このアイテムのアクセス数: 705

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.chemolab.2013.03.008.pdf120.85 kBAdobe PDF見る/開く
タイトル: Development of soft-sensor using locally weighted PLS with adaptive similarity measure
著者: Kim, Sanghong  KAKEN_id
Okajima, Ryota
Kano, Manabu  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2325-1043 (unconfirmed)
Hasebe, Shinji  KAKEN_id  orcid https://orcid.org/0000-0003-0956-5051 (unconfirmed)
著者名の別形: 加納, 学
キーワード: Soft-sensor
Just-in-time model
Locally weighted partial least squares
Locally weighted regression
Distillation process
発行日: May-2013
出版者: Elsevier B.V.
誌名: Chemometrics and Intelligent Laboratory Systems
巻: 124
開始ページ: 43
終了ページ: 49
抄録: Recently, just-in-time (JIT) modeling, such as locally weighted partial least squares (LW-PLS), has attracted much attention because it can cope with changes in process characteristics as well as nonlinearity. Since JIT modeling derives a local model from past samples similar to a query sample, it is crucial to appropriately define the similarity between samples. In this work, a new similarity measure based on the weighted Euclidean distance is proposed in order to cope with nonlinearity and to enhance estimation accuracy of LW-PLS. The proposed method can adaptively determine the similarity according to the strength of the nonlinearity between each input variable and an output variable around a query sample. The usefulness of the proposed method is demonstrated through numerical examples and a case study of a real cracked gasoline fractionator of an ethylene production process.
著作権等: © 2013 Elsevier B.V.
This is not the published version. Please cite only the published version.
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/174103
DOI(出版社版): 10.1016/j.chemolab.2013.03.008
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。