このアイテムのアクセス数: 768

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
transfun.E95.A.2272.pdf3.36 MBAdobe PDF見る/開く
タイトル: Bayesian Estimation of Multi-Trap RTN Parameters Using Markov Chain Monte Carlo Method
著者: AWANO, Hiromitsu  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-9288-471X (unconfirmed)
TSUTSUI, Hiroshi
OCHI, Hiroyuki
SATO, Takashi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-1577-8259 (unconfirmed)
著者名の別形: 佐藤, 高史
キーワード: random telegraph noise
Bayesian estimation
Markov chain Monte Carlo
device characterization
source separation
statistical machine learning
発行日: Dec-2012
出版者: The Institute of Electronics, Information and Communication Engineers
誌名: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
巻: E95.A
号: 12
開始ページ: 2272
終了ページ: 2283
抄録: Random telegraph noise (RTN) is a phenomenon that is considered to limit the reliability and performance of circuits using advanced devices. The time constants of carrier capture and emission and the associated change in the threshold voltage are important parameters commonly included in various models, but their extraction from time-domain observations has been a difficult task. In this study, we propose a statistical method for simultaneously estimating interrelated parameters: the time constants and magnitude of the threshold voltage shift. Our method is based on a graphical network representation, and the parameters are estimated using the Markov chain Monte Carlo method. Experimental application of the proposed method to synthetic and measured time-domain RTN signals was successful. The proposed method can handle interrelated parameters of multiple traps and thereby contributes to the construction of more accurate RTN models.
著作権等: © 2012 The Institute of Electronics, Information and Communication Engineers
URI: http://hdl.handle.net/2433/178695
DOI(出版社版): 10.1587/transfun.E95.A.2272
関連リンク: http://www.ieice.org/jpn/index.html
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。