このアイテムのアクセス数: 705
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.chemolab.2013.03.008.pdf | 120.85 kB | Adobe PDF | 見る/開く |
タイトル: | Development of soft-sensor using locally weighted PLS with adaptive similarity measure |
著者: | Kim, Sanghong ![]() Okajima, Ryota Kano, Manabu ![]() ![]() ![]() Hasebe, Shinji ![]() ![]() |
著者名の別形: | 加納, 学 |
キーワード: | Soft-sensor Just-in-time model Locally weighted partial least squares Locally weighted regression Distillation process |
発行日: | May-2013 |
出版者: | Elsevier B.V. |
誌名: | Chemometrics and Intelligent Laboratory Systems |
巻: | 124 |
開始ページ: | 43 |
終了ページ: | 49 |
抄録: | Recently, just-in-time (JIT) modeling, such as locally weighted partial least squares (LW-PLS), has attracted much attention because it can cope with changes in process characteristics as well as nonlinearity. Since JIT modeling derives a local model from past samples similar to a query sample, it is crucial to appropriately define the similarity between samples. In this work, a new similarity measure based on the weighted Euclidean distance is proposed in order to cope with nonlinearity and to enhance estimation accuracy of LW-PLS. The proposed method can adaptively determine the similarity according to the strength of the nonlinearity between each input variable and an output variable around a query sample. The usefulness of the proposed method is demonstrated through numerical examples and a case study of a real cracked gasoline fractionator of an ethylene production process. |
著作権等: | © 2013 Elsevier B.V. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/174103 |
DOI(出版社版): | 10.1016/j.chemolab.2013.03.008 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。