このアイテムのアクセス数: 388

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
IDA-130586.pdf656.11 kBAdobe PDF見る/開く
タイトル: Semi-supervised learning on closed set lattices
著者: Sugiyama, Mahito
Yamamoto, Akihiro  kyouindb  KAKEN_id
著者名の別形: 杉山, 麿人
山本, 章博
キーワード: Semi-supervised learning
label ranking
mixed-type data
closed set lattice
formal concept analysis
発行日: May-2013
出版者: IOS Press
誌名: Intelligent Data Analysis
巻: 17
号: 3
開始ページ: 399
終了ページ: 421
抄録: We propose a new approach for semi-supervised learning using closed set lattices, which have been recently used for frequent pattern mining within the framework of the data analysis technique of Formal Concept Analysis (FCA). We present a learning algorithm, called SELF (SEmi-supervised Learning via FCA), which performs as a multiclass classifier and a label ranker for mixed-type data containing both discrete and continuous variables, while only few learning algorithms such as the decision tree-based classifier can directly handle mixed-type data. From both labeled and unlabeled data, SELF constructs a closed set lattice, which is a partially ordered set of data clusters with respect to subset inclusion, via FCA together with discretizing continuous variables, followed by learning classification rules through finding maximal clusters on the lattice. Moreover, it can weight each classification rule using the lattice, which gives a partial order of preference over class labels. We illustrate experimentally the competitive performance of SELF in classification and ranking compared to other learning algorithms using UCI datasets.
著作権等: ©2013 IOS Press
This is not the published version. Please cite only the published version.
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/175815
DOI(出版社版): 10.3233/IDA-130586
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。