このアイテムのアクセス数: 388
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
IDA-130586.pdf | 656.11 kB | Adobe PDF | 見る/開く |
タイトル: | Semi-supervised learning on closed set lattices |
著者: | Sugiyama, Mahito Yamamoto, Akihiro ![]() ![]() |
著者名の別形: | 杉山, 麿人 山本, 章博 |
キーワード: | Semi-supervised learning label ranking mixed-type data closed set lattice formal concept analysis |
発行日: | May-2013 |
出版者: | IOS Press |
誌名: | Intelligent Data Analysis |
巻: | 17 |
号: | 3 |
開始ページ: | 399 |
終了ページ: | 421 |
抄録: | We propose a new approach for semi-supervised learning using closed set lattices, which have been recently used for frequent pattern mining within the framework of the data analysis technique of Formal Concept Analysis (FCA). We present a learning algorithm, called SELF (SEmi-supervised Learning via FCA), which performs as a multiclass classifier and a label ranker for mixed-type data containing both discrete and continuous variables, while only few learning algorithms such as the decision tree-based classifier can directly handle mixed-type data. From both labeled and unlabeled data, SELF constructs a closed set lattice, which is a partially ordered set of data clusters with respect to subset inclusion, via FCA together with discretizing continuous variables, followed by learning classification rules through finding maximal clusters on the lattice. Moreover, it can weight each classification rule using the lattice, which gives a partial order of preference over class labels. We illustrate experimentally the competitive performance of SELF in classification and ranking compared to other learning algorithms using UCI datasets. |
著作権等: | ©2013 IOS Press This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/175815 |
DOI(出版社版): | 10.3233/IDA-130586 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。