ダウンロード数: 772
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
1.4764333.pdf | 2.12 MB | Adobe PDF | 見る/開く |
タイトル: | Effect of capacitive coupling in a miniature inductively coupled plasma source |
著者: | Takao, Yoshinori Eriguchi, Koji https://orcid.org/0000-0003-1485-5897 (unconfirmed) Ono, Kouichi |
著者名の別形: | 鷹尾, 祥典 |
キーワード: | argon high-frequency discharges Monte Carlo methods numerical analysis plasma collision processes plasma oscillations plasma simulation plasma sources plasma transport processes |
発行日: | Nov-2012 |
出版者: | American Institute of Physics |
誌名: | Journal of Applied Physics |
巻: | 112 |
号: | 9 |
論文番号: | 093306 |
抄録: | Two-dimensional axisymmetric particle-in-cell simulations with a Monte Carlo collision algorithm (PIC-MCC) have been conducted to investigate the effect of capacitive coupling in a miniature inductively coupled plasma source (mICP) by using two models: an inductive model and a hybrid model. The mICP is 3 mm in radius and 6 mm in height with a three-turn planar coil, where argon plasma is sustained. In the inductive model, the coil is assumed to be electrostatically shielded, and thus the discharge is purely inductive coupling. In the hybrid model, we assume that the different turns of the coil act like electrodes in capacitive discharge to include the effect of capacitive coupling. The voltage applied to these electrodes decreases linearly from the powered end of the coil towards the grounded end. The numerical analysis has been performed for rf frequencies in the range of 100–1000 MHz, and the power absorbed by the plasma in the range of 5–50 mW at a fixed pressure of 500 mTorr. The PIC-MCC results show that potential oscillations at the plasma-dielectric interface are not negligible, and thus the major component of the absorbed power is caused by the axial motion of electrons in the hybrid model, although almost all of the power absorption is due to the azimuthal motion of electrons in the inductive model. The effect of capacitive coupling is more significant at lower rf frequencies and at higher absorbed powers under the calculation conditions examined. Moreover, much less coil currents are required in the hybrid model. |
著作権等: | © 2012 American Institute of Physics |
URI: | http://hdl.handle.net/2433/161047 |
DOI(出版社版): | 10.1063/1.4764333 |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。