^{(k+1)}$ contains just one disk. Then, by Theorem 4.2 and a theorem of Casson-Gordon, we see that each component of $S^{(k+1)} \cap H$ is not a disk. Hence $S' = S^{(k+1)}$ satisfies the the conclusions of Lemma 4.3. This completes the proof of Lemma 4.3. Lemma 4.4. Let f:∂H → ∂H be a pseudo-Anosov homeomorphism. Suppose that the stable lamination L^+ of f is of full type. Then, for each $n \ (\geq -1)$, there exists a neighborhood U of L^+ in $PL(\partial H)$ such that the height of every simple loop contained in U is greater than n. Proof. Assume that the conclusion of Lemma 4.3 does not hold. Then there exists an integer n (\geq -1), and a sequence of simple loops $\{\ell_i\}_{i=1}^{\infty}$ on ∂H such that $\ell_i \to L^+$ ($i \to \infty$), and $h(\ell_i) \leq n$. By [10], there is a maximal train track τ on ∂H and a positive integer m such that L^+ is carried by τ with all weights positive and $f^m(\tau)$ is carried by τ . Set $B_i = B_{mi}$ ($i \geq 1$). Then, by [10], we see that $f^{mi}(\tau)$ and $f^{mi}(\tau)$ is carried by $f^{mi}(\tau)$. If necessary, by taking a subsequence of $f^{mi}(\tau)$, we may suppose that $f^{mi}(\tau)$ by Lemmas 3.1 and 2.2, we have a sequence of simple loops $f^{mi}(\tau)$ by the hold $f^{mi}(\tau)$ by $f^{$ This completes the proof of Lemma 4.4. **Proof of Theorem 2.** By Lemma 4.4, there is a neighborhood U^+ (U^- resp.) of L^+ (L^- resp.) such that the height of every simple loop in U^+ (U^- resp.) is greater than 2n+1 (1 resp.). Let N^+ be an integer such that $f^m(PL(\partial H)-U^-) \subset U^+$ for each m ($>N^+$). And let $N = \max\{N^+, N_1^-\}$, where N_1^- is the constant obtained in Theorem 4.2. Then we will see that this N^- satisfies the conclusion of Theorem 2. Assume that there is an integer m (>N) such that M contains an incompressible surface S whose genus is less than or equal to n, i.e. $\chi(S) \geq 2-2n$. We may suppose that S satisfies the conclusions of Lemma 4.2. Let $S_1 = S \cap H$ and $S_2 = S \cap H'$. Then $\chi(S) = \chi(S_1) + \chi(S_2) \geq 2-2n$. Let D be the disk component of S_2 . Then D is the only component which makes a positive contribution in $\chi(S_1) + \chi(S_2)$. Hence we have $\chi(S_1) + \chi(S_2) \leq \chi(S_2) + 1$. Then 2-2n $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. Let $\chi(S_2) + 1$ and $\chi(S_2) \geq 1-2n$. This completes the proof of Theorem 2. ### 5. Examples In this section we will give ways of constructing pseudo-Anosov homeomorphisms which satisfies the assumptions of Theorems 1 and 2. Throughout this section let $\,H\,$ be as in section 1 and $\,T_{\ell}\,$ the Dehn twist along the simple loop $\,\ell\,$ in $\,\partial H.$ Example 1. Let ℓ ($\subset \partial H$) be a simple loop which is of full type and m ($\subset \partial H$) a simple loop such that ℓ \cup m fills up ∂H , i.e. the number of intersection of ℓ and m is minimal among all simple loops which are isotopic to m and each component of ∂H - (ℓ \cup m) is an open disk. Then, by [4,Exposé 13], we see that $T_m \circ T_\ell^{-n}$ is isotopic to a pseudo-Anosov homeomorphism for each positive integer n and the stable lamination tends to ℓ if n grows larger. Hence $T_m \circ T_\ell^{-n}$ satisfies the assumption of Theorem 1 if n is sufficiently large. Example 2. Let φ be a pseudo-Anosov homeomorphism such that φ^{-1} satisfies the assumption of Theorem 1, i.e. the unstable lamination L^- of φ is of full type. Let D be a component of the system of disks with respect to which L^- is of full type. Then, as observed in the proof of [9,Lemma 2.5], $\varphi^{-k} \circ T_{\partial D} \circ \varphi^k \circ T_{\partial D}^{-1}$ is isotopic to a pseudo-Anosov homeomorphism for a sufficiently large k, and the invariant laminations tend to L^- and $T_{\partial D}(L^-)$ if k grows larger. Clearly $T_{\partial D}(L^-)$ is of full type. Hence $\varphi^{-k} \circ T_{\partial D} \circ \varphi^k \circ T_{\partial D}^{-1}$ satisfies the assuption of Theorem 2 if k is sufficiently large. ## References - [1] A. J. Casson, Automorphisms of surfaces after Nielsen and Thurston, Lecture note, University of Texas at Austin - [2] A. J. Casson, and C. McA Gordon, Manifolds with irreducible Heegaard splittings of arbitrarily high genus, to appear - [3] _______, Reducing Heegaard splittings, preprint - [4] A. Fathi, and F. Laudenbach, Diffeomorphismes pseudo-Anosov et décompositions de Heegaard, C. R. Acad. Sc. Paris, 291(1980) A423 - [5] A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, Astèrisque, 66-67(1979) - [6] J. Hempel, 3-manifolds, Ann. of Math. Studies 86(1976), Princeton University Press, Princeton N.J. - [7] W. Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Math., 43(1980) - [8] T. Kobayashi, Structures of full Haken manifolds, Osaka J. Math. (to appear) - [9] D. D. Long, A note on the normal subgroups of mapping class groups, Math. Proc. Camb. Phil. Soc. 99(1986), 79-87 - [10] A. Papadopoulos, Reseaux ferroviaires, diffeomorphismes pseudo-Anosov et automorphismes symplectiques de l'homologie d'une surface, publications mathematiques d'Orsay (1983) - [11] H. Zieschang, Über einfache Kurven auf Vollbrezeln, Abh. Math. Sem. Univ. Hamburg 25(1962), 231-250 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7