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A Note on Three-Way Two-Dimensional Alternating Turing Machines
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ABSTRACT In this paper, we investigate the properties of three-
way two-dimensional alternating Turing machines (TR2-ATMs) which
are restricted versions of ordinary four-way two-dimensional Tur-
ing machines (2-ATMs). We first show that 2-ATMs are‘ﬁore power-
ful than TR2-ATMs with spaces below log m. Then, we investigate
the closure properties of TR2-ATMs on general rectangular input
tapes. Finally, we show that o(log m) space-bounded TR2Z-ATMs can-

not accept the set of all square connected pictures.

1.Introduction

Recently [1], two-dimensional alternating Turing machines (2-
ATMs) were introduced as a generalization of two-dimensional non-
deterministic Turing machines (2-TMs) and as a mechanism to model
parallel computation. In the subsequent papers [2,3], several in-
vestigations of this automata have been continued.

In this paper, we invéstigate a three-way two-dimensional al-
ternating Turing machines (TR2-ATMs) which is a restricted ver-
sion of the 2-ATM.  The input head of the TR2-ATM can only move
left, right, or down.

It is known [1] that for spaces greater than or equai to log m,

TR2-ATMs are equivalent to 2-ATMs on square input tapes. Section 3
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shows for space smaller than log m, TR2-ATMs are weaker than 2-ATMs.

Section 4 investigates the closure properties under such as
row catenation or row closure of the class of séts of general
rectangular input tapes accepted by TR2-ATMs.

It is also known [1,4] that a.four—way two—diménsional alter-
nating finite automaton (i.e., 2-ATM with zero space) can accept
the sét of all sdure connected pictures (Tc), and m space is né—
cessary and sufficient for three-way two-dimensional determinis-
tic or nondeterministic Turing machines to accept Tc. Section 5
show that log m space is necessary and sufficient for TR2-ATMs to

accept Tc'

2.Preliminaries

[Definition 2.11 Let I be abfinite set of symbols. A two-dimen-
sional rectangular array of elements of .

The set of all two-dimensional tapes over X is denoted 2(2).

Given a tape xez‘Z)

, we let'21(x) be the number of rows of x and
Qz(x) be the number of columns of x. The set of all er‘Z’ with
% (x)=m and L,(x)=n ( %, (x)=m, %,(x)=n ) is denoted by ‘™™ ¢
p(me*) s (m) spectively). If 15ish, (x) and 15358, (x), we
let x(i,j) denote the symbol in x with coordinates (i,j). Further-
more, we define
x[i:i',3:3'1,

when 1§i§i'§21(x) and 1§j§j'§£2(x), as the two-dimensional tape z
satisfying the following:

(i) £1(z)=i'—i+1 and Rz(z)=j'—j+1.

(ii) for each k,r[1§k§£1(z),1§r§22(z)], z(k,r)=x(k+i-1,r+j-1).
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When i=i' (j=j') above, x[i:i',j:j'] is abbreviated by x[i,j:j"']

Z(m,n)

(x[i:i',31). For xe , the ith row x[i,1:n] and jth column

x[1:m,j] are simply denoted by x[i,*] and x[*,j], respectively.

Two-dimensional alternating Turing machines were introduced
in [1]. We recall the definition.

[Definition 2.2] A two-dimensional alternating Turing machine

(2-ATM) is a seven-tuple
M=(Q,q,,U,F,Z,T,6),
where
(1) Q is a finite set of states,

(2) qOeQ is the initial state,

(3) USQ is the set of universal states,

(4) FCQ is the set of accepting states,

(5) £ is a finite input alphabet (##X is the boundary symbol),

(6) I' is a finite storage tape alphabet (Bel' is the blank
symbol), and
(7) SS(OX(ZV{#})xT)x(Qx(I'-{B})x{left,right,up,down,no move} x

{left,right,no movel}) is the next move relation.
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Fig.1 ‘Two—dimensionél alternating Turing machine.

A state g in Q-U is said to be existential. As shown in Fig.

1, the machine M has read—onlybrectangular input tape with bound-
ary symbol "#" and one semi-infinite storage tape, initially
blank. Of course, M has a finite control, an input head, and a
storage tape head. A position is assigned to each cell of the
storage tape, as shbwn in Fig.1. A gggg of M consists of read-
ing one symbol from each tape, writing a symbol on the storage
tape, movingbthe input and storage heads in specified diréctions,
and entering a new state, in accordance with the next move rela-

tion 6. Note that the machine cannot write the blank symbol. If
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the input head falls off the input tape, or if the storage head
falls off the storage tape (by moving left), then the machine M
can make no further move.

