このアイテムのアクセス数: 220

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ipsjjip.20.512.pdf598.25 kBAdobe PDF見る/開く
タイトル: Joint Phrase Alignment and Extraction for Statistical Machine Translation
著者: Neubig, Graham
Watanabe, Taro
Sumita, Eiichiro
Mori, Shinsuke  kyouindb  KAKEN_id
Kawahara, Tatsuya  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2686-2296 (unconfirmed)
キーワード: statistical machine translation
phrase alignment
non-parametric Bayesian statistics
inversion transduction grammars
発行日: 2012
出版者: Information Processing Society of Japan
誌名: Journal of Information Processing
巻: 20
号: 2
開始ページ: 512
終了ページ: 523
抄録: The phrase table, a scored list of bilingual phrases, lies at the center of phrase-based machine translation systems. We present a method to directly learn this phrase table from a parallel corpus of sentences that are not aligned at the word level. The key contribution of this work is that while previous methods have generally only modeled phrases at one level of granularity, in the proposed method phrases of many granularities are included directly in the model. This allows for the direct learning of a phrase table that achieves competitive accuracy without the complicated multi-step process of word alignment and phrase extraction that is used in previous research. The model is achieved through the use of non-parametric Bayesian methods and inversion transduction grammars (ITGs), a variety of synchronous context-free grammars (SCFGs). Experiments on several language pairs demonstrate that the proposed model matches the accuracy of the more traditional two-step word alignment/phrase extraction approach while reducing its phrase table to a fraction of its original size.
著作権等: © 2012 by the Information Processing Society of Japan
URI: http://hdl.handle.net/2433/167749
DOI(出版社版): 10.2197/ipsjjip.20.512
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。