このアイテムのアクセス数: 768
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
transfun.E95.A.2272.pdf | 3.36 MB | Adobe PDF | 見る/開く |
タイトル: | Bayesian Estimation of Multi-Trap RTN Parameters Using Markov Chain Monte Carlo Method |
著者: | AWANO, Hiromitsu ![]() ![]() ![]() TSUTSUI, Hiroshi OCHI, Hiroyuki SATO, Takashi ![]() ![]() ![]() |
著者名の別形: | 佐藤, 高史 |
キーワード: | random telegraph noise Bayesian estimation Markov chain Monte Carlo device characterization source separation statistical machine learning |
発行日: | Dec-2012 |
出版者: | The Institute of Electronics, Information and Communication Engineers |
誌名: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
巻: | E95.A |
号: | 12 |
開始ページ: | 2272 |
終了ページ: | 2283 |
抄録: | Random telegraph noise (RTN) is a phenomenon that is considered to limit the reliability and performance of circuits using advanced devices. The time constants of carrier capture and emission and the associated change in the threshold voltage are important parameters commonly included in various models, but their extraction from time-domain observations has been a difficult task. In this study, we propose a statistical method for simultaneously estimating interrelated parameters: the time constants and magnitude of the threshold voltage shift. Our method is based on a graphical network representation, and the parameters are estimated using the Markov chain Monte Carlo method. Experimental application of the proposed method to synthetic and measured time-domain RTN signals was successful. The proposed method can handle interrelated parameters of multiple traps and thereby contributes to the construction of more accurate RTN models. |
著作権等: | © 2012 The Institute of Electronics, Information and Communication Engineers |
URI: | http://hdl.handle.net/2433/178695 |
DOI(出版社版): | 10.1587/transfun.E95.A.2272 |
関連リンク: | http://www.ieice.org/jpn/index.html |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。