[Definition 2.3] A configuration of a 2-ATM M=(Q,qO,U,F,Z,P,6)

is an element of

22 x(nut0}) %xs,,,
where SM=QX(F—{B})*XN, and N denotes the set of all positive in-
tegers. The first component of a configuration c=(x,(i,j),(q,a;
k))+ represents the input to M; The second component (i,j) of ¢
represents the input head position. The third component (g,a,k)
of ¢ represents the state of the finite control, nonblank contents .
of the storage tape, and the storage-head position. If g is the

state associated with configuration ¢, then c¢ is said to be uni-

versal (existential, accepting) state. The initial confiquration

of M on input x is

IM(X)=(XI(1 11 )I(q0l>\l1 ))-
[Definition 2.4] Given M=(Q,q0,U,F,Z,F,6), we write
1

CPMC

and say c' is a successor of c¢ if configuration c¢' follows from
configuration c in one step of M, according to the transition
rules §. The relation Pﬁ is not necessarily single valued, since

§ is not.

A computation tree of M is a finite, nonempty labeled tree

with the properties,

(1) each node m of the tree is labeled with a configuration

We note that O§i§£1(x)+1, Qéjélz(x)+1, and 1sks|a|+1, where for any string
w, |w| denotes the length of w (with |A|=0, where A is the null string).
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L(m),
(2) if m is an internal node (a nonleaf) of the tree, 2(m) is
universal and
{CIQ’(T[) '_IVI C}={C1l...rck}l
has exactly k children PrrssPy such that l(pi)=ci,
(3) if 7 is an internal node of the tree and 2(m) is existen-
tial, then m has exactly one child such that
LM g L ().

An accepting computatiion tree of M on x is a computation tree

whose root is labeled with IM(x) and whose leaves are all label-
ed with accepting configurations. We say that M accepts x if
there is an accepting computation tree of M on x. Define
T(M)={x€Z(2)|M accepts x}.
We next recall the definition of three-way 2-ATM.

[Definition 2.5] A three-way two-dimensional alternating Turing

machine (TR2-ATM) is a 2-ATM M=(Q,qO,U,F,Z,F,6) such that
SC(Qx(ZU{#})xT)x(Qx(T-{B} )x{left,right,down,no move} x
{left,right,no movel).
That is, a TR2-ATM is a 2-ATM whose input head can move 1left,
right, or down, but not up.

In this paper, we shall investigate the properties of TR2-ATMs
whose storage tapes are bounded (in length) to use.

Let L:NXN-*R be a function with two variables m and n, where R
denotes all non-negative real numbers. With each 2-ATM (TR2-ATM)
M we assoclate a space complexity function SPACE which takes con-
figuration c=(x,(i,3),(g,a,k)) to natural numbers. Let SPACE(c)

=la|. we say'that M is "L(m,n) space-bounded" if for all m,n and
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for all x with 21(x)=m and 22(X)=n, if x is accepted by M then
there is an accepting computation tree of M on input x suéh that
for each nodem of the tree SPACE(Q(H))§YL(m,n)‘¢. By "2-ATM(L(m,
n))" ("TR2-ATM(L(m,n))") we denote an L(m,n) space bounded 2-ATM
(L(m,n) space bounded TR2-ATM). Define

L[2-ATM(L(m,n))]1={T|T=T(M) for some 2-ATM(L(m,n)) M}, and

LITR2-ATM(L(m,n))1={T|T=T(M) for some TR2-ATM(L(m,n)) M}.

In section 3 and 5 of this paper, we concentrate on the prop¥
erties of TR2-ATMs whose input tapes are restricted to square
ones. Let L:N>R be a function with one variable m. We say that
M is "L(m) space—bounded"-if for all m and for all x with 21(x)=
22(X)=m, if x is accepted by M, then there is an accepting compu-
tation tree of M on X such that, for each node m of the tree,
SPACE(Z(m))sL(m). By "2-ATM®°(L(m))" ("TR2-ATM®(L(m))") we denote
an L(m) space-bounded 2-ATM (TR2-ATM) whose input tapes are re-
stricted to square ones. Define

I[2-ATM® (L(m) ) 1={T|T=T(M) for some 2-ATM®(L(m)) M}, and

LI TR2-ATM® (L(m)) ]1={T|T=T(M) for some TR2-ATM®(L(m)) M}.

By using well-known techniques,; it is easily proved that for any
constant kz0, {[Z-ATMS(k)]=I[2—ATMS(0)]. We especially denote a
2-ATM®(0) by '2-AFAS'. A two-dimensional deterministic finite
automaton (2—DAS) [1,5] is a special case of 2-AFA® whose con-

figurations each have at most one successor.

