このアイテムのアクセス数: 261

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
TASL.2010.2052610.pdf695.39 kBAdobe PDF見る/開く
タイトル: Robust Speech Recognition Based on Dereverberation Parameter Optimization Using Acoustic Model Likelihood
著者: Gomez, Randy
Kawahara, Tatsuya  kyouindb  KAKEN_id
著者名の別形: 河原, 達也
発行日: Sep-2010
出版者: IEEE
誌名: IEEE Transactions on Audio, Speech, and Language Processing
巻: 18
号: 7
開始ページ: 1708
終了ページ: 1716
抄録: Automatic speech recognition (ASR) in reverberant environments is a challenging task. Most dereverberation techniques address this problem through signal processing and enhances the reverberant waveform independent from the speech recognizer. In this paper, we propose a novel scheme to perform dereverberation in relation with the likelihood of the back-end ASR system. Our proposed approach effectively selects the dereverberation parameters, in the form of multiband scale factors, so that they improve the likelihood of the acoustic model. Then, the acoustic model is retrained using the optimal parameters. During the recognition phase, we implement additional optimization of the parameters. By using Gaussian mixture model (GMM), the process for selecting the scale factors become efficient. Moreover, we remove the dependency of the adopted dereverberation technique on the room impulse response (RIR) measurement, by using an artificial RIR generator and selecting based on the acoustic likelihood. Experimental results show significant improvement in recognition performance with the proposed method over the conventional approach.
著作権等: © 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
URI: http://hdl.handle.net/2433/128840
DOI(出版社版): 10.1109/TASL.2010.2052610
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。