3. Three-way vs. Four-way

+fr1 means the smallest integer greater than or equal to r. From now on, we

ornitt I 1, if no confusion occurs.
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In this section, we investigate the relationship between TR2-
ATMs and 2-ATMs or other four-way automata on square input tapes.
Following is the key 1emma. |
[Lemma 3.1] Let T={xe{0,1}(2m’2m)|mz1 & 3we{0,1}+(x[i,*]=wwR) &
(the other part of x consists of 0's)}¢. Then

1) Tex[2-DAS1, and

2) TEXITR2-ATM®(L(m))] for any function L:N+R such that

1iglL(m)/log ml=0.
[Note 3.1] It is easily shown that the row reflection of T, that
is, the set {xe{0,1}(2m’2m)|m;1 & ;we{0,1}+(x[2m,*]=wwR) & (the

other part of x consists of 0's)} can be accepted by a TR2-ATM>(0).

It was unknown in [1] that TR2—ATMS(L(m))'s are less powerful
than 2-ATM°(L(m))'s for L:N+R such that %;Q[L(m)/log m]=0. From
Lemma 3.1 and additional arguments, we can solve the problem as
follows.

[Thedrem 3.11 For any function L:N»*R such that $1m[L(m)/log.m]=0,
xITRZ-ATMS(L(m))]gxxz-ATMs(L(m))l. |

From the fact that £ TR2-ATM®(log m)]=X[2-ATM°(log m)] [1]
and JﬁZ—DASISIIZ—AFAS], and from Lemma 3.1, we get the following.
[Theorem 3.2] 1log m space is necessary and sufficient for TR2-

ATM® to simulate 2-pAS and 2—AFAS.

4. Closure Properties of JF[TR2-ATM(L(m,n))].

In this section, we investigate the closure properties of

[TR2-ATM(L(m,n))] under several operations.

4rFor any string w, w'R denotes the reversal of w.
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We assume that the reader is familiar with definitions of the
operations "©®'(row catenation), "(subscript +)"(row closure),
"RC"(row cyclic closure), and "projection", which are defined o-
ver two-dimensional tapes or over sets of two-dimensional tapes.
(If necessary, see reference [5].)

[Definition 4.2] Let g:N»R be a fully space constractible func-
tion*. Let x be in Z*/®) (nz1). When 2, (x) is divided by

ng(n)], we call

x[(3-1)2 91152091 4

r 1
the jth g(n)-block of x, for each j(1s3sL,(x)/2 gln)ly

We now give several lemmas which will be used below.
[Lemma 4.1] Let g:N»*R be a fully space constructible function,
and let
(k29(0) 1y .
T(g)={xe{0,1} |nz1,k21 (i.e., x has exactly k g(n)-
blocks)},
o (k29 (") n) .
T' (g)={xe{0,1} | (nz1,k22) & the first and kth g(n)-
blocks of “x are identical}, and

T (g)=T(g)ef2} (1)

eT' (g).

Then, T(g), T'(g), and T''(g) are all in ZITR2-ATM(g(n))].

[Lemma 4.2] Let g:N*R be a monotonic nondecreasing function
which is fully space constructible, and f:N+*R be a function suéh
that %gg[f(m)/log ml=0. Furthermore, let T(g), T'(g), and T''(qg)
be sets described in Lemma 4.1. Then,

g(n)
T (9)er(g)={xel0,1} %27 /) | (n21,k23) & Fj(2535k-1) (the first

and jth g(n)-block of x are identical)}

+See reference [1] or [6] for the definition of fully space constructible
function.
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and T'f[g)RC are not in LI[TR2-ATM(L(m,n))}, where L(m,n)=f(m)
°g(n).

Lemma 4.1, 4.2, and some additional arguments lead us to
the following theorem.
[ Theorem 4.1] Let £f(m) and g(n) be the function described in
Lemma 4.3. Then X[TR2-ATM(f(m)°g(n))] are not closed under row
catenation, row closure, row cyclic closure, or projection.
[Note 4.1] It is not so difficult to show that for any function
L:NXN+R such that L(m,n)zlog m, £[TR2-ATM(L(m,n))] (=£[2-ATM(L(m,

n))l) is closed under row catenation and row closure.

5. Recognizability of Connected Pictures

It is well-known [1] that a 2-AFA® can accept the set of all
the square connected pictures. (We denote it by "Tc".) It is,
however, an open problem whether or not a three-way 2-AFA® can
accept Tc' We solve the problem as follows.

[Theorem 5.1]1 log m space is necessary and sufficient for TR2-

ATM® to accept the set of all the square connected pictures.
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